线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

电力通信论文8篇

时间:2023-03-14 15:07:21

电力通信论文

电力通信论文篇1

(1)在电力通信中,完成通信需要多个设备的参与,而这主要是由于设备的性质不同、功能不同,且所承担的任务也不同,因此,这就使得电力系统通信网络结构复杂,由于传统的通信已无法适应电力系统通信网络发展的要求,因此,把光纤通信作为介质,提高通信质量也就成为一种趋势。(2)电力通信与其它通信之间的区别在于,其不仅对传输信息质量要求高,而且在通信实时性方面有着较高要求。随着中国经济社会发展的转型升级,电网规模的扩大,通信信号的种类日渐繁杂,同样要求在电力系统通信领域应用光纤通信,不仅包括继电保护信号,也包括语音信号,通过应用光纤通信,可提高信号传输质量。(3)由于电力系统的覆盖范围广,在通信这一领域,对传输范围和抗冲击能力均有较高的要求,为了最大程度上降低通信的损耗,保证传输的质量,特别是长距离传输的质量,也要求应用光纤通信。

2电力系统中光纤通信的特点

光纤通信的特点,主要是相对于传统电力通信方式来说的,这些特点同时也可视为光纤通信的优点,主要包括以下几个方面:(1)电力系统中的光纤通信的通信容量相当大,一般情况下,一对光纤便足以满足上百路甚至上千路信息路径通过,同时在一根光缆中,含有几十根甚至上百根光纤纤芯。(2)众所周知,光纤的制作材料一般为硅或者玻璃,所以这也就意味着光纤制作的原料来源非常丰富,所以对于节约金属材料的使用量具有重要的意义。(3)在电力系统通信领域中,光纤通信的保密性良好,外界的电磁干扰不容易对其造成影响,同时光纤通信也不受雷击、潮湿等因素的影响。(4)电力系统用的光纤,主要是OPGW光缆,其敷设与地线一次性完成,比较简单。(5)由于光纤通信无感应性能,所以电力系统中的光纤通信不容易受到电位升高的影响,毫无疑问,光纤通信技术是电力通信系统最为理想的通信技术。

3光纤通信在电力系统中的应用领域

光纤通信在电力系统中主要在以下方面有应用:(1)电网监控与调度自动化。电网智能化和自动化程度提高,在电网中应用光纤通信技术成为一种常态,在监控与调度中的应用表现为:把监控传感器采集到的状态信息传输给上级系统,同时下达有关的指令。(2)在配网自动化中的应用。确保系统运行的安全性与可靠性,要求在电力系统通信领域应用光纤通信,在状态监测、调度管理与分层控制等方面具有重要的作用。此外,光纤通信在继电保护器中也有着应用,主要是用于保护电流纵差中的导引线、保护继电保护装置、智能变电站或控制室内的信号传输线等。

4光纤通信在电力系统中的发展前景

现阶段,光纤通信在快速发展的形势下,已经发展到第五代光纤通信阶段,在这一阶段的光纤通信技术,具有容量大、信号传输速率快等诸多的优点。随着技术的进度与经贸水平的提高,全球的信息化程度逐步提高,因此对光纤通信的通信距离、容量和速度等提出了更高的要求。电力系统中,光纤通信的发展前景包括下面几个方面:

4.1光纤传送网新技术

目前,传输40GE/100GE网络的技术中,主要包括两种技术:①40Gbit/s技术;②100Gbit/s技术。同时,这两种技术中又包含有编码调制技术、色散补偿技术与非线性抑制技术,以及OSNR保证对策等几个方面。在未来电力系统发展过程中,为有效保证长距离光纤通信的要求,应使用光纤传输网新技术,主要是FEC技术,也就是多种增强前向纠错技术,以及动态增益均衡技术、新型编码调制技术等,通过利用电均衡接收机、功率调整技术等,可实现增加容量的目的。而频分复用技术、偏振复用技术和波分复用技术等,在未来的电力系统通信中,毫无疑问将会有越来越广泛的应用。

4.2光纤通信接入网新技术

在现阶段,电力系统中光纤通信接入技术主要存在传输距离、分光比、业务支持能力等方面的差距。目前光纤接入技术包括EPON技术(即太无源光网络)、GPON技术(即基于I-TU-TG984标准的新宽带无源光网络),以及基于星型结构的以太网接入技术、基于树形拓扑的APON/BPON技术等。一般情况下,EPON技术的实现,相比于GPON技术来说要简单不少,但是对于多业务的支持能力不如GPON技术。而基于星型结构的光纤接入技术是在传统的以太网的基础上实现的电力系统光纤通信的接入技术,这种技术适宜在单用户对宽带的要求大的区域(此种光纤接入情况下只能对单个用户进行连接)或者具有丰富光纤资源的区域,因此,相对来说基于星型结构的光纤接入技术的范围比较窄,并不是主流光纤接入技术的发展方向。

4.3光纤通信光交换新技术

对于光网络来说,典型属性之一便是光交换。当前,基于实现特征与交换颗粒进行光交换技术的划分,可以分为OPS即光分组交换、OBS即光突发交换、OCS即光路/波长交换。OCS的交换单位是波长,具有易于实现,交换颗粒大的优势,然而宽带的利用率以及复用特性非常差;OPS的交换单位是分组,并且交换的颗粒较小,因此不易于实现,然而其宽带的利用率以及统计复用特性非常好。基于光路/波长光交换技术与光分组交换技术的OBS,相对来说较为容易实现,同时,宽带利用率和复用特性能较好,因此,在未来电力系统通信中光纤通信的应用中,OBS会处于主导位置。

5结语

电力通信论文篇2

电力通信对可靠性要求很高,就算是在极其恶劣的环境中,也要保证通信传输功能的良好,光纤通信技术能完全满足这些要去,它不会受自然环境条件的影响,其稳定性和传输质量都比较好,同时还具有良好的抗电磁干扰能力,很适合多级电力网的通信需求。光纤通信技术还具有自我调节能力,在没有人为干扰时,能快速自动恢复通信能力,从而保证信息传输的安全性。

2能够扩展且投资效益良好

随着经济的快速发展,电力企业也越来越重视投资的经济性要求,在构建电简论光纤通信技术在电力网中的运用问题孔洪云/国家电网随州供电公司摘要:随着经济的快速发展和和谐社会的构建,电力资源已经成为社会发展和人们生活必不可少的能源之一,我国的电网系统建设规模越来越大,与此同时,随着智能电网系统的逐步完善,计算机技术和通信技术在电网系统中的应用越来越广泛,这就对电力通信网络的传输提出了更高的要求,光纤通信技术具有容量大、稳定性强等特点,将会广泛应用在电力网通信中。文章对光纤通信技术在电力网的运用进行了分析。关键词:光纤通信;电网;运用力通信系统时,要对系统的复杂性、网络的扩展性、设备的承受能力等进行综合考虑,这就需要使用一种兼容性强的通信方式,从而避免电力企业的重复投入,降低维护成本,同时还能获得良好的操作性,极大的提高电力企业的投资效率。

