线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

生物制药技术论文8篇

时间:2023-03-17 18:01:16

生物制药技术论文

生物制药技术论文篇1

关键词:生物制药技术

0引言

生物技术药物(biotechdrugs)或称生物药物(biopharmaceutics)是集生物学、医学、药学的先进技术为一体,以组合化学、药学基因(功能抗原学、生物信息学等高技术为依托,以分子遗传学、分子生物、生物物理等基础学科的突破为后盾形成的产业。

1生物制药技术

目前生物制药主要集中在以下几个方向:

1.1肿瘤在全世界肿瘤死亡率居首位,美国每年诊断为肿瘤的患者为100万,死于肿瘤者达54.7万。用于肿瘤的治疗费用1020亿美元。肿瘤是多机制的复杂疾病,目前仍用早期诊断、放疗、化疗等综合手段治疗。今后10年抗肿瘤生物药物会急剧增加。如应用基因工程抗体抑制肿瘤,应用导向IL-2受体的融合毒素治疗CTCL肿瘤,应用基因治疗法治疗肿瘤(如应用γ-干扰素基因治疗骨髓瘤)。基质金属蛋白酶抑制剂(TNMPs)可抑制肿瘤血管生长,阻止肿瘤生长与转移。这类抑制剂有可能成为广谱抗肿瘤治疗剂,已有3种化合物进入临床试验。

1.2神经退化性疾病老年痴呆症、帕金森氏病、脑中风及脊椎外伤的生物技术药物治疗,胰岛素生长因子rhIGF-1已进入Ⅲ期临床。神经生长因子(NGF)和BDNF(脑源神经营养因子)用于治疗末稍神经炎,肌萎缩硬化症,均已进入Ⅲ期临床。美国每年有中风患者60万,死于中风的人数达15万。中风症的有效防治药物不多,尤其是可治疗不可逆脑损伤的药物更少,Cerestal已证明对中风患者的脑力能有明显改善和稳定作用,现已进入Ⅲ期临床。Genentech的溶栓活性酶(Activase重组tPA)用于中风患者治疗,可以消除症状30%。

1.3自身免疫性疾病许多炎症由自身免疫缺陷引起,如哮喘、风湿性关节炎、多发性硬化症、红斑狼疮等。风湿性关节炎患者多于4000万,每年医疗费达上千亿美元,一些制药公司正在积极攻克这类疾病。

1.4冠心病美国有100万人死于冠心病,每年治疗费用高于1170亿美元。今后10年,防治冠心病的药物将是制药工业的重要增长点。Centocor′sReopro公司应用单克隆抗体治疗冠心病的心绞痛和恢复心脏功能取得成功,这标志着一种新型冠心病治疗药物的延生。

基因组科学的建立与基因操作技术的日益成熟,使基因治疗与基因测序技术的商业化成为可能,正在达到未来治疗学的新高度。转基因技术用于构造转基因植物和转基因动物,已逐渐进入产业阶段,用转基因绵羊生产蛋白酶抑制剂ATT,用于治疗肺气肿和囊性纤维变性,已进入Ⅱ,Ⅲ期临床。大量的研究成果表明转基因动、植物将成为未来制药工业的另一个重要发展领域。

2生物制药发展分析

未来生物技术将对当代重大疾病治疗剂创造更多的有效药物,并在所有前沿性的医学领域形成新领域。

生物学的革命不仅依赖于生物科学和生物技术的自身发展,而且依赖于很多相关领域的技术走向,例如微机电系统、材料科学、图像处理、传感器和信息技术等。尽管生物技术的高速发展使人们难以作出准确的预测,但是基因组图谱、克隆技术、遗传修改技术、生物医学工程、疾病疗法和药物开发方面的进展正在加快。

除了遗传学之外,生物技术还可以继续改进预防和治疗疾病的疗法。这些新疗法可以封锁病原体进入人体并进行传播的能力,使病原体变得更加脆弱并且使人的免疫功能对新的病原体作出反应。这些方法可以克服病原体对抗生素的耐受性越来越强的不良趋势,对感染形成新的攻势。

除了解决传统的细菌和病毒问题之外,人们正在开发解决化学不平衡和化学成分积累的新疗法。例如,正在开发之中的抗体可以攻击体内的可卡因,将来可以用于治疗成瘾问题。这种方法不仅有助于改善瘾君子的状况,而且对于解决全球性非法贸易问题具有重大影响。

各种新技术的出现有助于新药物的开发。计算机模拟和分子图像处理技术(例如原子力显微镜、质量分光仪和扫描探测显微镜)相结合可以继续提高设计具有特定功能特性的分子的能力,成为药物研究和药物设计的得力工具。药物与使用该药物的生物系统相互作用的模拟在理解药效和药物安全方面会成为越来越有用的工具。例如,美国食品药物管理局(FDA)在药物审批的过程中利用DennisNoble的虚拟心脏模拟系统了解心脏药物的机理和临床试验观测结果的意义。这种方法到2015年可能会成为心脏等系统临床药物试验的主流方法,而复杂系统(例如大脑)的药物临床试验需要对这些系统的功能和生物学进行更为深入的研究。

去年相比。这种方法还可以挽救过去在临床试验中被少数患者排斥但有可能被多数患者接受的药物。这种方法可以改善成功率、降低试验成本、为适用范围较窄的药物开辟新的市场、使药物更加适合适用对症群体的需要。如果这种技术趋于成熟,可以对制药工业和健康保险业产生重大影响。

生物制药技术论文篇2

关键词:生物制药技术

引言

生物技术药物(biotechdrugs)或称生物药物(biopharmaceutics)是集生物学、医学、药学的先进技术为一体,以组合化学、药学基因(功能抗原学、生物信息学等高技术为依托,以分子遗传学、分子生物、生物物理等基础学科的突破为后盾形成的产业。

一、生物制药技术

目前生物制药主要集中在以下几个方向:

