线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

智能化网络管理8篇

时间:2023-03-07 15:01:28

智能化网络管理

智能化网络管理篇1

随着我国基础教育的普及以及计算机技术的不断发展,我国接入网络的计算机数量早已达到了亿级,大量的计算机接入也使得网络结构愈趋的复杂化,新技术的发展也在不断的更替网络中不合时宜的部分。这些情况使得网络维护与管理难度逐步的提升,因此网络管理也需要研究新的技术来面对困难环境的挑战。本文将在众多文献的基础上结合计算机智能算法的应用探索基于智能算法的智能化网络管理系统设计方案。

【关键词】智能化 网络管理

网络管理的目的是通过软件控制各网络设备,协调网络通信,提高网络设备的使用效率,提升网络使用质量。最初的网络管理并不是成体系进行管理的,而是分拆式管理,各网络设备协调性较差,不能充分的利用资源。加之网络规模逐渐增长后,网络管理需要解决的问题困难程度也在递增,面对大规模的网络管理,最好的处理办法就是整合网络设备资源,从整体上进行调度,调度方法可以依据实际情况选择,使得网络管理系统达到一定的智能化,降低网络维护与管理成本。下面本文将从网络管理的智能化需求入手,探讨智能化网络管理系统。

1 对智能化网络管理的要求

1.1 智能化网络管理的基本要求

设计网络管理系统的目的是为了满足实际使用要求,因此需要明确网络管理系统的职责与任务,才能针对性的设计系统方案。网络管理基本任务大致上可以分为以下几点:

1.1.1网络运行状态监控

在网络运行中会发生各种事件,网络管理系统必须能够有效的对网络运行状态进行监控。首先网络管理系统必须能够及时的检测到网络故障,发现故障后能够隔离故障网络并定位出故障原因。如果故障可以由管理系统自行依靠自身设置或故障排除工具排除,则排除故障并将隔离部分重新接入网络,如果不能排除故障,要求迅速给出警报,通知管理人员处理。在整套流程过程中,管理系统需要记录故障信息,对日志进行归档,作为以后的参考资料。

1.1.2网络设备及配置管理

计算机接入网络过程中,往往需要经过一些网络设备,要求网络管理系统可以自动的进行一些网络设备的发现与按照预定目标进行配置。不同的设备配置策略起到的作用不同,在进行配置管理是,管理系统应该提供给管理人员友好的交互界面,从不同层次展示网络状况与网络设备配置情况,方便管理者依据使用要求对网络设备进行配置,同时做好操作路径记录,能够回滚到以往的配置,避免误操作。

1.1.3网络管理系统安全

为避免非法操作,需要加入保护管理系统的功能。主要有以下几点:

(1)使用系统前必须先对对操作者进行身份认证,保证操作者的身份可以合法使用管理系统。

(2)完备的系统安全日志记录。操作者的登录时间、执行操作、注销时间等等均需记录。

(3)对不同的操作者赋予不同的权限,同时对不同的操作行为也赋予不同的权限,低权限的操作者不可以访问高权限数据、不可以进行高权限操作。

(4)定时进行数据备份,或敏感操作时对数据进行备份,避免数据丢失。

1.2 更具智能化的网络管理要求

在满足基本的网络管理使用要求后,为了更好的对网络进行管理,智能化网络管理系统需要更加的智能,尽量减少人为操作,并合理的对网络资源进行调度配置。按照网络管理的显性需求与隐形需求,智能化网络管理应具备以下功能:

1.2.1网络性能管理

此功能为智能化网络管理的核心功能,也是最为复杂的功能,整合后的网络管理系统可以从整体上监控网络运行,为网络性能管理提供了基础条件。此功能从整体上可以划分为三个部分,首先是网络信息的收集,系统需要采集各个网络设备与终端的数据用作调度依据,数据内容包括计算机终端的运行状况,网络设备负载等等;其次是依据预先的设定对网络资源进行调度,依据一定的策略动态调整计算机终端网络,充分利用网络资源,从而整体上达到网络的最优化运行;最后是对网络运行数据的整理与分析,系统需提供对历史数据的分析数据,供网络管理者参考,同时它也可以作为网络调度的正反馈数据,用以修正网络调度策略。

1.2.2一定的网络安全防御能力

计算机智能化网络管理系统作为网络的管理者,虽然并不是网络安全防御系统,但是却具备一定的网络安全防护能力,这种能力来源于底层的网络设备支持,当前的网络设备都已经具备了一定的保护功能,网络管理系统应当充分的发挥这种特性。另外,面对网络异常的计算机终端时,系统应具备将其隔离的功能,避免波及到正常的计算机终端。其他的安全防护措施可以交由上层的防火墙进行。

1.2.3数据的挖掘与展现功能

随着网络规模的不断增大,网络组织形态的多样性增多,能够自动搜寻与生成网络拓扑结构图,为管理者提供管理参考数据显得非常重要,对日常网络运行数据进行分析也同样重要,因此智能化网络管理系统需要具备优秀的数据处理能力。

2 智能化网络管理框架设计方案

按照上一节的对智能化网络管理系统的要求分析,参考现有的智能化网络管理理论,可以进行智能化网络管理的大体设计,虽然不同的智能化网络管理系统具体设计不同,但是其构架确实相似的。

2.1 智能化网络管理总体设计

智能化网络管理系统可以从大体上拆分为三层进行设计,智能化程度较高的功能作为一个部分,较低的作为另外一个部分,最后是简单的数据采集、数据记录等等功能。从整体上看,数据流向为从智能化程度最低的部分流向智能化程度最高的部分,按照这个设计思路,系统可以分为三层。

2.1.1基于各种智能算法的功能模块层

这部分是需要复杂的算法支持的功能,属于系统核心功能,也是设计难度最高的部分。因此,将其单独抽象出来非常的有必要,不但可以减少其他部分的干扰,同时也方便以后的系统升级。这部分主要有两个功能,一是进行网络资源调度;二是对网络运行数据以及日志等的分析与展现。

2.1.2完成各种简单操作的功能模块层

智能化网络管理功能较为繁复,除核心功能外还有大量的其他功能,这些功能可以在很大程度上减轻操作者的工作量,例如:日志管理模块、用户权限与行为权限管理模块、网络数据整合模块、故障诊断模块、报警模块、网络设备自动发现模块等等。其中的一些模块也作为网络资源调度或者是网络数据挖掘功能的数据提供者而存在。

2.1.3具体功能执行模块层

此部分完成网络运行状态数据的收集、网络设备的配置、人机交互界面、驱动加载、系统文件管理、网络工具包调用等等,属于最基本的模块,负责完成功能执行动作。每一个模块都可以拆分完成,相互之间并不影响,具有高度低耦合的特性,通过这种砌砖式的组织构架可以保证网络管理系统的运行脉络清晰,降低维护难度。

2.2 智能化网络管理主要接口设计

为了降低智能化网络管理各个功能之间的耦合性,在完成需求分析以及系统总体框架设计后,需要合理规划不同层次之间的接口,方便以后的维护。按照从高到低的设计顺序,可以设计如下接口:

2.2.1数据管理者与上层的数据使用者之间的接口

上层的数据使用者主要是网络资源调度模块与数据挖掘与展现模块,为了将其与数据管理者隔离开,降低耦合度需要设计接口用来进行数据的传输。数据管理者负责接受来自数据使用者的请求并将数据按照配置文件的设定组织成数据流,送入指定的位置,数据使用者通过读取配置文件中的配置接受数据流并转变为自身所需的数据形式。通过使用配置文件的方式,可以灵活的设定接口,为以后的升级创造一个有利条件。

2.2.2网络设备层与系统功能模块之间的接口

世面上使用的网络设备种类繁多,不同的网络设备应用方法不尽相同,显然不能要求智能化网络管理系统专注于分辨网络设备以及如何使用该网络设备上,为了让网络设备对管理系统功能模块透明,就需要创建一个中间层用于支持两者之间的接口。同种类的网络设备所能支持的功能是相似的,中间层负责管理网络中所有的设备信息,记录所有的设备的操作方法。当管理系统中功能模块通过接口对网络设备发出命令时,中间层依据目标网络设备选择对应的方法对网络设备进行操作。同理,中间层也负责接受并处理网络设备提供的数据,供其他模块使用。

除了上述的两种主要接口外,还有其他一些接口,如人机界面接口、文件管理接口等等,接口存在的目的就是最大程度的隔离各类功能模块,在设计中为了降低维护难度、提升系统灵活性,接口可以使用配置文件方式进行配置。

3 智能化网络管理效果评估

计算机智能化网络管理系统是一个较为复杂的系统,这个系统的运行状况关乎计算机网络运行的稳定与效率,在其投入使用后,可以通过获取到网络运行参数并进行评估来判定智能化网络管理的优劣,并可以以此为依据修正系统中存在的问题,不断的完善网络管理质量,对网络性能的评估属于上章中提到的网络调度模块中的一部分,它对智能化网络管理系统至关重要,是系统不断完善自身的数据基础。

网络性能评估主要的评估参数有:

(1)网络的连接性,即网络是否连通、是否可用,是基本的网络参数。

(2)网络的延迟时间,分固定延迟与可变延迟。

(3)网络丢包率,即丢失的数据包占总数据包的比例。

(4)网络带宽,分为可用带宽与瓶颈带宽。

(5)流量参数,分为两种计算方法,分别是用一段时间内成功传输的IP包和包中的总字节数除以时间间隔得到。

针对网络性能参数测量,可以依据测量方式方法不同划分出多种测量手段。如被动测量与主动测量、多点测量与单点测量、基于不同协议的测量、非协作测量与写作测量等等,究竟采用何种测量方法需根据实际情况确定。

在完成对网络状态测量后,不同的评估方法对所得数据的处理也不同,但多数情况下都是建立数学模型,然后对模型进行分析,得到所需结果。模型的分析较为复杂,在各种智能化算法中,最合适的应属于人工神经网络算法,它的自我学习、自我纠正的特征很适用于网络管理策略。

网络性能评估是智能化网络管理系统选择网络资源调度策略的核心因素,性能评估的结果影响管理系统的行为,此环节也是所需智能化程度最高的部分。

4 结束语

各种智能算法的发展增强了计算机解决实际的问题的能力,面对网络日益庞大、网络管理要求日益增多的挑战,适当的选用智能算法,辅助以软件技术,建立智能化的网络管理系统是一个非常有效的应对办法。智能化网络管理系统的应用不但降低了对网络管理人员的技术水平要求、减少了人为的管理操作,同时还动态依据网络情况调配网络资源,从而最大程度的利用网络资源。因此,智能化网络管理是未来网络管理系统的发展方向。

参考文献

[1]原慧琴.智能网络管理系统[D].广东工业大学,2006(05).