3光纤通信技术在电力网中的应用

3.1光缆的应用。正常的光纤复合架空地线都是采用光纤的形式进行信息传输的,也就是OPGW形式,由于电力传输线路是采用可以通信的光纤单元,因此,OPGW在架空地线的基础上融合了输电线路和通信光缆,OPGW是光纤通信技术和输电技术的有效结合,具有地线和通信两种功能。OPGW安装很简单,可以和通信输电线路一起完成施工,目前,OPGW常用于35KV及以上的电力网通信系统中。

3.2用于工程设计及实施中。一个完整的通信网络包括传输、交换、接入等三部分,传输是综合通信网络的综合平台,是通信网络最重要的一部分,它对信息传输的安全和传输系统的稳定运行有十分重要的影响,因此,在构建通信网络时,要将传输网络放在首要位置。目前,光纤通信常采用环形、链形、或者环形链形相结合的构造,根据线路的间距,采用STM1、STM4、STM16的传输速度,设备能进行双线单向保护和传输设备一致的接入装置,从而实现2Mbit/s和语音连接的任务。光纤构建上,由于电力系统本身拥有大范围的输电线路,因此,在正常情况下,都是采用自承式光纤进行安装,这种光纤常采用6芯、8芯、12芯、24芯、48芯等形式用于220KV及以下的线路中,在资源分配中常采用华为、中兴的设备,该光纤的特点是价格便宜,不需要停电,能极大的提高电力企业的经济效益。

4光纤通信技术的发展趋势

近年来,随着科技的快速发展,加上电力行业管理体制不断优化,光纤通信技术得到了飞速的发展,光纤通信的速度将会进一步提高。从通信技术的发展状况来看,通信容量扩展和传递速度的提高一直存在矛盾,光纤通信技术能有效地解决这个问题,因此,光纤通信在电力网中将会进一步提高通信速度。过去采用的分复用法已经没有开发潜力,而光纤宽带还有很大的开发空间,因此,光纤通信的容量将会进一步提高,从而在电力网中发挥出更大的作用。

5电力通信系统光缆的日常维护

5.1电缆受到雷击的主要原因及维护。在建设电网系统时,光纤通信和输电线路是同时进行施工的,在输电电路的顶部经常会架设光纤通信,由于输电线路周围的地形地貌十分复杂,并且线路塔杆需要架设在一定的高度上,因此,光纤通信很容易受到雷击,对光纤通信的安全运行造成很大的影响。为保证光纤通信的安全,防止雷击影响光纤通信的稳定运行,在进行电网建设时,要不断优化设计的防雷击方法,根据实际情况选用合理的避雷方法,从而不断提高输电线路的防雷击能力。

5.2电腐蚀的原因及维护。引起光纤通信电腐蚀的主要原因是悬挂点误差和干带电弧,光纤通信方式中的光纤悬挂点如果高出设计的标准位置,就会导致光纤产生很大的电场强度,远远超过设计标准,从而引起光纤表面电腐蚀;当光纤产生干带电弧时,会产生大量热量,导致光纤外套表面温度升高,从而产生树枝化电痕,引起电缆燃烧事故。为防止光纤出现电腐蚀现象,在进行构建电力系统时,要严格的按照设计图纸进行施工,从而为光纤通信系统的稳定运行提供保障;当光纤通信系统投入使用后,电力企业要加强日常维护管理,避免电缆出现燃烧等事故。

5.3人为破坏。收利益的趋势,部分不法人士常常偷盗电缆,这对光纤通信系统的稳定运行造成很大的影响,因此,要电力企业要加大宣传力度,让广大人民群众明白光纤通信的重要性,积极主动的参与到电缆监护中,从根源上减少电缆偷盗事故的发生。电力企业要加强电缆巡检力度,发现问题后,要根据实际情况及时进行处理,从而为光纤通信系统的正常运行提供保障。

6结束语

电力通信论文篇3

我国电力通信已逐步进入数字通信时代,主推移动通信、注重通信软件的发展,由于光纤传输的优势而逐渐替代传统的同轴电缆组成的电力通信网的结构,同时,电网的程控模式使电力通信控制更加便捷。智能电网的开展使发电厂、电力部门和变电所等组成部分之间的通信更加方便。电网结构不断优化、通信技术的加速发展,推进了电力通信网的发展。随着改革开放进程的不断加深,电网在我国已实现了全面覆盖,全国水利发电、火力发电、风力发电及新能源发电等总发电量已基本能满足所有用户的用电需求,电网规模庞大,但是很多地方的电网质量还有待提高。随着电网的大力发展,电力通信技术也随之发展,通信机构不断增多,国家科研投入增加,逐渐形成较为完善的管理模式和技术标准,都有利于电网通信的智能化发展。

2电力通信技术在智能电网中的应用

为了实现智能电网的全面建设,稳健的电力通信技术是基础。智能电网对改善公众用电需求,用电质量和电网安全维护等方面有着重要意义。电力系统质量的好坏直接关系着国家安全,当然智能电网的建设也给电力通信提出了新的要求。首先,要求电力通信平台朝多功能化发展,为智能电网提供通信信道。同时,要求更加开放的电力通信平台,使网络通信趋于标准化,各设备间的通信便捷化。电力通信系统已经遍及变电站、发电站和输电站等电网的末端,全面保护电网信息的获取与保护。电力通信具备高可靠性,较强的抗攻击性和保密性,确保电力网络的安全运行。智能电网的生产运营中,需电力通信系统的自动调度、网络经营、现代化管理等支持以使其安全运行。电力通信主要分为发电、输电、配电、调度和用电等6个部分。智能电网的建设主要包括以下几个部分:

(1)应加大资金投放,使配电网综合化发展。

(2)妥善处理好通讯、电力通道和环境保护间的关系,寻求可持续发展。

(3)增加电力通讯与国外先进通讯的合作力度,加强与国外通讯公司的文化交流,便于技术交流。电网的管理技术也是智能电网成功的关键,可以充分分析用户的用电数据,以更好的实现电网调度、电网构建,并提升管理的自动化水平。智能电网的建设目的是实现电能信息的智能化采集、统计、查询和线路分析,实现双向通信、传输速度快、带宽高的通信网络。智能电网的构建需要完善的通信系统的支持,高效实时、集成性高的特点是大型电网实现实时信息动态交换的基础。对提高我国电网系统运行的安全、经济特性有着积极的影响。今年来无线通信技术、嵌入式技术的发展也未网络传输的智能化发展提供了便利,是数据监控和数据传输更加高效。