1.1肿瘤在全世界肿瘤死亡率居首位,美国每年诊断为肿瘤的患者为100万,死于肿瘤者达54.7万。用于肿瘤的治疗费用1020亿美元。肿瘤是多机制的复杂疾病,目前仍用早期诊断、放疗、化疗等综合手段治疗。今后10年抗肿瘤生物药物会急剧增加。如应用基因工程抗体抑制肿瘤,应用导向IL-2受体的融合毒素治疗CTCL肿瘤,应用基因治疗法治疗肿瘤(如应用γ-干扰素基因治疗骨髓瘤)。基质金属蛋白酶抑制剂(TNMPs)可抑制肿瘤血管生长,阻止肿瘤生长与转移。这类抑制剂有可能成为广谱抗肿瘤治疗剂,已有3种化合物进入临床试验。

1.2神经退化性疾病老年痴呆症、帕金森氏病、脑中风及脊椎外伤的生物技术药物治疗,胰岛素生长因子rhIGF-1已进入Ⅲ期临床。神经生长因子(NGF)和BDNF(脑源神经营养因子)用于治疗末稍神经炎,肌萎缩硬化症,均已进入Ⅲ期临床。美国每年有中风患者60万,死于中风的人数达15万。中风症的有效防治药物不多,尤其是可治疗不可逆脑损伤的药物更少,Cerestal已证明对中风患者的脑力能有明显改善和稳定作用,现已进入Ⅲ期临床。Genentech的溶栓活性酶(Activase重组tPA)用于中风患者治疗,可以消除症状30%。

1.3自身免疫性疾病许多炎症由自身免疫缺陷引起,如哮喘、风湿性关节炎、多发性硬化症、红斑狼疮等。风湿性关节炎患者多于4000万,每年医疗费达上千亿美元,一些制药公司正在积极攻克这类疾病。

1.4冠心病美国有100万人死于冠心病,每年治疗费用高于1170亿美元。今后10年,防治冠心病的药物将是制药工业的重要增长点。Centocor′sReopro公司应用单克隆抗体治疗冠心病的心绞痛和恢复心脏功能取得成功,这标志着一种新型冠心病治疗药物的延生。

基因组科学的建立与基因操作技术的日益成熟,使基因治疗与基因测序技术的商业化成为可能,正在达到未来治疗学的新高度。转基因技术用于构造转基因植物和转基因动物,已逐渐进入产业阶段,用转基因绵羊生产蛋白酶抑制剂ATT,用于治疗肺气肿和囊性纤维变性,已进入Ⅱ,Ⅲ期临床。大量的研究成果表明转基因动、植物将成为未来制药工业的另一个重要发展领域。

二、生物制药发展分析

未来生物技术将对当代重大疾病治疗剂创造更多的有效药物,并在所有前沿性的医学领域形成新领域。

生物学的革命不仅依赖于生物科学和生物技术的自身发展,而且依赖于很多相关领域的技术走向,例如微机电系统、材料科学、图像处理、传感器和信息技术等。尽管生物技术的高速发展使人们难以作出准确的预测,但是基因组图谱、克隆技术、遗传修改技术、生物医学工程、疾病疗法和药物开发方面的进展正在加快。除了遗传学之外,生物技术还可以继续改进预防和治疗疾病的疗法。这些新疗法可以封锁病原体进入人体并进行传播的能力,使病原体变得更加脆弱并且使人的免疫功能对新的病原体作出反应。这些方法可以克服病原体对抗生素的耐受性越来越强的不良趋势,对感染形成新的攻势。

除了解决传统的细菌和病毒问题之外,人们正在开发解决化学不平衡和化学成分积累的新疗法。例如,正在开发之中的抗体可以攻击体内的可卡因,将来可以用于治疗成瘾问题。这种方法不仅有助于改善瘾君子的状况,而且对于解决全球性非法贸易问题具有重大影响。

各种新技术的出现有助于新药物的开发。计算机模拟和分子图像处理技术(例如原子力显微镜、质量分光仪和扫描探测显微镜)相结合可以继续提高设计具有特定功能特性的分子的能力,成为药物研究和药物设计的得力工具。药物与使用该药物的生物系统相互作用的模拟在理解药效和药物安全方面会成为越来越有用的工具。例如,美国食品药物管理局(FDA)在药物审批的过程中利用DennisNoble的虚拟心脏模拟系统了解心脏药物的机理和临床试验观测结果的意义。这种方法到2015年可能会成为心脏等系统临床药物试验的主流方法,而复杂系统(例如大脑)的药物临床试验需要对这些系统的功能和生物学进行更为深入的研究。

药物的研究开发成本目前已经高到难以为继的程度,每种药物投放市场前的平均成本大约为6亿美元。这样高的成本会迫使医药工业对技术的进步进行巨大的投资,以增强医药工业的长期生存能力。综合利用遗传图谱、基于表现型的定制药物开发、化学模拟程序和工程程序以及药物试验模拟等技术已经使药物开发从尝试型方法转变为定制型开发,即根据服药群体对药物反应的深入了解会设计、试验和使用新的药物。这种方法还可以挽救过去在临床试验中被少数患者排斥但有可能被多数患者接受的药物。这种方法可以改善成功率、降低试验成本、为适用范围较窄的药物开辟新的市场、使药物更加适合适用对症群体的需要。如果这种技术趋于成熟,可以对制药工业和健康保险业产生重大影响。