[2]李华.智能化通信网络综合管理技术[D].电子科技大学,2011(04).

[3]李佳良.智能化网络管理系统的实现[J].金融电子化,2008(11).

[4]张崇.计算机智能化网络管理浅析[J].科技与企业,2013(06).

[5]张菁菁,罗艺.一种面向业务的智能化网络管理系统[J].中国水运(下半月),2009(08).

作者简介

范玉柏,(1971-),男,贵州省贵阳市人。学士学位。现为贵阳科杰电脑职业培训学校讲师、网络工程师。研究方向为计算机网络与安全。

智能化网络管理篇2

针对现有光纤网络资源管理方法无法有效地保证数据准确性及灵活处理复杂多变的现场状况的问题,提出了一种半分布式光纤网络资源智能化管理方法。该方法利用光纤网络区域化管理的特点,对光纤资源信息库中的资源数据按照区域进行数据块划分,将数据块副本分布存储于智能管理终端节点中。基于该方法,设计并实现了一种智能化光纤网络资源管理系统。对该系统的测试结果表明:所提出的半分布式光纤资源方法在性能指标上达到了光纤网络的管理标准,并能够很好地解决光纤网络管理的瓶颈问题。

关键词:

光纤网络;智能化;资源管理;集中式;半分布式

智能化是指综合利用当前计算机网络技术、通信信息技术、智能控制技术以及相关行业技术而实现的针对行业某一方面的自动化、电子化的应用。随着计算机网络的迅速发展,世界上每一个物体实现连接交互均已成为了可能,这为智能化的快速发展提供了基础。智能化也可以看作是对计算机网络在其他行业内应用的一次大胆尝试,而移动互联网的迅速发展,更加速了智能化的普及。目前,世界上越来越多的国家开始重视宽带技术的发展,这为全球的宽带覆盖及信息化水平的提高提供了机遇[1]。在中国,宽带相关产业包括云计算、互联网视频等也开始了快速发展。截止2012年4月,中国的宽带用户规模已经达到1.59亿,然而中国宽带不宽的现象一直遭人诟病[2]。光通信是以光作为信息传输的载体,它主要以光纤作为物理链路进行传输,相对于传统的电通信而言,光通信具有更高的传输速率和更高的可靠性,因而成为促进宽带发展的重点。工信部于2013年8月提出了“宽带中国”发展战略[3],旨在规模化部署光纤,实现光纤入户(FTTH,FiberToTheHome)[4],提高宽带质量。光纤网络即是为实现大规模部署光纤而构建的网络系统。光纤网络是FTTH规模部署的核心网络,其管理将直接影响部署的最终实施效果。将智能化应用于光纤网络中,实现光纤网络中光纤资源的高效智能化管理,已经成为电信行业资源管理领域进行光纤资源合理配置的研究重点。本文通过对现有手工的和智能化的光纤网络资源管理方法的研究,提出了一种半分布式光纤网络资源智能化管理方法。该方法利用光纤网络区域化管理的特点,对光纤资源信息库中的资源数据按照区域进行数据块划分,将数据块副本分布存储于智能管理终端节点中,通过智能管理终端中的数据块副本来实现对光纤网络资源的半分布式管理。

1光纤网络资源管理

光纤网络资源的管理是通过手工或者自动化的手段来管理大规模的光纤网络设备并支持在这些设备上进行施工[5]。在对光纤网络中的设备进行管理时,资源管理中心根据客户的业务需求下发管理任务给现场管理人员,现场管理人员领取任务后到设备现场根据任务要求对设备进行施工。施工完毕后,管理人员将结果返回给资源管理中心进行记录。光纤网络资源管理流程如图1所示。目前,光纤网络资源的管理主要有传统光纤网络资源管理和集中式智能化光纤网络资源管理两种方法。

1.1传统光纤网络资源管理方法传统光纤网络资源管理方法是通过手工的方式以纸质工单作为管理任务信息的载体来进行远端光纤设备的管理施工[6]。传统管理方法依赖手工进行管理,手工操作设备,手工记录施工结果,手工将结果数据录入光纤网络的资源库中。这种管理方法存在以下问题:网络手工管理,效率低下;网络中设备资源的数据错误率高;故障点分散,难以排查;故障解决时间长。光纤网络手工管理的难题严重制约着光纤产业的发展及光纤网络的规模化部署[7],实现智能化的光纤网络资源管理已经成为光纤网络规模化部署的迫切要求。

1.2集中式智能化光纤网络资源管理方法智能化光纤网络资源管理方法以光纤资源管理中心为管理核心,以管理人员在设备现场手持的管理终端作为任务信息传输中介来实现对光纤设备的智能化管理[8-9]。光纤网络中所有的资源数据均存储于资源管理中心资源信息库中,由资源中心产生工单任务并下发到现场管理人员手持的管理终端,由终端对设备进行管理。集中式智能光纤管理系统的结构如图2所示。为实现集中式智能化光纤网络资源管理,需要进行以下6个步骤:(1)首先改变传统光纤网络中光纤设备的无源特性,对光纤设备以及设备上的机框、板卡、端口等进行唯一编码并能识别。(2)创建光纤网络资源信息库,将光纤网络中的设备、端口等资源在信息库中存储。(3)在受理用户业务后,业务管理员根据业务信息从资源库中提取设备资源信息产生工单任务并指派给现场管理人员。(4)管理人员手持管理终端获取工单任务并将工单指令发送给光纤设备上管理控制器,控制器对相关资源进行状态变更。(5)现场管理人员根据设备指示进行施工。完毕后,控制器识别设备资源状态变化并将该资源信息编码后发送到管理终端。(6)管理终端施工后将设备对应资源实际信息上传到光纤网络资源库中存储。集中式智能化方法框架如图3所示。根据集中式智能化管理方法,管理人员在施工前从管理终端远程获取电子工单任务。施工时,终端将工单任务编码成控制指令发送给设备,施工人员根据指示完成施工。施工完成后,任务结果数据由终端上传到光纤网络资源库中进行持久化保存。集中式智能化的管理方法解决了传统管理方法的手工管理问题,但是,由于并未根据光纤网络管理的实际情况做出相应改变,因此存在以下3个缺陷:(1)资源集中式存储,难以克服资源库单点故障;(2)光纤设备在线管理,难以应对复杂管理场景;(3)终端缺乏管理自主性,难以应对现场突发状况。集中式智能化管理方法虽然可以很好地保证资源数据管理的可靠性,然而其缺陷导致在实际操作过程中,光纤网络资源智能化管理的效果并未达到预期。

2半分布式智能化管理方法

为了解决集中式智能化管理方法中存在的问题,本文提出了一种半分布式光纤网络资源智能化管理方法。

2.1方法概述半分布式智能化管理方法是在集中式方法的基础上结合光纤网络区域管理、设备管理独立的管理特点提出的。在该方法中,光纤网络中资源数据的存储管理仍然以光纤网络资源管理中心为中心,而将光纤资源信息库的资源数据根据区域进行划分,并将不同区域的数据的副本存储于智能管理终端中。通过终端中的资源副本数据实现对设备的管理。该方法将区域数据块副本分布式存储于管理终端,因此称之为半分布式管理方法。基于该方法的管理结构如图4所示。从图4中可以看出,资源信息库位于资源管理中心,作为整个光纤网络管理的中心,管理终端作为辅助节点围绕资源库来执行具体管理任务。资源信息库按照区域划分多个数据块,终端存储划分后的某个数据块副本。半分布式智能化管理方法是在集中式管理方法的基础上结合光纤网络实际管理特点而提出的,可以分为支持半分布式智能化管理的基础框架和基于角色的半分布式智能化管理框架两部分。半分布式智能化管理方法的组织框架如图5所示。

2.2支持半分布式智能化管理的基础框架支持半分布式智能化管理的基础框架分为硬件和软件两部分。硬件支持主要基于光纤设备智能化来进行,软件支持则基于光纤网络资源库和智能管理终端来进行。

2.2.1光纤设备智能化对于光纤设备的智能化实现本质上是对设备上管理控制器的改造和设备资源的编码,使之与外部通信模块交互并识别、控制设备中资源状态。设备管理控制器是可编程的单片机控制器芯片,在单片机芯片上固化控制程序实现对已编码资源的识别控制。