3电力通信技术中存在的问题

电网覆盖面和构建规模都不断增大,作为电网信息通道的电力通信系统,是组成智能电网的重要部分。智能电网的建设,应借鉴过往电网建设存在许多企业级标准的经验教训,应制定统一的电网运行标准,进行统一规划。尽管目前电力通信平台开放性不断增强,通信模式的标准化程度不断提高,设备间的通信畅通,网络覆盖面广,并实现各电网末端的全覆盖。这也便利了智能电网在数据采集和数据保护。但仍然存在许多不足之处需要改进,如实时、双工通信和大容量的接入网的缺乏等。首先,在智能电网对调度、决策、控制自动化技术要求不断增加的同时,对技术创新的要求性也增加,也是智能电网能够在未来更好造福于民的前提。同时,在倡导低碳环保、绿色节能、循环利用的今天,对电力系统本身的能源浪费和利用的要求提高不少,对电力发展与周围环境的发展应该引起重视,确保遵循可持续发展的科学发展观。其次,人力资源特别是高端通信人才的缺乏。电力通信持续发展,同时学校教育中知识较为陈旧,且缺少实际应用和实习,因此存在脱节现象。人才的贫乏制约着电力通信的发展,因此,注重通信人才的培养,鼓励学习高端通信技术,加强通信人才的培训对电力事业的发展影响重大。

4结论

电力通信论文篇4

关键词:宽带接入网电力线通信技术无线宽带接入技术

一、引言

随着电子政府、电子商务、电子社区以及各类Ieternet相关应用的飞速发展,应用对带宽的需求越来越大,网上流量每6~9个月就翻一番。再加上由单一信息形式、单一业务向数据、语音、图像“三合一”多媒体信息形式以及综合业务方向发展,也即所谓交互式多媒体信息时代的到来,对网络容量提出了越来越高的要求。目前骨干网速度已经达到了上百Gbps,并且在很多城市已经实现了光纤到大楼、小区。

如何使千家万户上网,便是大家都在谈论的所谓“最后一公里”的接入问题。接入网建设投资约占信息网络基础设施总投资的一半以上,可以说这是宽带网络建设的瓶颈、热点和关键环节。目前,各种宽带接入技术的发展正方兴未艾,竞争激烈。

目前国际上主流并且比较成熟的技术包括xDSL技术、以太网技术、光纤接入技术、Cable技术、电力线通信技术以及无线接宽带接入技术等。但xDSL技术覆盖面有限(只能在短距离内提供高速数据传输),并且一般高速传输数据是非对称的,仅仅能单向高速传输数据(通常是网络的下行方向)。因此xDSL技术只适合一部分应用。此外,xDSL技术对铜缆用户线路的质量也有一定要求,因此实践中实施起来有一定难度。以太网的带宽管理能力先天不足,光纤接入技术的价格昂贵,Cable技术在实现双向传输上面临大幅度的改造,并且这三种技术在设置终端接口时都存在极大的不便,必须给各个终端预留相应的接口,这样每个房间都必须预埋线路,对于未预埋线路的楼房来说线路改造工程浩大。

最近几年出现了电力线通信和无线宽带接入技术,其中无线部分包括IEEE8002.11和蓝牙技术。与上述几种技术比较,它们具有易建设、见效快等优势,下文将详细介绍这三种技术。

二、电力线通信技术

电力线通信PowerLineCommunication技术简称为PLC技术,是利用配电网低压线路传输高速数据、话音、图像等多媒体业务信号的一种通信方式。因为它具有无需新线、覆盖范围广、连接方便的显著特点,被认为是提供“最后一公里”解决方案最具竞争力的技术之一。

其接入方法十分简单,用户通过特定的PLCModem联结到户内电源插座,通过电力线进行互连或者接入相应的PLC主控设备,然后连接到网络。用户只需装设一台PLC-Modem,不用拨号,就能在线地接收和发送Internet信息。PLC调制解调器主要由接口、调制解调和耦合等三部分组成。接口部分是指电力线调制解调器同用户设备间的双向数据传输的接口,这些接口包括同智能设备之间的RS-232接口、同计算机之间的RJ-45以太网接口或USB接口、同模拟电话之间的RJ-11接口。

采用高速的PLC技术具有很多的优点:

首先,PLC充分利用现有的低压配电网络基础设施,无需任何布线,是一种无需布置新线路的技术,节约了资源。无需挖沟和穿墙打洞,避免了对建筑物和公用设备的破坏,同时也节省了人力。

PLC可以为用户提供高速因特网访问服务、话音服务,从而为用户上网和打电话增加了新的选择:另外,PLC对家庭联网也提供支持,使人们可以尽享由PLC技术带来的家庭音、视频网络,多人对抗游戏等娱乐。

同时,PLC技术是家居自动化的生力军,通过遍布各个房间的墙上插座将智能家电联网,提前享用数字化家庭和舒适和便利;利用PLC技术进行远程自动读出水、电、气表数据,可以用一张收费单解决用户生活的所有收费项目,节省大量人力、物力,也极大地方便了用户;并且,可以为电力公司提供负荷控制、需求侧管理的新手段,提高电力公司管理水平。

为此,国际上有众多的公司先后投资这个领域,如美国的Intellon、InariIntelogis、ITRAN等公司,韩国的Xeline公司,欧洲的ASCOM、Poly、trax等公司,PLC芯片的传输速率从1Mbps发展到2Mbps、14Mbps、45Mbps。目前PLC技术已经形成两种发展模式:其一为以美国为代表的家庭联网模式,这种模式的PLC只提供家庭内部联网,户外访问使用其它传统的通信方式,支持该模式的国际组织为Home-Plug,是一个为高速家用电力线通信网络产品和服务提供开放规模而成立的论坛。另一种模式是面向欧洲和亚洲市场的,提供自配电变压器或楼边至用户家庭的全面PLC解决方案。该模式的国际组织为国际电力线通信论坛。2000年3月23-24日,在瑞士的Interlaken召开了国际电力线通信技术论坛成立大会,该论坛着重制定了与PLC有关的技术标准、讨论并解决相关问题,以促进PLC技术的发展,来自17个国家和51个厂商、用户、投资者成为论坛成员,其中包括北电网络、思科系统等IT行业的巨头。目前在北京的华景园小区和广华轩小区都已经采用了第二种方式。

专用线缆和连接器,通过蓝牙遥控装置可以形成一点到多点的连接,即在该装置周围组成一个“微网”,网内任何蓝牙收发器都可与该装置互通信号。而且,这种连接无需复杂的软件支持。蓝牙收发器的一般有效通信范围为10米,强的可达到100米左右。正如爱立信蓝牙组负责人所说,设计蓝牙的最初想法是“结束线缆噩梦”。