生物制药技术论文篇3

关键词:药剂学 教学体会 思考

中图分类号:G412 文献标识码:A 文章编号:1674-098X(2014)10(c)-0106-01

药剂学(Pharmaceutics)是研究药物配制理论、生产技术、质量控制和合理利用等内容的综合性应用技术学科。药剂学是针对药物制造的综合应用技术学科。根据药物理化性质不同、体内吸收代谢特点不同,还根据要达到治疗的效果、减少毒副作用和不良反应等要求,需要在药物的生产加工中采取合适的处方设计、合理的生产工艺、适合的剂型及给药途径,来形成药物制剂。同时,也应该满足药物本身的储存、运输的要求。进入20世纪以来,随着医学、生命科学和其他相关基础科学的飞速发展,药剂学发生了翻天覆地的变化。在基础理论方面,20世纪50年代,物理化学尤其是非平衡态物理化学的一些理论被应用在药剂学领域,产生了一些药剂学基本理论如药物稳定性理论、溶解理论、流变学、粉体学等。在药物新剂型方面,产生了缓控释制剂、靶向制剂、脉冲式制剂等新剂型。给药途径也由原来单一的口服给药和注射给药,扩展到了粘膜给药、透皮吸收给药、腔道给药等多种途径。在制剂新技术方面,也产生了脂质体技术、包合物技术、球晶制粒技术、微球技术、微囊技术、纳米技术及大分子前药技术等。在学科分支领域,也产生了工业药剂学、物理药剂学、生物药剂学、药物动力学、临床药剂学等多学科分支。综合来看,药剂学有了深刻的内涵式发展和外延式拓展。多种学科及技术的应用使药剂学的学科深度和广度有了长足的发展。笔者根据自己多年的药剂学课程教学经验,简要谈谈自己的实际教学体会。

1 实践性强

在实际的教学过程中,可以发现,药剂学是在实践的基础上发展出的一门学科。很多药剂学的知识体系都是建立在丰富的实践基础上的。中国是世界上开展药物制剂实践最早的国家之一。早在商代,古代中国就已经使用汤剂进行实际的疾病治疗。欧洲药剂学起始于公元1世纪前后,被欧洲各国誉为药剂学鼻祖的格林,在他的著作中记录了散剂、丸剂、浸膏剂、溶液剂、酒剂和酊剂等,称之为“格林制剂”。明代药物学家李时珍编著的本草纲目中,收载药物1892种,而剂型达61种,充分体现了中华民族在药剂学的漫长发展历程中做出的重要贡献。进入19世纪,法国的医师Pravas首次发明了注射器,使实际的注射给药变得速效和高效。在1886年,Limousin发明了安剖,是注射剂的实际产业化应用更为可行。随着西方科学和工业技术的蓬勃发展,制药机械的发明使得药物制剂生产的机械化和自动化程度大大加强,进一步加强了其实际应用性。除了制药机械,辅料也是药剂学的重要组成部分。在药用辅料研究方面,先后开发出用于粉末直接压片用辅料―微晶纤维素及可压性淀粉、用于片剂及固体制剂常用的黏合剂――聚乙烯吡咯烷酮、用于薄膜包衣材料――丙烯酸树脂系列、栓剂基质半合成脂肪酸等。这些功能性辅料的开发,使得药物制剂的产业化发展更加迅猛。通过对以上各方面的实际应用进展分析,在实际教学中,我们应突出药剂学课程的实践性,加强学生实际动手能力的培养,多在实践活动中加强药剂学基础知识的形成和积累。

2 知识面广、学科知识更新快

药剂学的整体知识结构包括药物制剂的基本理论、药物剂型概论、药物制剂的新技术和新剂型、生物药剂学和药物动力学。学科知识面广。药物制剂的基本理论属于物理药剂学的范畴,包括药物溶液的形成理论(溶解度、溶出速度、渗透压、表面张力、黏度等)、表面活性剂理论、微粒分散系基本理论(絮凝、反絮凝、空间稳定理论、微粒聚结动力学等)、药物制剂的稳定性(药物稳定的化学动力学基础、物理稳定性原理)、粉体学理论(粒子基本理论、粉体流动性、吸湿性、粘附性和压缩性质)、流变学理论(粘弹性、流体基本性质等)。这些药剂学基本理论是建立在物理化学基础上的。涉及到物理化学、物理学、化学、数学等学科的知识。药物制剂的新技术与新剂型主要包括固体分散体技术、包合物的制备技术、微粒分散系的制备技术、缓控迟释制剂、靶向制剂、经皮给药制剂和生物技术药物制剂。这些制剂新技术与药物新剂型的发展涉及到材料学、生物化学、药理学、医学等学科知识。药剂学所具有的广泛知识面要求授课教师除具有药剂学必备的知识外,还应具有数学、物理化学、生物学、医学等学科知识,才能胜任药剂学的实际教学要求。药剂学的另外学科特点是知识更新速度快。如药剂学的第二十二章生物技术药物制剂中,讲到关于基因药物的药物制剂发展,会提及小干扰RNA(siRNA)技术的发展。而siRNA技术是近10年才发展起来的技术,该技术还在不断的发展和更新当中。这就要求教师应关注国内外药剂学相关知识和技术的发展,积极引入前沿的知识来不断充实传统的药剂学知识,使得药剂学的授课即能使学生学习到经典知识理论,又可了解最新的学科发展动态。

3 传统式记忆与规律性记忆相结合

药剂学内容庞杂,涉及到很多理论、基本剂型、新技术等。采用传统式知识记忆方法,容易产生遗忘。应该从学科本身的规律性来加强记忆。如各类药物制剂都会涉及到概念、基本原理、分类、特点、所用辅料、制备工艺、质量评价等内容。对于各类药物制剂如片剂、注射剂、胶囊剂、软膏剂、气雾剂等,可以按照以上规律从各种角度进行总结。在总结完各种剂型后,进行对比,找出各种的异同点,进行比较,发现其内在规律,进行记忆。规律性记忆可以将不同知识体系进行串联、比较,将孤立、分散的知识点有效地集合起来,有机串联成整体,进行记忆。这种记忆具有成片性,不易遗忘。如讲到药物新技术与新剂型时,对于脂质体技术、微囊技术、微球技术、固体分散体技术、包合物技术等,可以根据其原理、发展历史、基本组成、制备方法和质量评价等方面进行总结。对于发展历史的总结会使学生对各类新技术有着整体性和脉络性的认识,使得记忆进一步生动起来。在教学中,如何利用药剂学的内在规律性来加强学生对知识的记忆和理解非常重要。在实际的教学活动中,教师应根据自己的经验,帮助和引导学生加深对药剂学知识的理解和掌握。

总的来说,药剂学是门实践性特别强的学科,其学科知识面广、学科交叉性强、知识理论更新速度快。针对这些特点,我们应该努力提高药剂学的教学技能。在传统式记忆的基础上,不断探索各种新型的规律性记忆新模式,来提升实际的教学效果。

参考文献

[1] 崔福德.药剂学[M].7版.北京:人民卫生出版社,2011.