2.2.2资源库区域划分、权限机制和远程同步在设备智能化的基础上,对设备已编码资源进行存储并根据设备区域编码来进行管理划分,并提供权限管理机制和资源同步操作。设备资源所包含的基本数据域如下:(1)唯一索引值Id,Id∈{1,2,3,4,…,N}。(2)设备唯一编码。编码是设备资源在整个光纤网络中的唯一数据标识。(3)设备名称。为便于识别设备而为之命名的方便管理的名称。(4)区域唯一编码。区域编码根据设备实际所在位置确定。光纤网络由多个管理区域组成,每一个区域都包含有多个设备资源。资源信息库对光纤网络中的每一个区域都定义有唯一编码。光纤网络资源信息库根据区域编码进行划分的物理视图见图6。整个光纤网络资源数据库中的设备资源根据其区域编码进行数据块的划分,区域与其中的设备数据进行关联映射,以区域编码为Key,区域内数据块为Value。区域数据块的集合构成该区域的资源数据,所有区域的数据集合构成整个网络的资源数据。权限管理机制用以保证资源数据副本的可靠性。权限管理机制使用基于角色的访问控制模型,通过为管理人员添加角色信息来提高对数据访问的可靠性。对于管理人员来说,可以拥有多个角色和数据访问权限;对于角色来说,可以被多个管理人员所拥有,角色有相应的数据访问权限;对于班组来说,可以拥有多个权限,多个管理人员;对于权限来说,可以被多个管理人员、班组所拥有。在区域划分和副本存储的基础上,为管理终端定义设备信息同步操作,定义如下:Sync(device),该操作根据device中唯一编码进行资源库中数据的持久化同步存储。半分布式方法资源库进行资源数据划分根据区域唯一编码来进行。根据区域划分是资源划分的理想情况,在实际情况中可能更复杂。

2.2.3智能管理终端副本存储及管理智能管理终端与管理区域一一对应,终端中存储和管理着所管理区域设备的数据块副本的集合。区域数据块副本的数据结构所包含的基本域如下所示:(1)区域唯一编码Id。区域编码Id根据智能管理终端管理区域确定。(2)设备资源数据记录列表List,该列表由区域所在设备确定。在存储区域数据副本的基础上,该方法为管理终端管理数据副本定义了以下操作:(1)Append(device,List),该操作表示将区域设备追加到已管理设备列表中。(2)Create(device,List),该操作表示终端通过查询设备device来创建工单任务。(3)RemoteSync(device),该操作通过远程调用资源库Sync(device)操作进行设备信息与资源库的远程同步。

2.3基于角色的半分布式智能化管理框架通过半分布式智能化方法进行光纤网络管理时,可分为3类角色进行,系统管理员负责资源信息库管理;业务管理员负责业务信息管理;现场管理人员负责现场设备管理。光纤网络的管理需要这3类角色协作完成。

2.3.1系统管理员管理资源管理中心系统管理员主要负责管理人员信息管理,其中最重要的当属人员的权限管理,包括人员的角色授权及变更。系统管理员进行权限管理的流程如下:(1)登录光纤网络资源信息库;(2)对管理人员进行角色评估,评估标准基于管理人员操作正确率来进行;(3)根据上述步骤中评估结果对管理人员的角色进行授权或更改。系统管理员参与光纤网络管理进行权限管理的流程如图7所示。

2.3.2业务管理员管理资源管理中心业务管理员在进行网络管理时,主要负责工单任务的创建、工单任务下发以及资源数据同步确认。业务管理员参与光纤网络管理的流程如下:(1)通过浏览器登录光纤网络资源信息库,受理用户业务;(2)根据受理的业务信息生成对应的工单任务,或根据光纤网络本身的管理需求创建相应工单任务;(3)根据工单任务指定信息将工单指派给指定区域管理人员。资源管理中心业务管理员进行一次管理操作的流程如图8所示。

2.3.3现场管理人员管理在资源管理中心中管理员完成工单指派后,现场管理人员在设备现场就可以登录智能管理终端获取工单任务进行管理操作。现场管理人员参与管理的流程如下:(1)管理人员在设备现场对设备加电,终端与设备管理控制器进行连接;(2)现场管理人员登录管理终端,远程获取或创建工单任务;(3)管理人员通过终端编码指令发送;(4)设备管理控制器通过外接通信模块接收到指令后,进行施工指示;(5)管理人员根据设备指示进行管理;(6)控制器设备管理变动信息发送到管理终端,调用Append(device,List)和RemoteSync(device)操作进行副本数据块与资源信息库的更新存储和远程同步。现场管理人员的管理流程如图9所示。半分布式光纤网络智能化管理方法是针对现有集中式方法的缺陷进行改进的。它改变了集中式方法中资源数据完全集中存储于信息库的弊端,将资源的数据块副本分布存储于管理终端,可有效克服资源库单点故障。终端可根据副本进行离线管理,而不是必须实时与资源库进行信息通信,可以有效应对网络较差的场景。半分布式方法中终端具有创建工单任务的能力,遇到突发状况可以自行决策并解决,提高了终端的管理自主性,有效提高管理效率。通过半分布式方法进行管理时,可通过两种管理模式进行:在线管理和离线管理。在线管理时,管理人员通过终端直接从资源库请求任务。离线管理时,管理人员通过终端操作数据块副本并创建任务。半分布式管理方法能够在不改变集中式光纤网络资源智能化管理流程的条件下,提高智能管理终端的自主性和光纤网络管理的持续性、健壮性。

3系统及测试

基于半分布式方法,本文设计并实现了一种半分布式光纤网络资源智能化管理系统,并进行了相关测试来验证该方法的有效性。

3.1基于半分布式方法的光纤资源管理系统基于半分布式方法的光纤网络管理系统可分为基础模块和半分布式模块来实现。基础模块包括了资源库和管理终端中基本功能的实现。半分布式模块则包括了体现系统半分布式特性的功能的实现。光纤网络资源智能化管理系统的总体设计如图10所示。在系统基础模块中,光纤网络资源数据库中存储了工单资源、设备资源等数据,并主要提供了工单管理、设备管理等功能,光纤网络资源库为业务管理员提供管理接口,方便管理员对其进行管理。管理终端中主要拥有工单管理、施工管理等功能。在系统半分布式模块中,光纤网络资源库进行资源数据逻辑划分并添加权限管理机制和远程同步操作。管理终端实现了数据副本存储管理和工单的创建。本系统光纤网络资源库中资源存储使用SQLServer数据库基于Java语言进行后台开发,Hiber-nate作为数据持久化框架,Tomcat作为资源库服务器。智能管理终端中客户端基于Android智能操作系统平台进行开发。光纤网络资源库与智能管理终端的通信基于WebService技术[11-12]实现,智能管理终端与光纤网络设备的近程传输则是基于蓝牙技术[13]来实现。当前,基本上所有智能移动终端设备上均配置有蓝牙模块,可有效降低管理成本[14]。

3.2系统测试系统的测试包括了半分布式模块的功能测试和系统的操作性能测试[15-16]。前者包括了终端工单创建、资源远程同步和权限控制的测试。后者包括了系统中工单任务和告警信息的传输以及系统操作等方面的测试。对系统半分布式模块进行测试的测试用例如表1、表2、表3所示。系统根据上述测试用例对其半分布式模块进行功能测试。智能管理终端中工单任务的创建如图11所示,工单信息的远程同步确认如图12所示。终端根据登录人员的管理角色级别进行操作限制。初级管理人员登录终端后只能对设备执行相关自动化的操作,如图13所示。对系统操作性能的测试时,通过多线程的方式模拟多用户访问。根据某公司光纤网络资源智能管理标准,系统测试主要包括了对工单和告警信息的传输时间的测试以及系统操作性能的测试。工单的下载传输测试结果如表4所示。系统操作性能的测试则包括了现场管理人员进行设备配置、自检和身份验证的传输时间测试。系统操作性能及告警传输测试结果如表5所示。根据光纤网络资源智能化管理标准,工单任务远程下载时间不能高于3s,设备信息的读取时间应不高于120s,管理人员身份验证时间不能高于5s,设备自检的时间不能高于45s。在现场施工时,告警信息从发生到在管理终端上显示通知的时间应不高于2s。从上述表中测试结果可以看出,各项操作的时间性能符合该标准要求。

4结束语

本文通过对光纤网络资源现有手工管理方式和智能化管理方法进行研究分析,提出了一种半分布式智能化光线网络资源管理方法。该方法利用光纤网络区域化管理的特点,对光纤资源信息库中的资源数据按照区域进行数据块划分,将数据块副本分布存储于智能管理终端节点中。本文对该方法的基础软硬件框架和管理框架进行了详细的阐述说明,同时根据该方法设计实现了光线网络资源智能化管理系统,并根据智能化管理标准对该系统进行了测试分析。测试结果表明,本文提出的半分布式方法能够很好地解决光纤网络管理瓶颈问题,实现的系统在性能方面能够达到标准。在今后的工作中,我们将继续研究其他因素对光纤网络管理的影响,并对该方法进一步改进,提高管理效率。

参考文献:

[1]FaulhaberGR,HogendornC.Themarketstructureofbroadbandtelecommunications[J].TheJournalofIndustrialEconomics,2000,48(3):305-329.

[2]鲁义轩.宽带国家战略"照进现实"[J].通信世界,2012(1):20.

[3]国务院办公厅.国务院关于印发"宽带中国"战略及实施方案的通知[EB/OL].[2013-08-17].http://www.gov.cn/zwgk/2013-08/17/content_2468348.htm.