对于802.11来说,蓝牙的出现不是为了竞争而是相互补充。由于它和IEEE802.11b采用相同的工作频率,造成了相互之间的干扰,并且由于其芯片价格相对昂贵,所以在蓝牙技术发展的初期,其前景并不光明。随着技术的发展,一种新设置的芯片和编制的软件可以让蓝牙无线网络避免与其他使用相同频率的无线网络发生干涉,而且在802.11a(工作在5GHz)迅速发展的情况下,蓝牙技术又重新获得了新生。

三、IEEE802.11和蓝牙技术

无线接入技术(WirelessAccessTechnology)也称无线接续技术,或称无线本地环路(WirelessLocalLoop),主要功能是以无线技术(大部分是移动通信技术)为传输媒介向用户提供固定的或移动的终端用户。无线用户环路的宗旨和目标是提供与有线接入网相同的业务种类和更广泛的服务范围,无线用户环路由于具有应用灵活,安装快捷等特点,目前已也是接入技术中热门的话题。IEEE802.11和蓝牙技术是针对小的或者更小(微)的无线网络而发展的技术。

802.11是IEEE最初制定的一个无线局域网标准,主要用于解决办公室局域网和校园网中,用户与用户终端的无线接入,业务主要限于数据存取,速率最高只能达到2Mbps。目前,3Com等公司都有基于该标准的无线网卡。

由于802.11在速率和传输距离上都不能满足人们的需要,因此,802.11工作组相继推出了802.11b和802.11a两个标准。802.11b规范指定在2.4GHz通信频带,物理层采用高速直接序列扩频技术(HR-DSSS),保持与最初802.11DSSS标准的兼容性。调制方式有两种:第一种是高效率的“补码键控”(CCK)调制方案,从而达到了11Mbps的顶端数据速率。第二种调制方案是“信息包二进制回旋式编码”(PBCCTM),凭借其能够提供3dB的编码增益,延伸了通信的距离。因此作为在5.5和11Mbps速率的范围内获得更高性能的一个选择。802.11a工作在5GHzU-NⅡ频带,并被指定高达54Mbps的数据速率。与单个载波系统载波调制技术。由于802.11a运用5GHz射频频谱,因此它与802.11b或最初的802.11WLAN标准均不能进行互操作。

为了提高802.11b的性能,802.11工作组进而提出了802.11g标准,这一初步标准是T1公司、美国Intersil等数家公司提出的妥协方案,在确保与IEEE802.11b相互兼容的情况下,实现2.4GHz频带下的多种数据传输速度(最大54Mbps)。调制方式遵循CCK-OFDM与T1公司的“PBCC-22”,PBCC-22技术使得22Mbps与现有支持11Mbps的IEEE802.11b产品间相互兼容。

蓝牙(IEEE802.15)取自10世纪丹麦国王哈拉尔德的别名。蓝牙技术是一种用于替代便携或固定电子设备上使用的电缆或连线的短距离无线连接技术。其设备使用全球通行的、无需申请许可的2.4GHz频段,可实时进行数据和语音传输,传输速率可达到10Mbps,在支持3个话音频道的同时还支持高达723.2Kbps的数据传输速率。也就是说,在办公室、家庭和旅途中,无需在任何电子设备间布设。

电力通信论文篇5

[论文摘要]随着现代科学技术的飞速发展,构建完善坚强可靠的电力通信网,显得越来越重要。文章结合电力通信的特点和需求及无线新技术的特性,分析无线通信技术在电网通信中的应用前景。

一、概述

电力通信网是为了保证电力系统的安全稳定运行应运而生的。它同电力系统的安全稳定控制系统、调度自动化系统被人们合称为电力系统安全稳定运行的三大支柱。我国的电力通信网经过几十年风风雨雨的建设,已经初具规模,通过卫星、微波、载波、光缆等多种通信手段构建而成为立体交叉通信网。随着无线通信技术的发展,无线通信系统的特性发生巨大的变化。鉴于采用无线通信网不依赖于电网网架,且抗自然灾害能力较强,同时具有带宽大、传输距离远、非视距传输等优点,非常适合弥补目前通信方式的单一化、覆盖面不全的缺陷。本文简单介绍一下无线通信传输体制的应用特点和优缺点,并分析其在电力系统的应用前景。

二、无线技术介绍

(一)无线通信技术的概念

目前,无线通信及其应用已成为当今信息科学技术最活跃的研究领域之一。其一般由无线基站、无线终端及应用管理服务器等组成。

(二)无线通信技术的发展现状

无线通信技术按照传输距离大致可以分为以下四种技术,即基于IEEE802.15的无线个域网(WPAN)、基于IEEE802.11的无线局域网(WLAN)、基于IEEE802.16的无线城域网(WMAN)及基于IEEE802.20的无线广域网(WWAN)。

总的来说,长距离无线接入技术的代表为:GSM、GPRS、3G;短距离无线接入技术的代表则包括:WLAN、UWB等。按照移动性又可以分为移动接入和固定接入。其中固定无线接入技术主要有:3.5GHz无线接入(MMDS)、本地多点分配业务(LMDS)、802.16d;移动无线接入技术主要包括:基于802.15的WPAN、基于802.11的WLAN、基于802.16e的WiMAX、基于802.20的WWAN。按照带宽则又可分为窄带无线接入和宽带无线接入。其中宽带无线接入技术的代表有3G、LMDS、WiMAX;窄带无线接入技术的代表有第一代和第二代蜂窝移动通信系统。

1.主流无线通信技术

从技术发展的趋势可以看出,以OFDM+MIMO为核心的无线通信技术将成为未来无线通信发展的主流方向。而目前基于该技术的无线通信技术主要有:B3G、WiMAX、WiFi、WMN等4种技术。

2.其他无线通信技术

除了上述主流的无线通信技术外,目前已存在的无线通信技术还包括:IrDA、Bluetooth、RFID、UWB、集群通信等短距离通信技术及LMDS、MMDS、点对点微波、卫星通信等长距离通信技术。

(1)IrDA:InfraredDataAssociation,是点对点的数据传输协议,通信距离一般在0~1m之间,传输速率最快可达16Mbps,通信介质为波长900纳米左右的近红外线。

(2)Bluetooth:Bluetooth工作在全球开放的2.4GHzISM频段,使用跳频频谱扩展技术,通信介质为2.402GHz到2.480GHz的电磁波。

(3)RFID:RadioFrequencyIdentification,即射频识别,俗称电子标签。它是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关数据。RFID由标签、解读器和天线三个基本要素组成。