生物制药技术论文篇4

[关键词] 生物技术药物药物分析理论实践

21世纪是生物生命世纪,生物技术将成为21世纪高技术革命的核心内容,而生物技术应用最广泛的领域是医药领域,其中尤以医药生物技术分支发展最快。生物技术在制药领域中发挥着越来越重要的作用,成为制药工业的一个独立体系[1]。《中国药典》(2000年版)首次载入了基因工程产品。在此大背景下如何培养全面高素质的药学人才这一问题被摆在了我们面前[2]。

一、生物技术药物分析的特点

生物技术药物是指采用DNA重组技术或其他新生物技术生产的治疗药物,特点是绝大多数为生物大分子性内源物质,临床使用剂量小,治疗的针对性强,治疗的生理生化机制合理,疗效可靠,毒副作用小。这类药物在生产过程中具有特殊性:(1)提取纯化工艺复杂、(2)稳定性差、(3)易变质腐败、(4)注射用药要求;因此生物技术药物在质量控制方面就必须提出更高的要求,需要理化检验指标同时还需要生物活性指标的检验。

生物技术药物质量控制的基础,一是药物质量控制常用的生物化学方法,这些方法有免疫分析法、电泳分析法和酶分析法等。二是生物药物质量控制中常用的生物化学方法,如多肽、蛋白质、酶类生物药物的生物化学分析方法。无论通过那一种方法进行质量分析,学生必须扎实的掌握生物技术药物分析的理论知识以及实际操作技术。

例如,为了保证生物技术药物的安全性,使用体外方法代替动物实验进行药物生物活性的测定;用灵敏度更高的灭活病毒验证方法等等。以上质量控制方法对分析人员的理论及实际操作都有很高的要求。为了进一步提升药品的可控性和有效性,在纯度及杂质分析方面,目前国际上经常采用的纯度分析方法包括了SDS-PAGE、等电聚焦等,还需要应用DNA分子鉴定、薄层-生物自显影技术对生物技术药物中的杂质所带来的免疫反应或过敏反应进行控制。

因此对生物技术药物进行质量分析,可以说除了需要具备高的药物分析理论素养以外,还需要掌握一些较为先进的仪器设备的原理及使用方法。如液相色谱-质谱联用技术、核磁共振技术、双相电泳技术、蛋白质的二硫键分析等。

二、加强理论教学内容

在药物分析的理论教学中应当将基础理论与发展前沿相结合,教学形式多样化。生物技术的理论与实践研究发展十分迅速,每一项新的研究都与药学有着十分密切的关系,将这些新的研究成果及时介绍给学生是十分必要的。可以采用以下两种方法,一是教师在课堂上及时给学生补充,如“PCR技术与未来药学研究的关系”,及时向学生介绍;二是给学生布置一些课外小课题,如“干扰素质量控制方法建立的目的”、“EPO的体内分析方法”等,让学生自己查阅资料,在教师的组织参与下举办课外的“分组讨论”进行交流;也可以请同学在课堂上进行汇报,教师进行指导。

此外由于生物技术的不断快速发展,在有限的时间内,尽可能让学生学习更多的知识并非易事。尤其是对于大多数制药工程专业学生来说,由于缺乏在制药企业实践接触的机会,在学习生物技术制药课程各章节内容时,显得较为抽象,而且直接书面讲授,枯燥、乏味,学生很容易对操作基本原理一知半解,理解不深刻,教学方法不灵活。并且许多尖端技术难以在实验中体现,因此需要通过理论的教学予以补充。除了在课堂中强化原理的理解,还应该辅助其他的教学手段,如动画演示、视频观摩、以及一些简单的软件模拟实验操作,以便加深印象。在授课时,采用教师自制的丰富的多媒体教学课件,结合网络课程中的虚拟实验室或动画演示实验,能够直观地展现各类生物药物分析仪器的工作原理、工作过程,在教学过程中形成理论知识与形象感受交叉互动,利于学生理解抽象的课程内容,从而使课堂气氛活跃,达到了非常满意的教学效果,在未来的实际应用中能够尽快独立工作。

三、改进实践教学内容

实践教学是学校实现培养人才目标的重要方面,它对提高学生的综合素质,培养学生的动手操作能力和动脑思考能力,使学生成为一个复合型人才具有特殊作用。实践教学能为创新教育提供良好的平台,在提高学生的综合素质方面,它起着理论课所不可替代的作用。除讲清基本理论外,应该适时地组织学生参观生物技术高新企业,了解生物药品的生产过程,对一些生物制药企业和生物药物市场进行调查研究。在实习过程中引导学生重点观察生物技术药物生产工艺及质量控制单元操作设备,使学生对此有了较深的感性认识,为后续的理论学习打下良好基础,以配合理论教学,提高教学效果。在保证学生掌握基本实验技能的前提下,适当加入一些综合性、开放性、创新性实验。尊重学生在实验教学中的主体地位,允许学生按照教学要求自行设计实验方案,充分发挥学生在实验教学中的想象力和创造力。如在生物药物的分离纯化实验中,鼓励学生自主设计分离路线,进行相关物质的纯化,大大提高学生分析问题和解决问题的能力。

为了加强学生对生物技术药物质量控制方法的体会,因此除在课程中,复习巩固生物化学中对于蛋白质、核酸、多糖、酶等药物的分析实验的基础验证性实验,在课外还可以成立“生物技术药物分析兴趣小组”对学生自己感兴趣的药物设计质量控制方法并在教师的指导下进行验证。

上述实验内容安排的特点是:①改变了传统的验证性实验,单独验证蛋白质性质(各种颜色反应)、酶的性质等,取而代之的是从蛋白质的分离纯化、鉴定及多肽的合成等一系列完整的性质、结构、功能实验;②实验内容重组调整后,综合性实验则重点介绍药学研究中常用的生物化学方法,如酶类药物的动力学分析方法,对体内药物代谢酶的分析,生物药物筛选中采用的生物化学方法等;③实验方法上,采用先与基础生物学实验,后与分子生物学实验相连接的手段,从而在实验内容和方法上力求将所学课程连贯起来,培养学生综合思维的能力。