[4]GreenPE.Fibertothehome:Thenextbigbroadbandthing[J].CommunicationsMagazine,2004,42(9):100-106.

[5]EffenbergerFJ,TarekSEl-Bawab.Passiveopticalnetworks(PONs):Past,present,andfuture[J].OpticalSwitchingandNetworking,2009,6(3):143-150.

[6]LeeChang-Hee,WayneVSorin,ByoungYoonKim.FibertothehomeusingaPONinfrastructure[J].JournalofLight-waveTechnology,2006,24(12):4568-4583.

[7]陈洁.ODN"智能化"的考虑[J].电信网技术,2012(10):9-13.

[8]毛雯铭,张毅,沈成彬,等.智能光分配网络技术及其进展[J].电信科学,2012,28(8):17-21.

[9]GebizliogluOS.ODNintelligence-automatingfiberdeploy-mentandoperations[C]//OpticalFiberCommunicationCon-ferenceandExpositionandtheNationalFiberOpticEngi-neersConference.Anaheim:OpticalSocietyofAmerica,2013:1-3.

[10]WangJianquan,FuHaijun,GuoLin,etal.Studyonimple-mentationsolutionsandfunctionspecificationsofintelligentopticaldistributionnetwork[J].AppliedMechanicsandMaterials,2013,380:4047-4051.

[11]MaLin,SongJunde,TongJunjie.Thekeytechnologyresearchofwebserviceselection[J].TheJournalofChinaUniversitiesofPostsandTelecommunications,2012,19(2):104-108.

[12]闵现畅,黄理灿.基于Android平台的Web服务技术研究[J].工业控制计算机,2011,24(4):92-94.

[13]KhanJY,WallJ,RashidMA.Bluetooth-basedwirelesspersonalareanetworkformultimediacommunication[C]//ProceedingsofTheFirstIEEEInternationalWorkshop.Christchurch:IEEE,2002:47-51.

[14]BakerN.ZigBeeandBluetooth:Strengthsandweaknessesforindustrialapplications[J].ComputingandControlEngi-neering,2005,16(2):20-25.

[15]田君,姚里.智能ODN功能及性能剖析[J].电信技术,2013(5):28-30.

智能化网络管理篇3

【关键词】网络;故障;智能化;事件知识库

一个网络管理系统有五大功能域:故障管理、配置管理、性能管理、计费管理和安全管理,其中,故障管理是最基本,也是最重要的功能。目的是保证网络能够连续可靠地运行。如果网络服务意外中止,将会对生产、生活造成很大影响,这就需要一套科学的故障管理策略,及时发现故障、排除故障,网络管理的智能化也是发展的必然趋势。为此本文针对网络故障智能化管理进行研究,并提出了建立事件知识库提高故障管理的智能水平的方法,为网络故障智能化的进一步发展奠定了基础。

1、计算机网络故障管理技术研究

(1)故障管理概述

故障是指软、硬件的缺陷;错误则是软硬件的不正确输出;失效是指所有和某故障有关的错误造成的网络的非正常运行。网络故障按生命周期可分为永久故障、暂时故障和瞬间故障三类;按故障对网络造成的空间失效范围的大小,可将失效分为四类:任务失效、基本网络部件失效、 结点失效和子网失效。故障管理的主要任务是及时发现并排除网络故障。一般说来,故障管理包括以下几个内容:故障监测和捕获故障产生相关的事件和报警;定位分析故障、记录故障日志;如有可能排除故障等。

(2)故障管理的类型

故障类型指的是具有某种特征的故障的分类。通常我们可以根据故障发生来源的不同,将它们划分为两大类,即硬故障(hard errors)和软故障(soft errors)。

硬故障是指网络的硬件设备在工作过程中产生的各种错误。这些错误与该设备的作用有密切关系,网络系统的复杂性也正是由于设备的多样性而体现出来的。根据这网络设备的作用,我们也可以将故障简单分为以下三类:

①连接设备故障。这种故障的现象主要是网络的物理连接出现问题,也可以称为通路故障。造成故障的原因可能是电缆线断开、收发器断开或不能正常工作以及其它连接设备间的接口出问题等等。根据这类故障的来源不同,我们又可以将该类型的故障细分为线路故障、网络接口故障、收发器故障、路由器故障等等,该类故障是故障管理的最主要对象。

②共享设备故障。这种故障的表现是用于资源共享的设备出现问题,不能提供或享受所需的服务。同样,该类型的故障也可以细分为服务器故障(打印机故障、文件服务器故障等)、工作站故障等等。

故障类型并不是一成不变的,随着网络在复杂性和规模上提高,网络故障管理的要求也在不断增加。新的技术、设备的应用使故障的类型、故障原因、故障源等各方面都发生了变化,这就要求故障管理系统必须增加新的内容。

2、智能化网络管理的概述

为了能够更有效地对各种大型复杂的网络进行管理,许多研究人员将人工智能技术应用到网络管理领域。虽然全面的智能化的网络管理距离实际应用还有相当长的一段路要走,但是在网络管理的特定领域实施智能化,尤其是基于专家系统技术的网络管理是可行的。

用于故障管理的专家系统由知识库、推理机、知识获取模块和解释接口四大主要部分组成。专家系统以其实时性、协作管理、层次性等特点,特别适合用在网络的故障管理领域。但同时专家系统也面临一些难题:

(1)动态的网络变化可能需要经常更新知识库。

(2)由于网络故障可能会相关到其它许多事件,很难确定与某一症状相关的时间的开始和结束,解释和综合消息复杂。

(3)可能需要大量的指令用以标识实际的网络状态,并且专家系统需要和它们接口。

(4)专家系统的知识获取一直以来是瓶颈所在,要想成功地获取网络故障知识,需要经验丰富的网络专家。

在实现智能化网络管理系统时,还必须把握系统复杂性与系统性能的关系。不仅要利用将较为成熟的人工智能技术,而且要考虑实现上的复杂度和引入人工智能技术对系统性能和稳定性的影响。

3、事件知识库的研究

在专家系统中,知识的表示有逻辑表示法、语义网络表示法、规则表示法、特性表示法、框架表示法和过程表示法。产生式表示法,即规则表示法,是最常见的一种表示法。其特点是模块性、一致性和自然。知识库是知识的集合,严格意义上的知识库包括概念、事实和规则只部分,缺一不可。

为了提高故障管理的智能水平,可以建立事件知识库(EKB, Event Knowledge Base,用于存储所有己知事件的类型、产生事件的原因和所造成的影响,以及应该采取什么样的措施等一些细节的静态描述。这个EKB并不是真正意义上的知识库,它的数据仅仅包含了属性值与元组,而属性值表示概念,元组表示事实。但研究EKB可以为今后建立完善的知识库奠定基础。

在EKB中存储了己经确定事件。最初,被确定的事件仅限于一些标准事件和措施。随着网络的运行和系统的反馈,EKB的内容将不断增加。

理想状态是能够确定所有的事件。

下面是EKB涉及到的只种基本的数据库表:

(1)事件类型表:该表中主要存储了事件的静态定义。

EKB中保存了己确定的事件可能涉及的相关知识,如事件类别(如:性能、系统、网络、应用事件或其它)、严重程度(如:严重、主要、次要、 警告等)、产生事件的设备标识、指明设备的类型、事件造成什么影响(如:影响网速、单个用户不能访问等)、故障排除参考策略、上次更新的时期/时间、关于这个事件的备注信息、事件的详细描述等。

(2)实时事件表:描述了正在运行的网络中的实时事件。

实时事件表中提供可能用的一些字段,用于记录网络运行中发生的事件,如:设备的ID(从IP地址或查询设备表可以获得)、实时事件的状态(如:新增、确认、清除等)、根据故障票ID获得的相应的故障票信息等。

(3)设备信息表:存储了网络中设备的实际参数。

设备信息表主要记录了每个设备的相关参数。例如,设备ID号、IP地址、设备名称、厂商、类型、重要性级别等。

EKB中存储的相关事件的知识主要来源于专家。开发人员将获得的知识应用到与故障管理相关的系统中,根据不同系统的需要分配相应的知识,以提高系统性能。虽然EKB并不是严格意义上的知识库,但在开发过程中,可以通过不断地增加和修正EKB的内容,在一定程度上提高系统的智能水平。

智能化网络管理篇4

关键词:计算机网络;智能化;故障管理

中图分类号: G623.58文献标识码: A

引言

一个网络管理系统有五大功能域:故障管理、配置管理、性能管理、计费管理和安全管理,其中,故障管理是最基本,也是最重要的功能。目的是保证网络能够连续可靠地运行。如果网络服务意外中止,将会对生产、生活造成很大影响,这就需要一套科学的故障管理策略,及时发现故障、排除故障,网络管理的智能化也是发展的必然趋势。

一.智能化网络管理的概述

为了能够更有效地对各种大型复杂的网络进行管理,许多研究人员将人工智能技术应用到网络管理领域。虽然全面的智能化的网络管理距离实际应用还有相当长的一段路要走,但是在网络管理的特定领域实施智能化,尤其是基于专家系统技术的网络管理是可行的。用于故障管理的专家系统由知识库、推理机、知识获取模块和解释接口四大主要部分组成。专家系统以其实时性、协作管理、层次性等特点,特别适合用在网络的故障管理领域。但同时专家系统也面临一些难题:

1.动态的网络变化可能需要经常更新知识库。

2.由于网络故障可能会相关到其它许多事件,很难确定与某一症状相关的时间的开始和结束,解释和综合消息复杂。

3.可能需要大量的指令用以标识实际的网络状态,并且专家系统需要和它们接口。

4.专家系统的知识获取一直以来是瓶颈所在,要想成功地获取网络故障知识,需要经验丰富的网络专家。

在实现智能化网络管理系统时,还必须把握系统复杂性与系统性能的关系。不仅要利用将较为成熟的人工智能技术,而且要考虑实现上的复杂度和引入人工智能技术对系统性能和稳定性的影响。

二.基于免疫agent的网络故障管理

在前面介绍理论的基础上,我们提出了一个基于免疫agent的网络故障管理模型。下面对这个模型进行详细分析。

1.免疫agent故障管理模型

免疫Agent网络模型的工作原理是,当网络发生故障的时候,搜集故障信息,然后经过一定的处理后,以抗原的形式提交到本地agent,本地agent首先在本地知识库进行搜索,看是否存在与抗原相匹配的故障类型,如果存在,那么输出故障信息,同时发送匹配成功的激励信号;否则发送协助信号,请求其他agent协助解决,其他agent接收到帮助信号以后,到自己agent中的知识库就行搜索,看是否存在相匹配的信息,如果存在,则将匹配到的故障类型发送给本地agent,否则将故障信息交由人工解决。免疫agent模型如下图所示。

模型的运行是不断进行迭代的协同进化过程。每进行一次故障数据信息的诊断,模型就完成一次迭代过程。每一次迭代中,Agent之间会进行信息的交互,在迭代过程中每一个agent的知识库(也就是抗体集)会不断的进行更新,因而故障诊断能力会不断的增强,整个过程是始终是处于动态变化。

2.Agent各功能模块介绍

移动agent由六种不同功能的agent组成。下面对每种agent功能进行详细介绍。

(1)信息采集agent

信息采集是进行故障诊断的前提。信息采集agent主要是对网络主机及所属子网络上的原始数据进行收集,然后将收集到的原始数据保存,然后进行一些预处理(如分析数据传输采用的协议、丢包率等),为故障诊断准备好数据信息。

(2)故障诊断agent

故障诊断agent是整个系统的核心。一个故障诊断agent通常只包含相对有限、独立的故障检测方法,提供对某一具体类型的数据分析服务,因此它的检测能力是非常有限的。故障诊断agent根据本身的责任,它会主动发送请求给相关的信息采集agent,然后对返回的信息进行分析,得出诊断结论。如果存在无法识别的异常,故障诊断agent会将数据源信息、实际诊断方法、故障参数等信息作为本地存储,发送给决策agent做下一步处理。

(3)通信agent

所谓的通信agent就是负责网络agent之间的相互通信。每个局域网都有一个通信agent而且是唯一,局域网内的agent之间必须通过通信agent才能进行交互,否则不能直接通信。通信agent本身并不具备执行诊断任务的能力,是为其他agent服务的。

(4)决策agent

系统在故障诊断过程中可能遇到各种问题,如数据采集不完整、领域知识不完备等,这些因素增加了检测结果的不确定性。对于比较简单的任务而言,决策agent也许不是必需的,但是如果任务比较复杂,根据单一故障特征并不能确定问题的所在,此时决策agent就发挥作用了。如果无法得出明确的诊断结论,这个时候决策agent会将诊断信息发送给系统管理agent,请求人工处理,处理完成后,将处理信息添加到知识库中,以备将来使用,这也就是学习过程。

(5)知识管理agent(知识库)

知识管理agent主要功能是存储相关领域的基本原理、专家的经验知识以及一些实际案例等,信息数据也是专家知识库的重要部分。知识库的内容为各种故障的诊断提供了必需的知识。知识管理agent主要是维护、搜索、转换知识库中的知识,包括协调全局、本地知识库的管理的同步和关联,负责知识库中知识的更新与学习。

(6)系统管理agent

系统管理agent是整个系统正常运行的保障,主要职责是负责agent的创建、挂起、注销等,并为各个agent提供信息搜索功能。系统管理agent中还为诊断任务联盟提供信息存储功能。

(7)故障诊断中抗体库算法设计

在整个系统中,故障诊断是系统中的最重要部分,而故障诊断的核心是抗体库。本文基于免疫原理的设计了一种高效的算法,具体描述如下。

①初始种群,根据待解决问题的具体要求,随机产生数量为N的个体。

②根据专家知识和经验建立本地知识库,本地知识库包含的一系列的抗体集。

③本地知识库接收其它Agent的疫苗,然后进行知识库的更新,形成新的抗体集。

④抗原传感器采集一定范围内的信息数据。

⑤如果判断采集到的信息数据可能会存在异常,则发送协助解决信息给当前免疫Agent,处于等待状态并保持免疫耐受,转步骤⑧。

信息数据与本地知识库抗体进行匹配,如果匹配成功,那么表明本地知识库内有对应的解决方案(即存在抗体),然后进行免疫应答。

⑥将此抗体模式作为疫苗,发送刺激信号给其它相关免疫Agent,然后可以作为经验给其它免疫Agent解决类似问题。

⑦进入下一阶段,转到步骤③。

⑧若免疫Agent返回的信息是继续等待,那么继续保持免疫耐受,并转到步骤⑦;若其它免疫Agent返回经验知识作为参考,那么转到步骤⑤,并且学习参考经验知识并保存,然后对本地知识库进行更新,提供给下次免疫答复。

实际的操作过程中,我们首先需要定义网络状态和实体,网络故障具体表现在网络实体的某些的属性值的超出了允许的范围,然后系统就可以获取网络运行时的信息,对这些信息进行预处理,将其转换成具体问题的求解,最后将此问题求解方案通过一定的形式转化成免疫算子,用于生成种群中的个体。

结束语

本文提出的基于免疫agent的网络故障管理智能化系统,相对于传统的网络故障管理,具有更好的灵活性和主动性,具有更高的效率和决策能力。我们将免疫算法和Agent结合运用到网络故障管理中,可以对一些不完整的信息进行处理,提高了网络管理智能化水平,特别适合于分布式的大型复杂网络,能更好地、更快的发现解决了网络中存在各种问题。

参考文献

[1]彭玉娟.分布式计算机网络故障管理系统分析[J].科技资讯,2007,(13).

智能化网络管理篇5

关键词:智能ODN综合网管系统;网络维护效率;光纤利用率

光纤网络管理现状

通信企业投资建设城域光纤基础网络,经过几年的发展,光缆资源已成规模,但原有光纤网络是按照共享光缆、独享光缆和预留光缆来敷设,存在光缆利用率较低的现象,且部分光缆开始出现质量恶化、衰耗增大等问题。

近年来因城市改造及城镇化建设的规模和速度不断加快,光纤通信经常由于人为原因出现中断,加之缺乏有效的光纤监测手段,一旦出现故障,难以准确找到故障点,导致故障处理延时长,且不能有效预防故障的发生。

同时通信企业的资源管理比较分散,主要依靠人工录入管理资源,这虽然能对光纤资源进行一定的管理,但缺乏统一的管理平台,而且人工录入效率低,还不可避免的会引入人为错误,数据也无法保证及时刷新;对业务的发放和调度也主要依靠人工规划,这种管理方式不能满足光纤网络高效率、低成本、精细化运营的要求,影响了通信企业的发展。

智能ODN综合网管系统的引入

光缆网运营维护涉及到多个层面的工作,在业务方面,在光缆出现故障甚至断裂的情况下,需要保证业务能够连续不中断;在维护方面,希望能够定期巡检、监测,提前对故障进行预警,并在出现故障时迅速分析,准确定位,为快速抢修提供保证;另外,还需要对光缆设施等基础数据进行有效的管理。

由于无源节点多,光纤基础网络的故障处理复杂,以往的光纤网络运维往往都是用户投诉驱动,属于被动运维;且缺乏故障分责手段,主要依赖技术人员的个人经验去判断,无效外派工单多;定位时依靠OTDR打光,测距长度与实际故障点距离偏差大,造成定位困难,对维护人员的技能要求高,维护成本居高不下。

因此,提高网络运维质量,特别是在光纤故障告警和处理效率一直是通信企业面临的难题。而智能ODN和故障诊断专家系统(N2510)系统的组合方案很好地解决了这一问题。该方案利用暗光纤管理方式,从在用光缆中抽取3-5芯光纤进行监测,结合OTDR对光缆段进行测试,建立光缆健康档案,通过监控3-5芯光纤的光功率信号衰减变化,提前预警整根光缆的衰减,OTDR设备可实现城域环网光缆的双向监控。为了节省投资,减少OTDR的使用数量,通过级联OSU实现一个OTDR对光缆环的监控,发现故障后触发OTDR做故障定位测量,并结合GIS地图在网管上精确显示故障点、位置和故障原因。

智能ODN网管系统可为整个光缆运营维护工作提供统一的网络管理平台,能解决光纤故障的快速处理,光纤路由的自由调度等重大技术问题。

智能ODN综合网管系统关键技术介绍

ODN是基于PON设备的FTTH光纤网络,其作用是为OLT和ONU之间提供光传输通道,从功能上分,ODN从端局到用户端可分为馈线光缆子系统、配线光缆子系统、入户光缆子系统、光纤终端子系统四个部分。它将GIS地图信息集成在网管系统,所有ODN和管线资源信息通过地图即可清晰呈现出来,端口占用情况、光纤网络拓扑一目了然。这样,光纤网络资源从原来分散的资源管理,变成对所有管线资源和设备的管理集中在ODN网管上进行,从原来对单个节点的管理,变成对整个光纤链路的管理。