(4)UWB:UltraWideband,即超宽带技术。UWB通信又被称为是无载波的基带通信,几乎是全数字通信系统,所需要的射频和微波器件很少,因此可以减小系统的复杂性,降低成本。

三、无线技术优劣分析

(一)WLAN技术分析

Wi-Fi的技术和产品已经相当成熟,而且大批量生产。该技术适用于无线局域网,作为有线网络的延伸,对于特殊地点宽带应用,尽管Wi-Fi技术应用非常广泛,但是它依然在安全性上存在一定的安全隐患,Wi-Fi采用的是射频(RF)技术,通过空气发送和接收数据。由于无线网络使用无线电波传输数据信号,所以非常容易受到来自外界的攻击,黑客可以比较轻易地在电波的覆盖范围内盗取数据甚至进入未受保护的公司内部局域网。

(二)WiMax技术分析

WiMax是一个先进的技术,推出相对较晚,存在频率复用性小、利用率低的问题,但由于最近才完成标准化,该技术的大规模推广还需要实践考验。从应用前景看,该技术可以在较大范围内满足上网要求,覆盖可以包括室外和室内,可以进行大面积的信号覆盖,甚至只要少数基站就可以实现全城覆盖。WiMax由于其技术的先进性和超远的传输距离,一直被业界看好,是未来移动技术的发展方向,并提供优良的最后一公里网络接入服务。

(三)WMN技术分析

WMN是正在研究中的技术,在研究中不断地在不同方面结合各种技术的特点进行融合,而且暂时没有一个成熟的产品系列来支持该技术的大规模应用。从应用前景看,WMN这一新兴网络不仅在无线宽带接入中有着广阔的应用空间,在其他方面如结合数据、图像采集模块可以对目标对象进行监控或数据采集,并广泛应用到环境检测、工业、交通等领域。随着其他技术的不断更新完善,WMN更好地与之相融合、互补,从而能够扬长避短,发挥出各自的优势。

(四)3G技术分析

3G于1996年提出标准,2000年完成包括上层协议在内的完整标准的制订工作。3G网络部署已具备相当的实践经验,有一成套建网的理论,包括对网络的链路预算、传播模型预算以及计算机仿真等。从商用前景看,目前,3G在部分地区已得到大规模的商业应用,比如欧洲很多国家、日本、韩国等都已经建设了3G的网络。3G技术已经进入可以实用的阶段,还有很多国家和地区正在建设或将要建设3G网络。

(五)LMDS技术分析

本地多点分布业务系统LMDS是一种提供点对多点通信的固定宽带无线接入技术,其工作频率在20GHZ以上,利用毫米波传输,可在一定的范围内提供数字双工语音、数据、因特网和视频业务,是一种非常好的宽带固定无线接入解决方案。在最优情况下,距离可达8公里;但是由于受降雨的原因,距离通常限于1.5公里。

其主要工作原理是通过扇区或基站设备将ATM骨干网基带信息调制为射频信号发射出去,在其覆盖区域内的许多用户端设备接收并将射频信号还原为ATM基带信号,在无需为每个用户专门铺设光纤或铜缆情况下,实现数据双向对称高带宽无线传输。

(六)MMDS技术分析

MMDS的主要缺点是有阻塞问题且信号质量易受天气变化的影响,可用频带亦不够宽,最多不超过200MHz。其次,MMDS对传输路径要求非常严格。由于MMDS采用的调制技术主要是相移键控PSK(包括BPSK、DQPSK、QPSK等)和正交幅度调制QAM调制技术,无法做到非视距传输,在目前复杂的城市环境下难以推广应用。另外,MMDS没有统一的国际标准,各厂家的设备存在兼容性问题。

(七)集群通信技术分析

数字集群系统具有很多优点,它的频谱利用率有很大提高,可进一步提高集群系统的用户容量;它提高了信号抗信道衰落的能力,使无线传输质量变好;由于使用了发展成熟的数字加密理论和实用技术,所以对数字系统来说,保密性也有很大改善。

数字集群移动通信系统可提供多业务服务,也就是说除数字语音信号外,还可以传输用户数字、图像信息等。由于网内传输的是统一的数字信号,因此极大地提高了集群网的服务功能。

(八)点对点微波通信技术分析

微波传输的优势主要体现在以下几个方面:第一,可以降低运营商的运营成本。与租用线路相比,微波系统的投资只要一年左右即可收回。第二,微波传输系统部署简洁快速。与传统的传输手段相比,其快速部署的优势可以更快地满足新业务发展的需要。第三,目前的微波产品对未来的发展是有保障的,对于运营商的新业务和新需求都可以给予很好的支撑。未来,微波传输系统将升级到全IP的平台之上,可以全面支持运营商未来的发展。

(九)卫星通信技术分析

利用卫星在有些人口不很密集的地区来配合陆地通信。在这些地区散布着范围较广但不密集的用户,可以利用卫星作为用户连至固定有线网的接入设施。在陆地通信网已经构成宽带多媒体通信网的环境下,利用卫星建成宽带卫星接入系统是比较好而切合实际的方案,经济又可靠。

但是卫星通信毕竟是采用卫星作为通信平台,其地面站的建设、通信信道租用费用都需要花费大量资金,而且通信资源为卫星通信公司所有,受其带宽的限制,使得大量数据的传输需要付出非常大的代价。因此,作为日常生产、生活使用是极为不经济的;而将卫星通信作为应急通信、作战通信、海外通信等则比较适合。

四、无线技术综合比较

目前无线通信领域各种技术的互补性日趋鲜明。这主要表现在不同的接入技术具有不同的覆盖范围、不同的适用区域、不同的技术特点、不同的接入速率。3G可解决广域无缝覆盖和强漫游的移动性需求,WLAN可解决中距离的较高速数据接入,而UWB可实现近距离的超高速无线接入。

首先,从标准化程度上看,本报告所涉及的技术中,仅仅WMN技术没有成熟的标准体系,LMDS、MMDS、集群通信均有多种标准,只是没有统一的国际标准,其余的技术均已经完成标准化工作,并且都进行了试验网建设和商业网建设。

从频率上看,Wi-Fi技术、WMN均使用的是开放频段,WiMax技术、3G技术等其他技术使用的是授权频段。

从覆盖范围上看,Wi-Fi技术、WMN技术属于局域网无线接入技术,仅覆盖35m~100m;WiMax技术、3G技术、LMDS技术、MMDS技术、集群通信属于城域网接入技术,覆盖范围在1km~54km不等,而卫星通信、点对点微波则属于广域网技术,通常用于通信主干组网建设。