由于生物技术的快速发展,生物技术药物已经越来越多的应用于临床,但是这一类药物的质量控制方法还存在很多的不足,造成临床使用的安全隐患。因此加强药物分析课程中生物技术方向的教学内容对培养能够适应新型药物发展的实用性人才,保证生物技术药物的安全性和有效性具有非常重要的实践意义。

参考文献

生物制药技术论文篇5

关键词:生物技术制药;教学改革

中图分类号:文献标识码;文章编号

在现代生物技术、现代信息技术、新材料技术等发展腾飞的新世纪里,在我国的生物制药领域发生了巨大变化,有了长足的发展。目前,面对日新月异的生物技术制药的发展态势,使得《生物技术制药》这门课程的内容和扩展也很快,传统的教学形式已经不能满足高校创新型人才的培养要求,生物技术制药教育体系必须实时改革[1]。本文作者根据这几年来的从教经验,谈谈几点看法。

一、生物技术制药课程特征分析

1.1优化教学体系,避免教学内容重复

生物技术制药课程作为生物技术专业的一门必修课,内容涵盖了生物化学、细胞生物学、分子生物学、药理学、细胞工程、生物材料以及化学工程等相关学科,内容较多,学科相互交叉,讲授难度较大。生物技术专业的学生在学习本课程之前已经学过了生物化学、细胞生物学、分子生物学、药理学等基础课程。但是,对于生物材料和化学工程方面的知识了解较少,而这方面知识对于整个生物制藥来讲极为重要。根据过去几年的经验,在教学过程中,我们在保证基础知识掌握的前提下,增加了生物材料和化学工程方面的内容。并及时更新教学内容,以科研带动指导教学,重视开拓学生科学视野,提高学生的科学创新意识[2]。

1.2突出学科特色,调动学生积极性

生物技术制药课程是一门综合性学科,以实验为基础,具有很强的实践性和应用性。生物技术制药领域发展迅猛,新材料和新技术的结合不断应用于这里,共同推动了生物技术制药科学理论技术的持续创新。如用于水处理的高分子树脂材料,后来却可以用于分离纯化糖类、蛋白质类等药物。近年来,许多新型药物如缓释剂、微胶囊等使用了可以生物降解的生物材料如聚乙二醇、聚乳酸、聚羟基乙酸等。这些生物材料的使用丰富了生物技术制药的内容。在通过不断介绍新的生物材料的基础上,并结合新技术在制药领域的应用,极大的激发了学生的学习兴趣。

二、生物技术制药课程教学改革分析

教学是一种艺术活动,生物技术制药课程教师应有扎实的生物科学、药物科学、化学工程等理论基础、丰富的实践经验和宽广的人文知识底蕴、熟练掌握教学基本技能,讲起课来才能收放自如,能引人入胜,获得良好的课堂教学效果。

2.1运用交叉学科分析研究问题,拓展学生科学视野

在进行《生物技术制药》教学时,既强调对基本概念的解释、理论的归纳,同时应注重各个学科之间的紧密联系,从分子生物学、药学、医学、生物材料学以及化学工程等多角度进行理论研究与分析,教授学生以生物技术制药历史发展的观点、从不同学科认识问题,使学生真正明白其中的科学道理。如在酶工程制药中对于酶的固定化教学中,笔者就融合了生物材料、分子生物学和药学等知识。酶是一大类具有特殊结构的蛋白质生物大分子,可以通过分子生物学和药学两种角度来讲授;而对于固定酶所用的明胶、聚乙烯醇等材料是生物材料课程学习的重点内容部分,如材料的理化性质、结构特征、制备、应用等。通过对酶及其负载生物材料的结构特征进行分析,从多学科角度讲授酶制药过程,加深了学生对酶工程制药的理解。

2.2充分利用多媒体教学和现代信息化技术

多媒体教学可以使抽象、枯燥的理论通过图文并茂生动地表达出来。通过部分动画演示和观看教学录像即能引起学生兴趣,又能快速理解接受理论知识。笔者在备课时访问各种电子化的课程资源库,获得直接相关的资料;课堂上给学生提供生物技术相关的学习网站如小木虫、丁香园等网站,引导学生不断学习的兴趣。充分利用现代信息化技术和多媒体教学,提高了学生教学效率[3,4]。

2.3课堂教学与实验教学相结合,激发学生学习兴趣

为了使学生充分掌握《生物技术制药》这门课程,更好地为今后的生产实践服务,为科研服务。生物技术制药实验课程设置了基础实验和综合实验[5]。与理论课同步开设了DNA的提取;细胞融合;细胞转染等实验,作为课程实验的基本环节。综合实验是为了提高学生兴趣和科学素质设置。实验过程中我们进行了生物材料壳聚糖的制备,生物酶的制备;开展了以壳聚糖负载生物酶的实验。这些实验引起了学生极大兴趣,使得在课堂上讲授的枯燥的理论在实验中变得生动而具体了,充分调动了学生的积极性,取得了较好的教学效果。

三、结语

通过上述对《生物技术制药》课程教学改革的探索,激发了学生对本门课程的学习兴趣和积极性,对于教学效果有极大的帮助。期望培养出具有视野开阔、专业素质优良、有较强实验操作能力,可以将专业理论和技术运用到实际工作中的创新性和竞争性人才,实现现代教育目标。

参考文献

[1]凌建亚,张国英,陈敏,等。基于协同创新的生物技术制药课程建设初探[J].高等理科教育,2015,5:101-104.

[2]赵卓,郭刚,吴超,等。以科研优势带动研究型教学的《生物技术制药》教学改革[J].西南师范大学学报,2014,39(8):155-157.

[3]姜海蓉,彭方毅,陈忠敏,等。制药工程专业课程体系探讨[J].时珍国医国药,2011,22(2):440-441.