1、 OTDR(光时域反射仪)技术

OTDR英文全称Optical Time Domain Reflectmeter ,OTDR是利用光线在光纤中传输时的瑞利散射和菲涅耳反射所产生的背向散射而制成的精密的光电一体化仪表。它被广泛应用于光缆线路的维护、施工之中,可进行光纤长度、光纤的传输衰减、接头衰减和故障定位等的测量。

2、 GIS/GPS技术

GPS(Global Positioning System)全球卫星定位技术

全球卫星定位系统是随着现代科学技术的发展建立起来的一个高精度、全天候和全球性的无线电导航定位、授时的多功能系统,它利用位于距地球2万多公里高的,由24颗人造卫星组成的卫星网,向地球不断发射定位信号,瞬间就可以解读出被测载体的运动状态,如:维度、经度、高度、时间、速度、航向等。

GIS(Geophysics Information System)地理信息处理系统

GIS地理信息处理系统是为了获取、存储、显示、查询定位数据而建立起来的计算机数据库管理系统,它将所需要的信息和资料直观,形象地在电子地图上以图形或表格的形式显示出来,为GPS卫星定位提供良好的地图环境,并能将空间信息和属性信息的处理完美结合起来,以直观的方式显示位置状态等信息。

对光缆故障主动检测、精准定位

结合以往的运维经验,光纤故障主要分为连接头故障和光缆故障。智能ODN综合网管系统通过对光纤连接头的实时监控很好地解决了连接头故障的问题,而处理光缆故障的通常做法是通过合波器将检测光和业务光合并,实现对光缆的监控。这种做法下,需要监测的光纤数量太大,监测成本太高,但往往光缆故障主要是光缆整体发生故障。因此,有必要将业务光和监测光分离监控,通过检测一根光缆中的3-5芯光纤来实现对整根光缆的监测,大大减少了监控的光芯数量;且监控光和业务光分离,节省了合波器和OSU的成本,使得以低成本进行链路监控成为现实,实现了快速故障分责和光纤故障精确定位。

实现光纤网络优化管理

以往的城域主干光缆采用独享光纤、共享光纤和预留光纤模式进行建设和分配,实际使用时优先使用独享光纤,当某站点的独享光纤不够时,通过跳纤使用共享光纤,但由于共享光纤为多个站点共享,使用时需要在多个地点进行跳接,中间跳接次数多,使用成本高,因此,不能满足光纤精细化运营的要求。

智能光纤基础网络通过网管管理光纤资源,能确保资源数据100%准确,并能通过网管标识每根光纤的使用情况。基于这一特性,运营商就完全可以取消独享光纤和预留光纤,所有光纤全部作为共享光纤来建设。通过规划、分配、批量建设和预跳接的方式把共享光纤变成某基站的独享光纤,使用时从网管上查询到已经预跳接好的独享光纤直接使用即可。当业务发展不平衡,导致某站点的独享光纤不够时,通过网管进行资源优化,调整共享光纤的分配方式,让业务量比较大的站点拥有更多的独享光纤,从而达到灵活分配光纤资源,使光纤资源利用率达到最大化,值得一提的是,由于建网时采用的是一次性进站、批量跳纤,这将大大减少运营商的进站成本。

光缆云让光纤基础网络变智能

通过智能ODN的一键收集资源信息和实时巡检功能,确保了光纤连接信息的100%准确。而基于准确的光纤连接信息,部署光缆时运营商可通过批量预跳接分配纤芯资源,并在网管上进行标识,形成虚拟光缆资源。由于虚拟光缆通过预跳接形成,并不是实际存在的真实光缆,而且根据业务发展需要,虚拟光缆的芯数、分配、路由等都可以随时改变,从而形成了一朵基于智能光纤基础网的光缆云。具体而言,运营商的光缆云建设过程可以归纳为规划、建设、使用、调整四个阶段。

(1)、规划阶段

光缆建设是按照一段一段来建设的,使用时采用跳纤跳接起来。运营商可根据规划经验预连接部分端口,形成一条虚拟光缆,并规划好虚拟光缆的芯数和方向,使资源尽可能地优先向热点区域和重点发展区域倾斜。在ODF与光交接箱之间取消原来的独享光纤和预留光纤,全部使用共享光纤。结合GIS地图信息规划好各节点的属性,经过项目专家团队审核后,系统自动输出虚拟光纤网规划图,预先连接好的大量光纤虚拟化后,原来一根光纤就可以虚拟成多根光纤使用,便于灵活调度,提高了业务开通速度,同时降低了开通成本。

(2)、建设阶段

在光缆建设中,根据之前的规划图,通过网管中心下发电子工单,施工人员在现场一次批量跳接,连接起所有共享光缆,由于所有光纤端口都有独一无二的ELD电子标签,可明确界定每根跳纤的连接关系,把所有光纤一步跳接到位,之后根据业务发展情况,可以做“加法”或“减法”,灵活适配光纤网络业务的发展,由于现场施工人员的每个动作都是在网管控制下进行,可确保资源数据的完全准确。

(3)、使用阶段

通过引入智能光纤管理系统,当某区域有业务需求时,运营商可直接从网管中心查找可用光路由进行挑选。读出适配情况选择合适的光路由,并从已连接好的共享光缆中选取吻合的光纤;之后由网管下发施工工单,仅在靠近用户侧和局端设备侧各进行一次跳接即可开通业务。中间无需任何跳接,大大缩短了响应时间,为快速抢占专线业务提供了有力支撑。

配合智能ODN网管,业务部门已经使用了哪些光纤链路,哪些链路目前闲置……这些实际数据,网管中心可随时提取。统计出光纤利用率等重要网络指标。如果某根光缆质量出现恶化,光纤衰减增大,光纤故障诊断系统会自动诊断并发出警告;网管收到告警信息,会重新分配一条新的光路由给受影响的用户;同时,精确定位故障点,指导运维快速修复故障。故障修复后,可大胆做“减法”。从网管上释放可用的光纤资源,化整为零重新整合再利用,从而提高光纤利用率。

(4)、调整阶段

光纤网络可灵活调整,动态匹配业务发展。由于业务发展的不平衡,当某一区域的业务量很大,前期规划的共享光缆即将使用完毕时,网络中心会提前收到资源使用预警;而另一区域业务一直很少,前期规划的光缆太多,这时运营商可以经过网优仅仅改动未使用的端口,把更多的共享光纤分配给业务量大的区域,在项目专家团队审核通过后,一次生成批量跳接工单,完成共享光缆的调整,最终形成均匀的光纤利用率。

智能化网络管理篇6

关键词:道路照明; 智能管理; LED; GPRS

中图分类号:TP277 文献标识码:A

文章编号:1004-373X(2010)11-0195-02

Networked Intelligent Management System of Urban Road Lighting

FENG Yu-ru

(Zhejiang Information Engineering School, Huzhou 313000, China)

Abstract: A design scheme of practical networked intelligent management system of urban road lighting is introduced according to the characteristics of urban road lighting. The structure of this system is analysed, andthe basic principle and implementation demand of the intelligent management system are discussed in detail. The system can actually improve the automatic administrant level and efficient run for urban road lighting.

Keywords: road lighting; intelligent management; LED; GPRS

0 引 言

城市道路照明对交通安全、美化环境具有重要作用,是城市的重要基础设施,也是城市管理的重要内容。城市道路照明管理直接关系到能源消耗水平和环境保护,同时也体现了一个城市的文化品位和管理水平。LED路灯照明是建设资源节约型社会、进一步实现节能降耗的一个重要举措[1]。另一方面,为了提高道路照明的管理水平和运行效率,以更好地适应城市建设发展的需要和城市品位的提升。

针对道路照明技术现状,节能技术也在深入研究和应用[2-7],高效节能的LED绿色照明技术也渐为流行[8]。本系统主要采用高效节能的LED进行节能外,通过研发道路照明的集控智能管理系统,集计算机、通信、机电、自动控制等多种先进技术于一体,实现了城市(区域)公共照明的实时监控和管理,提高了运行效率。

1 系统总体设计

本系统主要建立基于GPRS的集控智能管理监控中心,实现对一个城市或区域的LED照明灯或景观灯等公共照明的遥控、遥测、遥信等功能。

整个系统主要由两部分构成,即监控中心(主站)、终端(路灯控制节点)组成,两者之间通过GSM/GPRS及Internet网络进行双向通讯,如图1所示。

图1中集控管理监控中心由集控智能管理系统软件、计算机、服务器、UPS、大屏幕投影显示设备、打印机、专用通讯终端等组成。 终端由LED、智能控制板、状态检测监控板、GPRS通讯模块等组成。

图1 系统整体结构图

LED道路照明终端与集控智能管理中心的基于GPRS的双向稳定无线通讯。数据链路的检测与激活应保证常规检测数据与实时控制数据可靠的传输,同时应兼顾数据传输效率与稳定性的要求。另外,数据传输应合理控制通讯流量,有效节约运行成本。

另一方面,LED照明的集控智能管理实现遥控、遥测、遥信等功能。系统涉及了网络接入技术、远程访问技术、数据安全与加密技术、基于专家知识的故障分析与诊断技术等。同时系统具有良好的人机交互来保证系统的安全稳定运行,实现遥控、遥测、遥信等功能,提高管理水平和运行效率、降低维护成本。