从传输速率上看,点对点微波和卫星通信属于干线传输技术,不同的情况速率变化较大,而其余的技术均为接入技术,仅仅是3G技术接入速率最小,仅为384k,而其余技术均为几十M甚至上百M的速率。

从调制技术上看,其中WiFi技术、WiMax技术、WMN、3G技术均采用最新的调制技术OFDM,其余的技术均未采用OFDM调制技术。

从天线技术上看,仅仅3G和WiMax技术采用了MIMO技术,而其他技术均未采用MIMO技术;从传输环境上看,仅仅WiMax技术和3G技术支持非视距传输,其余技术均要求视距传输环境;从网络安全和QoS机制上看,WiMax技术和3G技术在这方面做得比较优秀、完善,其余的均存在较大的问题。

电力通信论文篇6

关键词:电力系统;通信;IT服务管理

一、电力系统通信部门的IT服务管理

电力系统通信部门IT服务管理体系包括展现层、功能层、数据层。通过对各种系统状态进行实时监控,将现有软硬件环境、网络资源、应用系统、人力资源、知识库有机地融为一体,合理调配资源,切实解决了机构人员、管理模式、业务流程、技术集成等方面实际问题,真正实现科学高效的IT服务管理。

二、典型处理流程

IT服务管理是一种面向流程的管理模式。在电力系统通信部门原有的业务流程的基础上,对其进行优化和改造,在此提出了IT服务管理四个典型处理流程,下面分别从流程目的、功能等角度进行说明:

(一)事件管理流程

事件是任何不符合标准操作且已经引起或可能引起服务中断和服务质量下降的事件。在ITSM引入以前,事件管理没有特定的流程,所有事件都通过通信故障专线通知到通信调度部门,然后由值班员派工单给检修班成员,并不区分事件的“轻重缓急”,也没有技术层面的审核,因此故障派修单回单率一直很低,很多单据由于不具备执行条件而在班组和通信科之间来回推诿,降低了故障解决时间,也没有相关考核指标。

事件管理的流程如下:首先,事件通过运行单位填报、用户填报或者通信检修部门巡视发现填报,所有事件记录进系统,对于已经处理的缺陷只要补报即可。接着通信调度进行分类预判断并分派,确定是事件的影响范围和优先等级:如果是事件处理影响范围小或无影响,则直接进行派单;如果事件处理影响范围大,则要求检修部门先进行停服役申请,再进行事件处理。然后,检修部门消缺完毕后,由用户和通信调度分别进行消缺验收,判断是否已解决确定问题:如解决,则由检修班回单给通信科,则纳入审核管理或者填报缺陷归档,关闭记录;如没有解决,则纳入通信科审核管理继续诊断,纳入下一季度大修工程,必要时转省调、厂商和集成商、服务商等进行支持解决等。最后更新文档,必要时进行回顾,事件支持人员将根据管理要求定期产生相关报表。

(二)问题管理流程

问题管理流程设立的主要功能是分析已被列为问题的事件(一组或一个)的根本原因,然后找出和建议永久性解决方案。其目的包括:(1)确保分析并确定事件的根本原因,以防止再次发生;(2)确保问题分派了正确支持人员,提高解决率。(3)根据IT资源情况分派问题优先级;(4)主动提供预防性措施;(5)提高IT服务的可靠性;(5)降低IT支持成本;(6)提高通信部门的整体形象和名誉。

(三)配置管理流程

通信部门的所有资源都通过手工和电子配置管理是通过手工形式派发“电路(设备、线路)投入、改接单”,单据与实际资源状况出入较大。待单据完成后,由专人进行手动的资料更新和管理,而经常出现资料忘记更新或资料更新出错,缺乏必要的考核体系。

配置管理的流程如下:首先进行配置申请。接着配置管理员根据需求进行方案设计,经配置管理经理审批后生成配置工单。配置工单由配置经理审核后进行工单派发,此时由于工单并未真正实施,配置资源处于预占状态。然后配置管理员根据班组回单进行完成确认,若确认完成,则将资源预占状态更改为运行状态;否则取消资源预占状态。并定期进行资源检查验证,流程回顾,每个一个季度由系统自动生成配置管理报告,据此可进行资源分析、预警等。

(四)变更管理流程

变更管理流程将通过标准统一的方法和步骤管理和控制所有对通信系统运行环境有影响的变更。其目的在于:通过对所有变更的正确评估,可以维护通信系统运行环境的完整性;确保变更和变更实施得到正确记录,并提供审核统计;减少或消除由于变更实施准备不当等原因出现的故障;提供一致性的变更实施质量控制;提高资源使用率(如未得到正确控制和授权的变更需要更多的后续资源);确保实施的变更不会超出预定的系统利用限值确保紧急变更请求得到快速实施。

三、IT服务管理体系的实施效果评价

杭州市电力局通信部门IT服务管理系统2006年初上线运行,截止到2007年9月30日,IT服务管理系统的配置项数据包括服务器、客户端设备、网络设备、变电站通信机房、变电站通信屏体信息、数据采集与监视控制系统(SCADA)采集点以及其他各种设备信息,总计有36个分类、95000多条记录。自投运以来总共记录有效服务呼叫8546条,电力通信网和管理信息化共关闭8492条,完成比率达99%。

杭州市电力局通信部门IT服务管理系统固化了18种处理流程及衡量标准、20项事件流程服务指标、10项工作量考核指标、28种事件分类指标等可量化的IT运行维护指标,电力通信网和管理信息化都分别设置了流程经理,每个流程又明确了流程负责人,负责处理流程时限、效率和质量。IT服务管理系统提供了可观、可测、可控、可量化的工作环境,工作量考核、系统风险识别、流程实施关键绩效指标(KPI)、人员技术能力等都可用“数字说话”。通过系统实施,事件处理更加高效,变更管理更加规范、问题管理更加可控、IT服务水平和人员素质得到了极大提高,为IT管理人员提供了方便高效的管理手段。

四、结语

IT服务管理系统运行两年的实践证明了ITSM是一套科学的方法论。实施效果表明该体系应用成效显著,流程清晰,责权分明,运行维护内容可量化,服务质量可考核,运作模式彻底告别了被动的救火队式的管理,开始步入主动的有预案的IT服务管理良性发展轨道。通过系统的实施,各流程的关键绩效指标越来越好,问题的可控程度也越来越高。因此,有计划、分步骤地将各流程应用在日常的系统运行维护和管理中去是现阶段最切实可行的方法。

参考文献

[1]曹汉平,王强,贾素玲.现代IT服务管理——基于ITIL的最佳实践[M].清华大学出版社,2005.

[2]孙强,左天祖,刘伟.IT服务管理——概念、理解与实施[M].机械工业出版社,2007.