[4]杨德龙,栗孟飞,李唯,生物技术制药教学改革与实践[J].生物学杂志,2015,32(2):106-109.

生物制药技术论文篇6

关键词:高新技术;中药制药领域;分析

要想促进中药生产效率的进一步提高,就需要掌握好中药生产过程中的一些技术手段,在我国的传统中药生产过程中,其技术手段可以说是相对落后的,因此文中提出了一种新的技术手段,高新技术是集合先进理论研制出来的技术之一,可以帮助制药生产朝着自动化以及规模化的方向发展,本文重点对高新技术在中药制药过程中的应用情况进行了论述,希望能够对今后的生产效率有所帮助,更好的发挥药材自身所具有的价值,促进我国中药市场规模的进一步扩大。

1 高新技术在中药制药工程中的应用与分析

1.1 泡制全浸润工艺与装备

在中药制剂生产的过程中需要经过一系列的过程,这些过程都是十分复杂的,最终才能制成饮片,但是在临床医药治疗的过程中却具有十分显著的效果。在所有的工序中,其中一个比较重要的环节是浸润工艺,这不仅是重要的工艺环节之一,同时也是最后一道工序,在这一工序中对浸润的时间提出了严格的要求,因为时间过长或者过短都会对中药的生产造成一定的影响,因此需要在这一环节中具备完善的工艺以及设备,这样就能有效的控制不同药材的浸润时间。

1.2 动态提取技术

在生产中药的过程中,提纯技术又是比较重要的一个操作技术,在当前的提取技术应用过程中,主要采用的技术方式是乙醇以及水,在此基础上加以进一步的沉降,但是因为相应的设备比较落后,这样就会造成药物具有较低的使用效率,所以要想让药物得到更加充分的提炼,将药材的价值发挥出来,就需要进一步完善相应的提取技术,在动态提取技术的应用过程中,主要是在提取的过程中加入药材,采用机械化的方式进行提炼,保证药材中的有效成分能够得到最大化的提炼与溶解,同时还能对药物的相对浓度差加以进一步的保证,有效的促进药物溶出率的提高。

1.3 仿生技术

在生物学中具有仿生技术这一技术手段,将其应用在中药制药的过程中是具有十分显著的意义的,主要是对药物在人体内的使用情况加以进一步的模拟,这样有助于将药物研究以及分子技术有机的结合在一起,经过人体消化以后进而得到合理化设计的一种制药工艺,因为酸碱环境的不同,所以中药制剂在生产环境中所要求的溶解度标准也具有一定的差异性,只有选择出最为合适的酸碱值,才能更好的实现对药物的提取,保证药物的质量,促进其价值得到有效的发挥。

1.4 生物酶技术

生物酶技术也是经常应用到的一种技术,这一技术与仿生技术具有一定的相似性,主要是在生物工程技术以及酶工程技术的基础上加以进一步融合最终形成的技术手段,可以帮助对中药进行提取,在应用这项技术的过程中,主要采用了催化剂这一方式,生物酶就是一种高效的催化剂,其具备特殊的催化作用,采用这项技术可以保证让中药的成分得到最大化的发挥,并且在中药提取完成以后,其中是含有一定杂质的,在生物酶的作用下,可以帮助将这些杂质挥发掉,促进药物的浓度更高。

2 中药制剂应用高新技术应注意的问题

2.1 理论与实践相结合研究重要处方中的重要活性成分、部位或药物配比的关系

在进行中药研制的过程中,应该进一步确定其中所蕴含的活性成分,并且对有用的部分加以更加充分的利用,这样才能研制出高效的药物。中药药剂中包含的药剂成分是十分多样化的,为了保证相互之间能够得到有效的融合,同时让各个部分以及药物都达到良好的配比关系,就需要充分的运用先进的高新技术,将药物资源的应用加以进一步拓展。我国在目前的研究工作中,主要的方向是中药药性以及药物组成方面的研究,所以在药物量效方面的研究是缺失的。因此,我们在继承和发扬我国传统中医中药理论和处方方剂的基础上,要从理论研究与实验方式相结合的方式进行发展和研究。

2.2 中药产品的内在质量和技术含量是至关重要的问题

解决这个问题的办法是要求我们完善药物提取可控制行的强制化标准。目前,我国中药制药产业中经常发生的农药超标、重金属超标问题、中药制剂的理化性质问题、当前中药产业的生产效率和质量控制等问题已经有了很大程的提高和完善,同时也极大的促进了中药制药产业的发展。但是仍然还存在着尚待解决的问题。中药制剂的质量可控的重点工作就是中药处方各中药制剂的药性如何确定、如何检测,除了采用指纹图谱技术之外还需要我们研究更为实用的新技术。农药残留问题和重金属超标问题应该从药材的种植源头抓起,中药制剂的理化性质包括溶解率、缓释等问题的改进和药物易吸湿、霉变的稳定性问题必须依靠先进的技术和可靠的设备得以改变。对于中药制剂在药性的最大化保留和药物性质的稳定问题上应尽量采用新技术和新设备进行生产,而固体制剂应该改变以往的传统的生产模式,同样应该采用高新技术和先进的生产设备,例如新制粒技术、包衣技术、固体分散技术、包合物技术、包囊技术等。此外,为了药物的物理和化学性质的稳定应该采用先进的包装技术。

2.3 应用现代检测技术控制中药质量在当前的中药制药领域中

为了提高中药制药产业的生产技术和质量控制水平,大力发展想指纹图谱技术和其他的相关控制技术是十分有必要的,在未来应采用更加先进的高新技术,例如薄层色谱、高效液相色谱、气相色谱、毛细管电泳、并与二极管阵列检测器、质谱联用等。

结束语

随着科学技术的进步和发展,未来中药制药领域的高新技术和设备的使用的频率和数量将不断的增大。中药制药领域使用高新技术不但能提高整个产业的生产效率和药物制剂的质量,而且还会大大的促进我国中药制药领域的发展和繁荣。总而言之,为了提高中药制药的整体水平,在该产业领域就必须加大对高新技术的使用率和应用的程度。随着科学技术的日新月异,我们相信,未来的中药制药领域一定会有更加先进的科学技术应用到该领域中去。

参考文献

[1]付廷明来庆发.超高分子量聚乙烯纤维的发展与应用现状浅析[J].硅谷,2011,8(05):22.