2 道路照明的智能化管理

2.1 监控管理系统

城市道路照明的无线监控管理近些年也渐渐走向应用,方便了城市区域照明的管理[9-10]。本系统的监控中心的网络服务器以独立的、固定的公网IP地址的方式接入Internet。监控中心的软件采用功能强大的Visual C++,VC编译器中集成了能够实现通信协议TCP/IP的编程接口WinSock,并对WinSock进行了封装,本系统利用其专用的TCP/IP编程接口WinSock,来进行数据的传输。

该系统主要实现对公共照明节点的遥控、遥测和遥信功能。遥控实现主站计算机对照明灯的群控、部分群控、单点控制、任务定制功能(领导车队)、预约执行时间(例如特定时间节假日的开关等)、远程访问控制、GPRS授时等;遥测实现自动巡测或随机检测各个终端亮灯率、电压、电流等。遥测的实时数据可作为调整各个监控点状态的原始依据;遥信实现对各个终端的工作状态、故障和报警等信息的获取,保证系统有效正常地运行。

管理监控系统除了具有良好图形化人机界面、系统安全性控制、终端分组控制、集控点控、自动巡测终端、数据存储与备份、数据采集与处理、报警级别控制与报警处理、报表打印等功能外,还具有以下一些主要特点:

(1) 可设立分控中心,对远程设备进行分级监控;

(2) 使用手机等设备实现移动管理,实时接收报修信息、查询检修结果等;

(3) 远程控制、实时数据查询、报警值设置等工作可由Web远程访问方式实现,使公共照明系统的维护、管理更加灵活有效;

(4) 系统提供通用的数据接口,可以轻松实现系统功能扩展。可与MIS/OA、GIS系统相连,实现信息共享;

(5) 具有远程维护、自诊断、自启动功能。

同时该系统充分考虑数据传输效率及稳定性、安全保障措施等。安全保障主要是防止来自系统内外的有意和无意的破环,网络安全防护措施包括信道加密、信源加密、登录防护、访问防护、接入防护、防火墙等。

2.2 GPRS网络接入技术

GPRS无线数据传输系统为行业用户提供永远在线、透明数据传输的虚拟专用数据通信网络,可以提供点对点、设备间、设备与中心节点之间的通信方式。GPRS网络在GSM的基础上,由终端MS(Mobile Station)、基站系统BSS(Base Station System)、服务GPRS节点SGSN(Serving GPRS Support Node)、网关GPRS节点GGSN(Gateway GPRS Support Node)四个主要部分组成。GPRS模块将单片机采集的数据通过基站系统传给节点SGSN,SGSN与GGSN协作完成数据在GPRS网络上的传输。对于Internet来说,GGSN相当于一个路由器。GGSN接收监测终端的数据及路由并传送到Internet,或者将数据通过选择GPRS网内的传输通道,传给相应的服务支持节点(SGSN),再由SGSN将数据通过基站系统传给监控终端,从而完成终端与中心的通信。

根据网络通信OSI的七层标准,针对智能终端无线通信的实际情况,其网络分层结构简化为图3所示。AT命令是物理层协议,是通过智能控制终端与GPRS的连接构成物理层通道。数据链路层协议采用PPP协议,GPRS网络的GGSN与GPRS模块通信时遵循PPP协议。使用PPP登录之后,就可以通过GGSN接上Internet。网络层协议采用IP协议,IP协议是GPRS骨干网协议,用于用户数据和控制信令的路由协议。网关支持节点GGSN可以IP协议接入Internet。传输层是应用层和IP层的接口,面向连接的传输协议是TCP,是专门设计用于在不可靠的因特网上提供可靠的、端对端的通信协议。无连接方式的传输协议是用户数据报协议(UDP),它向应用程序提供了一种发送封装的原始IP数据报的方法,并且发送时无需建立连接。多点分散、数据量小、实时性要求高以及终端数量多的应用考虑UDP的协议,重要的警报信息可以考虑TCP协议。使用AT+MIPOPEN命令,可以进行Socket初始化,实现与监控中心的连接,并可以选择使用何种传输层协议进行数据的传输。

图2 网络分层简化模型

2.3 基于语义网络的故障智能诊断

对于照明终端上传至监控中心的状态数据和故障信息,设计一个基于语义网络的故障自诊断智能专家系统。故障自诊断中的语义网络是采用网络的形式来表示不同类型和级别故障的一种知识表示方法。通过对故障概念的有效分类可以有利于语义网络的组织和理解。语义联系采用以故障个体为中心组织知识的泛化联系方法,它允许低层故障类型继承高层类型的属性,便以区别不同类型与级别的故障。

系统采用故障分级分类的自诊断控制技术,方便照明终端故障的定位与定类,以便及时进行修复。

2.4 数据流量的自适应控制

为了优化网络有效带宽和最大传输单元的最优关系,采用GPRS模块定时报告、心跳方案和SMS相结合方式实现链路检测与激活,保证提供可靠数据传输的同时合理地控制双方通讯流量,有效地降低运行成本。

对于稳定运行的数据,只要在允许范围内,可以不作通信上传处理。根据应用情况,设计科学的“数据流量控制器”,根据用户需要和数据传输量自动设置“数据流量控制器”的死区值和越死区时限来控制数据流量,并确定越上限及下限值。“数据流量控制器”死区值和越死区时限随时从主站下传给终端。

3 结 语

道路照明自动化管理系统将传统的人工“巡灯”制度改为“值班”制度,可以方便地为整个城市的路灯照明管理提供一个有效的技术平台。城市道路照明自动化控制和智能化管理是城市现代化的标志之一,道路照明自动化管理也必将成为一个城市的形象窗口。自动化管理系统也是一个城市对公共照明的管理与维护水平的体现,管理效率与经济效益也非常显著。该系统的推广将有助于城市道路照明管理体制按照“投资多元化、运营市场化、服务社会化、发展产业化”的方向,实施“建、管、养”分离,事企分开,形成有效的市场竞争机制。

参考文献

[1]罗宇.城市道路照明节能措施[J].辽宁科技大学学报,2009,3(3):282-285.

[2]杨善庚,秦大为.城市道路照明节电措施探讨[J].节能,2007,24(3):39-40.

[3]林振刚.高压钠灯在城市道路照明节电的应用[J].照明工程学报,2009,20(4):74-77.

[4]金强.浅谈城市道路照明设计[J].照明,2009,3(5):71-74.

[5]许金宏.浅析我国城市道路照明的节能技术[J].中国照明电器,2008(7):18-20.

[6]邓申君,李盛涛.城市道路照明中调压节能技术的应用[J].灯与照明,2003,27(2):30-44.

[7]张万奎.城市道路照明降压节电技术[J].湖南理工学院学报,2006,19(2):38-40.

[8]刘磊实,冀晓健.LED光源在城市道路功能照明中的实验与分析[J].照明工程学报,2008,19(4):85-90.

智能化网络管理篇7

Abstract: Based on the summary of the current situation and inadequate of electrical project cost software, this paper puts forward the construction of cost intelligent electrical power management system based on network and further makes analysis and demonstration on its main innovations. Studies have shown that the establishment and application of the system can improve their market competitiveness.

关键词: 网络技术;电力工程;造价系统;智能化

Key words: network technology;electrical project;cost system;intelligent

中图分类号:TU723.3 文献标识码:A 文章编号:1006-4311(2014)19-0192-02

0 引言

随着大数据时代的来临,应用网络技术建立的电力工程造价智能化管理信息系统能够通过各工程造价项目积累原始数据,进行数据分析,建立数据预测模型,为管理决策层提供预测分析服务,实现工程造价的高阶知识管理[1],因此,电力工程造价管理的智能化发展是电力工程造价专业发展的必然趋势,也是目前理论研究和实践工作中所面临的紧迫问题。

1 电力工程造价软件现状

计算机技术的蓬勃发展,改变了工程造价领域手工计算的历史,促进了工程造价软件的快速革新。经过20多年的发展,电力工程造价软件为满足市场需求,不断发展、细分,从而具有很强的专业性和针对性,如:工程概预算套价,工程量自动计算软件,钢筋计算软件,施工统计软件,概预算审核软件等。

电力工程造价软件的应用提高了造价工作效率,保障了算量的准确度,能够满足一般企业造价预算需求。然而在大数据时代的新形势下,电力工程造价专业迎来了应用造价信息辅助管理决策的历史使命,因此,传统造价软件的不足逐渐显现,主要不足包括:

①信息技术应用比较落后。目前大部分造价软件还处于单机版阶段,停留在单机操作,兼容性差,也无法实现项目群数据分析统计功能。

②造价管理模式比较落后。现有造价软件多为单机个人独立操作,无法实现为多人协作的造价组织活动提供信息化管理[2]。

③计价功能比较单一。现有造价软件由于功能严格细分,从而无法提供包括定额预算、清单计价以及结算的全过程的造价管理与控制功能[3]。

2 基于网络的电力工程造价智能化管理系统建立

2.1 模块功能 基于网络的电力工程造价智能化管理系统主要包括:工程造价过程管理、工程造价信息管理以及工程造价组织管理三个组成模块。

2.1.1 工程造价过程管理模块 基于网络的电力工程造价智能化管理系统应该符合电力行业技术经济管理相关管理规范,可实现工程造价从项目可行性研究估算,初步设计概算,施工图预算,设计变更预算,工程结算及竣工结算等全过程跟踪管理。其中,设计变更预算,工程结算及竣工结算等编制及管理功能突破了传统软件的局限。同时,该系统可兼容传统定额与工程量清单计价模式,并能将清单组价与传统定额结合,调价方式灵活,报价功能