电力通信论文篇7

一、电力信息采集系统

电力信息采集业务是对用户的用电信息进行采集、监测和处理,实现用户用电信息计量异常监测以及用户用电信息采集、分析和管理,同时也让电能质量被实时监控等,在用户服务、市场管理、电费实时结算等多方面提供实时、可靠的数据。电力用电信息采集系统分主站层、通信信道层和采集设备层三层。[1]主站与其他应用系统和公网信道是由防火墙分离开来,单独组网。在主站层里有前置采集平台、营销采集业务应用以及数据库管理三部分组织。前置采集平台管理和调查各种与终端的远程通信;营销采集业务应用让系统的各部分应用功能得到充分得到充分发挥;数据库管理实现用电终端的用电信息有效管理,并担负起协议解析职责。实现这三种功能,需要由前置采集服务器、营销系统服务器以及相关的网络设备组成主站网络的物理结构。采集设备层的主要任务是收集和提供整个系统的原始用电信息,是整个系统的底层,又分为计量设备层、终端子层两个子层,分别负责实现电能计量和数据输出和收集用户计量设备的信息、处理和冻结相关数据,并实现与上层主站的交互等。而主站层和采集设备层之间的最重要使是通信信道,为主站和终端信息交互提供平台。目前有230MHz电力无线专网、GPRS/CDMA无线公网以及光纤专网等通信信道,而无线技术的应用更能满足系统需要,其可靠性和稳定性成了当前的研究重点。用电信息釆集系统主要有五大功能,分别是系统数据采集、系统接口、运行维护管理、数据管理及控制和综合应用。数据采集主要是根据业务要求编制自动采集任务,例如任务类型和名称、采集周期和群组、正常补采次数以及执行优先级等信息,对任务执行情况进行管理;系统接口主要是与其他应用系统进行连接;运行维护管理功能是对密码、权限、档案、通信与路由、终端、运行状况、故障记录、报表等方面的内容进行有效管理;数据管理及控制功能包括对数据的计算、检查、分析、存储等内容进行管理以及对电量、功率、费率、电缆催收等内容进行控制;综合应用功能主要是提供异常用电分析、有序用电管理、自动抄表管理、用电分析、电能质量数据统计等服务。用电信息采集首先由主站对集体终端进行对时,统一时间后终端进行采集工作状态,按设定的时间间隔进行定时抄表、存储并通过无线信道传数据到后台,如无线信道不稳定时,后台会自动再次生成相应的补救命令追补数据,最后后台对数据进行处理。整个采集过程,业务通信具有整点时刻定时抄表,重传补数的特点,保证在业务通信失败的情况下还可以再次重新传采集数据,实现信息采集可靠性。

二、无线通信信道技术特点与数据丢失规律分析

1.无线通信信道技术的特点利用信道的统计特征进行分析是无线通信信道技术的重要特征之一。无线通信信道分为小尺度衰落和大尺度衰落两种衰落大体。小尺度传播是指信号在短时间内瞬间产生的变化,而大尺度传播指的是在相关长的一段时间内信号平均功率的变化。信道的相位、振幅会受到多径传播和多普勒频移两者的影响,产生信号频散和时间选择性衰落。衰落也根据大小将小尺度衰落分为选择性频率衰落和平坦衰落。在电力系统无线通信应用中通常有如高斯噪声、白噪声、窄带高斯噪声等多种噪声陪随着信号的传输,短时衰减是他们其中最大的特点,最大可以达到60~70dB。无线通信信道技术噪声有突发性的脉冲噪声、自然噪声、同步周期性脉冲的噪声、异步周期性脉冲的噪声。突发性的脉冲噪声顾名思义是指网络上开关的操作或者发生闪电时产生一系列脉冲噪声影响到非常宽的频带,以致脉冲噪声密度比背景噪声的功率谱密度高出50dB;自然噪声即是指如闪电、雷击、电焊等自然界各种各校的电磁波造成的自然噪声;同步周期性脉冲的噪声是电力设备按照50Hz或者100Hz来工作的频率产生的脉冲,功率随频率增加而减少;异步周期性脉冲的噪声是由于大功率电器的开关发生周期星的开闭动作导致噪声产生,重复率主要集中50~200范围之内。2.电力无线通信数据丢失规律不同地区电力负荷的特性不同,影响电力负荷的因素也不完全相同。[2]电力用电信息采集业务的主要任务是对居民用电信息进行采集与监控,无线通信往往会受到电磁干扰的影响。对用电信息采集无线通信网络进行数据分析,指在根据电磁干扰造成数据丢失规律,结合信息采集业务的应用环境特点,调整选用合适的控制策略,以保证用信息采集业务的可靠性。分析数据丢失规律,首先要统计出24小时内居民用电负荷与时间的关系特性,并结合用电负荷量得出阶梯奖业务量模型,再根据模式作出规律性变化分析。在统计电力用户用电负荷状况时,节选广州某居民区生活和工作用电负荷24小时规律变化为例,通过采样、统计、整理得出一天内的用电负荷曲线,如图1所示:其中,负荷比值=瞬时负荷量/24小时平均负荷量。由图1可以看出,01:00~05:00时间段为居民的休息时间,全天进行用电量低谷;05:00~08:00时间段,居民起床、做饭、上班等,用电量略有所回升;08:00~12:00时间段为居民上班时间,使用各种电器设备,用电量明显上升,而12:00~13:00为午餐午休时间,用电量随着部分活动的停止而呈小幅下降;13:00~18:00又进入工作期间,用电量也相应上升;18:00~20:00时间段是居民回家做饭时间,用电量逐渐增加;20:00~23:00时间是大多数人在家休息,如电视、空调等大功率电器大幅启动,多数娱乐场所也进行一天的高峰,此时处于用电高峰期,在21:00附近进入一天用电最高峰,随后便有所下降,至24时多数居民已休息,用电量又逐渐步入一天的低谷。电力无线通信数据丢失率与电磁干扰因素呈正相关关系,一般而已,电磁干扰因素越大,电力无线通信信道数据据丢失率就越大。结合居民用电负荷曲线,将一天分成五个时间段,依次为K23:00-6:00;K6:00-12:00;K12:00-18:00;K18:00-20:00;K20:00-23:00。五个时间段的居民用电量呈递增趋势,设20:00的用电负荷比值为K20:00,那么K20:00-23:00段的平均负荷比值为:K20:00-23:00=(K20:00+K21:00+K22:00)/3同理可求得其他四个时间段的平均负荷比值,可以得到五个级别的通信数据丢失率阶梯模型,可以总结电力无线通信数据丢失规律是随着用电量的变化而变化。在接入过程中应当充分根据此规律的特点而设计不同的控制方式,从而最大限制提高无线资源的利用率。