[2]徐少萍何熹.超临界流体萃取技术的应用及其发展[J].山东轻工业学院学报,2003,4(02):45.

生物制药技术论文篇7

【关键词】创新;改革;药物制剂;实践

引言

各大高校纷纷开设了医学专业,并进行了详细地划分,提供相应的设备与资金。药物制剂技术专业作为医学专业的分支学科对于医学事业的贡献也是有目共睹的。但是对于药物制剂技术专业学生的教学却存在种种问题,教育工作者总是侧重于学生的理论基础知识而忽视了其实践能力。而药物制剂技术专业是实践能力、应用能力极强的学科,需要大量的实践才能对于本专业学科的知识有所了解。要想在药物制剂技术专业有所成就就必须拥有创新精神,而创新发挥作用也必须要以药物制剂技术专业实践教学为基础。所以各大高校必须要以创新为总指挥,进行药物制剂技术专业实践课程进行改革,这样才能培养出社会所需要的人才。

一、药物制剂技术专业课程的开设

改革开放以来,中国的经济有了一定程度的提高,国际地位也逐步提高,随之我们也加大了对于科教文卫事业的投入,科技强国和教育强国将是我国未来发展的目标。而我国要想发展成为一个具有超高科技水平的国家首先必须要成为一个教育强国,教育将会源源不断地为各个领域输送人才。随着国家对于教育事业的日渐的重视,各大高校也纷纷建立,以培养人才为己任,药物制剂技术专业则以新型的专业崭露头角。药物制剂专业所从事的工作就是研制药物来解决人类身体的疾病。这是一门技术要求高、实践性强的学科,这门学科与人们息息相关,可以说这个专业的出现会促进医学事业的发展,也将为人类健康的保护神。

二、药物制剂技术专业教学中的问题

(一)由于药物制剂技术专业需要有着一定的药学知识储备,所以在药物制剂技术专业的教学过程中教育工作者和广大受教育者则对于这些基础性的药学知识极为关注,而在此同时,却忽视了药物制剂技术专业的实践性。甚至有些学生花费大量的时间和精力去熟记厚厚的医学书籍,却没有时间待在实验室进行实验。这便是药物制剂技术专业教学过程中存在的最严重的问题―实践性的忽视。我们都知道药物制剂技术专业它不是单纯地进行理论研究,而是一门与药物的研制、生产有着密切关系的技术含量极高的学科,实践的缺失会导致该学科丧失原来的学科作用,也不能为科技领域输送社会所需要的人才。

(二)药物制剂技术专业它也不是一门纯技术的学科,我们一整天待在实验室并不一定会研制出新型的药物。这门专业同时也需要一定的药学基础知识,而该专业的技术性则使得人们将更多的注意力放在实践上,从而忽视了对于基础知识的掌握和对于前人药学基础知识的学习,这会导致一切的实验都将是徒劳的。药物制剂技术专业的教学过程中缺乏创新意识的渗透,学生和老师只是纠结于前人的研究成果反复实验但不会有新的发现,所以我们必须在学习前人药学知识积累的前提下,以创新精神去引导,这样才能使得药物制剂的研究有所成效。

三、实行药物制剂技术专业实践教学改革的必要性

既然药物制剂技术专业的实践教学出现了种种问题,那么我们应该及时的解决这些问题,这些才能有好的学科建设,也能使得各大高校能够培养出社会所需要的人才。药物制剂技术专业实践教学的改革则是必须的,只有进行药物制剂技术专业实践教学的改革才能培养出既有药学理论又能基于药学理论研制出极为有效药剂的全面型人才,这也是我们当前进行素质教育的必然结果。

四、进行实践教学改革的必备宝典―创新精神

上文已经提到药物制剂技术专业实践教学的改革是非改不可了,那么药物制剂技术专业的实践教学该如何改革呢?接下来我将为大家提供一些可行性建议:

(一)在药物制剂技术专业的教学过程中,我们应该将药学基础知识和实践课程并行关注,这样才能使得药学知识能够应用到实践,也能够使得每次的实践都将是极为有效的。理论和实践的共同发力才能使得药物制剂技术专业能够培养出高质量的技术人才。

(二)我们应该以创新为动力和导向进行药物制剂技术专业实践教学的改革。需要我们需要一定的创新精神,敢于向既定的成果挑战,敢于前人没有走过的路,这样才能走好属于我们这一代人的路,也能探询到新的奥秘。

五、结束语

药物制剂技术专业作为一门独立的学科,它不同于我们所学习的人文科学,可以说它是一门技术型专业,操作性和实践性极强。在当前的各大高校里都有开设这样的专业,其原因是药物制剂技术专业与中国未来的医学事业以及人类的身体健康有着必然的联系。但是,在药物制剂技术专业的实践教学过程中存在创新精神丧失和理论知识不够充分的问题,所以我们必须要培养学生的创新精神,学生的个性就是创新的来源和可行性,以创新为导向进行药物制剂技术专业的改革才是有效的。

作者简介:马莎(1984-),女,民族:回,籍贯(省、市):云南省蒙自市,学历:硕士,职称:助教,研究方向:中药药剂学。

参考文献:

生物制药技术论文篇8

关键词:高职 生物制药技术 核心技能 课程体系

我国生物制药产业处于初级阶段,一方面,随着“十一五”规划等政策出台,生物医药行业发展迅速,高素质产业工人的需求逐年增加,市场缺口大,人才匮乏制约着行业的进一步发展;另一方面,与国外相比,我国现代生物制药业起步较晚,发展不完善,给社会提供的就业岗位有限,高职生物制药技术专业学生毕业后对口就业机会小[1][2],国家劳动部颁布的工种目录中有关生物制药的工种设置也不完善,甚至可以说没有严格意义上的现代生物制药工种。解决这一矛盾,就要求高职教育既要有“超前意识”,满足市场需求趋势,培养面向第一线的高素质现代生物制药产业工人,又要拓展生物制药技术的“内涵”,增强毕业生的就业能力与行业内转岗能力;既要服务企业,又要对毕业生的出路负责。