优化。

2.1.2 工程造价信息管理模块 基于网络的电力工程造价智能化管理系统统一的资源管理中心,实现了工程建设全过程造价的信息管理和分析应用。

①工程全过程造价信息对比分析功能,可对工程项目各阶段造价指标、不同项目同一阶段造价指标进行纵、横向对比分析,并自动排序,对预算超概算、结算超预算的工程实现实时报警。②工程造价信息综合分析管理功能,能够集成综合单价分析、报价优化功能,并根据需要进行指标提取和积累,作用于下一个工程,不断循环,积累资料,形成企业定额,实现企业定额持续更新[4]。③电力工程造价信息库维护功能,可实现定额库、装材库、设备库的统一维护管理,对缺编定额、装材或设备信息更新补充,及时反馈,经严格校审后,通过标准化功能实现其共享和推广。

2.1.3 工程造价组织管理模块 基于网络的电力工程造价智能化管理系统为工程造价项目流程管理及个人综合管理提供强大的集成化管理平台。

①工程造价群项目项目管理功能,为多人同项目合作,特别是多人群项目管理提供理想的信息化平台,为决策层、中层管理者、项目操作层等项目参与者提供不同层次的管理平台,实现项目资源充分共享和调配。

②工程造价项目流程管理功能,实现工程造价项目派工,人员分配,项目校审以及归档管理的信息化、实时化、透明化及无纸化,管理人员或项目负责人可根据权限,随时掌握工程相关信息[5]。

③个人综合管理功能,满足技经人员查询工程派工,工程追踪等信息,统计工程历史数据,以及多工程合并统计等需求。同时实现技经人员工程造价项目文档管理,通讯邮件,工作会议等功能。

2.2 主要创新 基于网络的电力工程造价智能化管理系统取得了以下3个方面的主要创新:

①创造性地将工程全过程造价管理、信息管理与组织管理成功地融入集成化信息系统中,成功地实现各项目从启动、派工到编制、校审及归档等全过程管理,整个过程透明规范,信息传递通畅,极大地提高工作效率,同时全过程信息化模式,代替原繁复的纸质打印工作,环保节能效益显著。

②采用B/S网络结构,可成功地克服单机版“信息孤岛”缺陷,能够很好地与其他系统进行数据交换,也可以作为项目管理系统的一个子模块运行,集成化程度高。同时,通过不断积累造价信息,形成企业定额,并实时更新,提升企业的竞价能力。

③率先实现实时统计设计变更费用功能,并将设计变更与工程预算及相应施工合同条款关联,实现工程结算和竣工结算功能,真正实现工程费用控制管理PDCA螺旋式上升过程,可为企业总承包项目管理工作提供极大的

便利。

3 结论

在当今电力企业市场竞争日趋激烈的大数据时代,电力企业建立基于网络的电力工程造价智能化管理系统,能够极大地缩短工程造价项目工期,节约工程造价项目成本,为工程造价项目管理创造难以估量的管理效益,也更能够掌握在市场竞争中的主动权。

参考文献:

[1]王英,李阳,王延魁.基于BIM的全寿命周期造价管理信息系统架构研究[J].工程管理学报,2012,3(26):22-27.

[2]骆汉滨,叶艳兵,钟波涛.工程项目管理信息化[M].北京:中国建筑工业出版社,2011.

[3]董士波.建设项目全寿命周期成本管理[M].北京:中国电力出版社,2009.

智能化网络管理篇8

【关键词】网络设备;TCP/IP协议;TELNET协议;工作脚本

一、背景

随着各电信运营商全业务市场运营的开展,电信企业内部的竞争日趋激烈,在电信企业如火如荼的竞争过程中,企业内部的人力、成本等资源都集中到了市场营销、客户服务与维系等窗口中,作为后台网络、设备维护人员,如何使用有限的人力资源和维护成本,来保障设备更稳定、更高效的运行成了各电信企业运维管理、系统支撑部门必须考虑的问题。

二、问题分析

电信企业内部接入网络的设备主要由应用服务器、生产终端设备和内部局域网的组建、管理、支撑设备组成。在日常的维护过程中,我们发现这些设备存在以下特性:

1)设备的多样性。上述设备中有网络交换机、路由器、小型机、工控机等,涉及操作系统有HP UNIX、SCO UNIX、LINUX、SUN SOLARIS等多种。

2)设备数量较多。随着电信企业内部的信息化水平不断提高,各类设备数量也不断增加,仅以路由器、交换机为例,德州的数量就数以百计。

3)地理位置的分散性。由于上述设备主要为各级分公司的系统提供服务,由于各级分公司、营业部位置的相对分散,就决定了此类设备在地理位置上的分散性。

设备多样、数量庞大、位置分散的特性就造成了此类设备管理的复杂性,那么,如何对上述设备进行有效的维护和管理呢?本文结合德州的实践经验,基于TCP/IP协议族,提出了电信企业内部设备智能化管理系统设计方法。

三、技术介绍

传输控制协议(TCP)、Telnet协议都是TCP/IP协议族中的一员。这两种协议为用户提供了在本地计算机上完成连接、控制远程服务器的能力。在终端使用者的电脑上使用TCP或telnet协议,连接到远程服务器,并可以通过程序,在本地终端上输入命令,送到服务器上运行,就像直接在服务器的控制台上输入一样。

TCP协议、TELNET协议是各类设备或其操作系统上普遍支持的两种网络协议,基于上述两种协议,通过编程可以实现对各种网络设备自动控制、数据采集,来为我们的维护工作提供便利。

四、系统结构

应用服务器通过C语言编写程序通过TCP协议、TELNET协议与各网络设备建立连接通道,通过两种方式与设备之间进行交互。一种方式是定时解析通过既定的数据采集脚本向各网络设备发送数据采集命令,由结果分析程序将命令返回的结果进行分析,写入数据库。第二种方式,终端用户通过主动向应用服务器发起查询、操作命令请求,由应用服务器将操作命令对一台或多台设备进行命令处理,并将处理结果返回。

在整个处理过程中,应用服务器扮演了两种角色,一方面与各网络设备建立双向命令处理通道,一方面通过网页来接受终端用户的查询、操作命令请求。

五、系统实现关键技术难点分析

在智能化网络设备管理系统的实现过程中,我针对系统实现过程的两个重点、难点问题,来介绍系统的设计方案。

1、TCP、TELNET协议接口设计

在使用TCP、TELNET协议与各网络设备连接过程中,在两个过程中下可能会出较长的时间延迟。

(1)在使用SOCKET、CONNECT函数与网络设备建立连接的过程中,如果远程设备掉电,或出现局部的网络中断,这部分设备在整个局域网中将变为不可见状态。而无论是TCP协议还是TELNENT协议,在面向连接的协议,如果CONNET函数在建立连接的过程中阻塞,会进行多次重试,直到重试次数超过操作系统设置最大超时次数位置,这个过程一般会持续3分钟左右的时间。(2)在CONNECT连接建立后,与SOCKET套接字进行命令发送的过程中,如果服务器对命令返回的结果未正确识别出有效的命令结束符号,或由于网络设备自身硬件故障的原因造成命令处理过程放缓、或不执行,从而无法获得正确的返回结果,造成长时间存在一个无效连接,这实际也是一种阻塞状态。

上述两种状态如果在程序编写的过程中,如果不增加超时处理,将大大放缓命令的执行效率,造成终端用户对系统的认同度下降。因此,在上述两种过程中,我们首先需要两种基本数据局域网内部的正常时间延迟、网络设备的回显延时。

(1)局域网内部的正常通信延时的计算过程中,可要选取各IP网段的最大网络延时作为参考。(2)网络设备的回显延时,由于网络设备的生产厂家、设备型号、硬件配置、软件配置、发送命令的不同,回显时间延时也会不同,这种情况下,对于同厂家、同型号设备,选取一个日常维护操作处理时间最长的操作时间作为参考。

通过上述两种时间的界定,使用SELECT函数来设置超时时间,在超时时间到达前如果没有收到正确的命令返回结果描述符,则产生一个中断信号,来打破阻塞状态。

2、各网络设备采集命令管理问题

由于网络设备类型众多、变更较为频繁,如果将所有的操作、数据采集命令都固化到程序中,虽然会对程序代码的执行效率有一定的提升作用,但是同时会面临程序拓展性差、维护困难的问题。会让我们工作陷入不断进行代码更新,同时由于设备更替,代码中又会产生部分冗余代码僵局。为解决此问题,首先,我们编写了一个工作脚本分析进程,固化部分关键字,如TELNET_IP(使用TELNET协议连接IP地址)、 AUTO_TCP_IP(使用TCP协议连接IP地址)、FIND(搜索返回结果串)、ENTER(输入命令)、TO(将结果输出到文件)等。然后,根据上述关键字规范,结合日常使用较为频繁的操作命令。下面我通过SCO UNIX工控机和CISCO路由器的两个工作脚本,来给大家介绍下此系统德州联通内部的实际应用。

六、技术总结

在电信企业网络设备智能化管理实现过程中,通过TCP/IP协议族协议的灵活使用,成功地解决了对多种数量庞大、位置离散的网络设备的管理难题,实现各网络设备数据的采集、入库、显示,以及管理人员与网络设备的双向交互。通过在德州联通内部的建设和使用,实践表明此系统可以在网络设备维护、监控、操作方面,有效地缩短人工处理时间,此系统的实现方案对于各电信企业具有较强的借鉴意义。

参考文献

[1]尚穆盖姆.TCP/IP详解(第2版).电子工业出版社,2003

推荐期刊