三、无线通信技术在系统中的应用

用电信息采集系统通信分为有线通信和无线通信。无线通信又分为无线专网和无线公网。一般而言,变电站采集终端采用有线的光纤通信方式,保证采集实时性强;高压客户采用230MHz专网或无线公网方式;而低压客户几乎都是采用无线公网通信方式。由于居民用电信息采集中,一个公用配变电下有大量的电力用户,而且具有用电容量小、计量点分散等特点,本地信道方式将大量的电力用户信息集中再往系统主站传输是一个低成本的无线通信技术应用方式。因此,用电信息采集系统无线技术的应用主要介绍微功率无线通信、低压窄带电力线载波、低压宽带电力线载波三种本地信道通信方式的应用。[3]微功率无线通信是指采用WSN(WirelessSensorNetworks)技术的无线通信方式。WSN是一系列微功率通信的总称,综合了嵌入式系统技术、传感器技术、网络无线通信技术、分布式信息处理技术等,通信微型传感器节点对用户进行实时的感知和监控,利用每个传感器具有无线通信功能组建成一个无线网络,将数据传输到监控中心,非常适用于低成本、测量点多、范围分散的低压场合。应用WSN技术克服了传统数据对点无线传输模式的局限性,自组织性、拓扑结构动态性、网络分布式特性等较为明显,而且通信能力、抗干扰能力都比较强,无需要安装,功耗低,具有很强的成本优势。无线数据支持双向传输,既可以上传电能表的数据,又可以接收集中器下发的命令,还可以中继来自其他节点数据。通信流程如图2所示:电能表通过无线采集节点传输到中继节点,并由集中器进行处理。集中器下发命令数据,目标无线采集节点就会通过多个中继节点收到命令,甚至可以直接收到,然后转发给电能表。还也可以利用无线网络实时性强的优点,将突发事件通过无线节点主动上传到后台,有效地实现故障报警、实时监控、防窃电。对于测量点相对分散、集中装表、用户负载变化大、载波不稳定等场合非常适用。低压窄带电力线载波通信指的是载波信息范围限制在500kHz以内的低压电力线载波通信。配电线主要用于传输50Hz大功率电力,配电线连接各种设备将会影响到传输的通信信号,特别是近年来变频家用电器大量使用,对信道的稳定性造成巨大的干扰,主要表现为阻抗不稳定、噪声显著、信号衰减严重,并且这两个因素随着时间和频率变化而变化。窄带载波通信技术可以双向传输,不再需要另外通信线路,具有较强的适应性,而且具有容易安装的特点,对于低压用户数据采集是个很好的应用。但其数据传输速率较低,容易受到噪声大、信号衰减的影响,在通信可靠性方面还存在着一定的技术障碍。因此,在应用时应当利用软硬件技术结合,完成组网优化窄带载波通信,对于一些用电负载特性变化较小、电能表分散布置困难的区域具有一定的应用价值。宽带电力线载波系统工作在1~40MHz频率范围,成功避开了kHz频段带来的干扰,并通过扩频调制或者正交方式来获得兆级以上的传输速率。这种电力线宽带通信调制技术把信道带宽分成N个正交的子信道,每个子信道呈现相对性和平坦特性,将这些子信道看成理想信息。由于低压台区电力线上的高频传输信号往往会衰减得比较快,需要通过时分中继、自动中继、频分中继和智能路由计算等多项技术手段实现整个低压电力通信网络重构并通信。这种通信技术具有较高的抗干扰能力,适应性强,可以同时承载多个业务并对各个任务进行并发处理。同时有单跳通信距离受限、信号衰减大等局限性。在应用时还需要采用路由、中继等行之有效的优化措施。根据宽带载波的短距离和少分支特性,应当重点应用于城乡公变区供电区域、电表集中安装居民区等,电能表数据采集效果和经济性均优于其他的抄表方式。

四、结语

电力通信论文篇8

这种技术的新优势主要体现在以下几个方面。第一,成功的实现了我A/D与D/A转换,尤其是在这几年来,在技术领域上有着新的突破,能在最大程度上实现无线转换器原件的使用量,这就为数字原件的制作提供了诸多方便。第二,因为短距离的无线技术能够通过铺设更为广泛的宽带成功的实现无线通路,极大的提高了其机动性,使得此技术的应用范围就变得更加的广阔了。第三,该技术举杯拓展性的新优势,因为无线电技术的软件模式不是毫无变化的,反而是通过技术的不断升级和软件的更新换代能衍生出更多的服务,这样的新优势也成为该技术能被广泛应有和接受的主要原因。第四,改技术能有在应用的过程不断的查缺补漏,根据实际情况改进自己的技术水准,在更多的情况下是根据众多不同用户的实际需求发生变化的,这就说明这种技术是有着人性化的新优势,注重需求上的满足,极大的增强了顾客的满意度。

2、DSP技术以及新优势

该技术又被称为是数字新信号处理技术,这就是伴随着电力企业的单力系统在新形势、新需求下不断完善的结果,这种技术在当下的电力通信技术中可谓是最先进的了,其在使用和运行的过程中体现出来的新优势则是不可小觑的,在今后乃至未来的无线数据通信的飞速发展的过程中,都可以为人类带来便捷的生活条件。在最近的几年中,这种技术可以说是以自身的独特优势改变着我们现代人的生活,有着安全,准确,可靠的新优势。在我国更广阔的电网覆盖的地域下,气候条件复杂,地质条件复杂,人文环境更加复杂的情况下,该技术有着更加强大的适应性。而该技术恰恰有着这样的技术属性,能够用自身的新优势满足这样的需求。

3、智能天线技术以及新优势

智能天线技术的新优势,主要体现在该技术能够在最大的可能上能够成功的实现移动通信在较高的频段的复用以及较大体量的系统容量需求情况下进行无阻碍的工作,这是因为在现代的科学技术进步频段的使用存在高度的复用率,也就是说,如果在一定的环境下,没有相对稳定的信号就很容易出现信号连接不上,断开,以及连接不上的现象,但是智能天线的优势就在于极大程度上的解决了此种现象下的难题。

4、全光网络通信技术及新优势

全光网络技术的新优势就是他的速度和效率,众所周知,所有信号的传输与交流都是通过光的形式才得以进行的,这样才能保障传输的效用和效率,而全光技术就是在效用和效率上通过现代科技加以保障才有全新的优势展现。

5、4G技术及新优势

客观上讲,4G是当下中国通信网络的新产物与新宠儿,每年中国通信网络都会更新换代,在短暂的几年中,中国走过了不同于其他国家的及时年的发展历程,4G技术在传输速度和效率上都有着其他技术无可比拟的新优势,在电力信息通信技术领域广泛的应用并成为主流技术。

6、Femtocell技术及新优势

推荐期刊