高教部16号文件明确提出,高等职业教育培养的是“高素质的技能型人才”,这与本科教育是不同的,高职教育的立足点是培养技能型人才,技能是高职人才的核心竞争力。本文拟结合浙江生物制药产业与高职教育的实际情况,从生物制药技术核心技能的提炼入手,探讨高职生物制药技术专业建设中遇到的一些问题,进而引出本专业的课程体系设置。

1. 核心技能

1.1 核心技能的提法

所谓技能,是指“掌握和运用专门技术的能力”,具体到本专业就是掌握和运用各项生物制药及相关技术的能力。核心技能最近提得比较多,但还没有形成一个专门的概念,这里可以理解为在各项专业技能中处于核心地位,对毕业生的职业能力养成起着至关重要作用的一项或几项技能。

1.2 核心技能的特点

生物制药技术涉及生物学、化学、生物化学、药学及相关工程学的原理与方法,专业技能多且杂,从中提炼出能作为核心技能的必须具备以下特点:

1) 代表性,要能够体现生物制药技术的特点,代表特定的生物制药工艺,核心技能的总和要能反映生物制药各项技术与工艺的总和。

2) 通用性,通用性有两方面涵义,一是要在生物制药生产中有一定的通用性,二是能作为单元操作技术,辐射相类似的其它行业工种。

3) 独立性,核心技能应相对独立、完整,平行设立,不能包含或包含于其它核心技能。

4) 对应性,核心技能应与相关的生产岗位或职业一一对应。

5) 有机性,核心技能之间应能构成一个有机的体系。

1.3 核心技能确立的意义

核心技能的确立必须建立在广泛的行业调研与专业分析的基础上,对专业定位和专业建设的开展具有重要的现实意义,它关系到高职教育培养什么样的人才、如何培养的问题。我国高等职业教育刚刚起步,以“岗位―核心技能”为着眼点来规划专业建设不失为一条“以就业为导向”的人才培养之路[3]。核心技能的“通用性”,有利于我们立足生物制药产业,拓展相关行业就业岗位,部分解决人才培养的超前性与产业发展的滞后性之间的矛盾,即毕业生出路问题;核心技能的“独立性”与“对应性”,有利于人才培养的组织实施,在有限的学制中有目的地“分方向、有专攻”,进行特长培养,满足企业人才“多样性”与“专一性”的需求;核心技能的“代表性”与“有机性”,有利于打破原有专业学科格局,以技能教学为基本单元构建课程体系,以实训为核心,走“工学结合”之路。

2. 生物制药技能分析

目前,我国生物医药产业发展方向有[4]:中草药及其有效生物活性成份的发酵生产;改造抗生素工艺技术;大力开发疫苗与酶诊断试剂;开发活性蛋白与多肽类药物;开发靶向药物,以开发肿瘤药物为重点;发展氨基酸工业和开发甾体激素;人源化的单克隆抗体的研究开发;血液替代品的研究与开发;人体基因组的研究。而生物药物的生产工艺技术可分为天然产物分离提取制药、发酵工程制药、基因工程制药、细胞工程制药、酶工程制药、蛋白质工程制药等6个部分[5]。

我们对浙江及周边地区第一线人才需求进行市场调研并作了岗位分析后发现,生物制药及相关企业中发酵车间、分离纯化相关工序车间、制剂车间、品控、化验、检验等科室部门的操作工、技术员、检验员、实验员、化验员、质量评价和质量控制(QA、QC)等岗位,以及市场与售后服务部门的销售工程师、医药购销员等岗位,部分生物医药科研型企业的实验员等岗位,有大量高职层次的人才需求。

通过与企业进一步的交流,我们发现企业对上述岗位的员工素质有明确的、务实的要求,即具有一定的生物医药行业综合素养,且熟练掌握一项技能特长与上岗岗位相适应。从另一个角度来讲,毕业生在具备一定职业素质的前提下,只要熟练掌握一项技能特长,就可以找到相应的工作岗位。这一技能特长,就是我们要从岗位职业技能中提炼出来的核心技能。

生物药物的制造过程比较复杂,跨学科、综合性强,涉及到的技能也较多,但类似于化学工程,可将各项生产工序划分为相对独立的单元操作,从而提炼出相应的岗位职业技能。同时还要考虑到,中国的高等职业教育面向的是生产、建设、销售第一线的人才需求,我们在提炼岗位职业技能时则要针对第一线的实际需求,剔除不适合高职学生掌握的,在生产第一线中极少涉及的生物制药专业技能,如基因操作等上游技能,重点整合在各生产工艺中具有共性的技能。

2.1 专业基本技能

包括基本化学实验操作技能、微生物操作技能(灭菌技术、纯培养技术)、简单生化分析技能等。该部分技能是掌握生物制药其它技能的基础,具有不可替代的重要地位,在一些实验员岗位上,亦可成为主要的岗位职业技能。

2.2 生物制药生产技能

1) 发酵生产技能

包括菌种的选育与培养技术、培养基的配制与灭菌技术、空气与管路设备灭菌技术、发酵设备与工艺控制技术、清洁生产技术等[6],是劳动部颁布工种发酵工程制药工的主要岗位职业技能。

2) 生化分离生产技能

生化分离技术较多较杂,主要包括固液分离技术、细胞破碎技术、萃取和浸取技术、沉淀技术、吸附及离子交换技术、膜分离技术、层析技术、电泳技术、结晶技术、蒸发与干燥技术等[7],是劳动部颁布工种生化药品提取工的主要岗位职业技能。

3) 细胞培养技能

随着细胞工程的快速发展,生物疫苗与人源单克隆抗体企业的兴起,细胞培养技术人员的缺口越来越大,因此,细胞培养技能可以成为高职人才培养的一个岗位职业技能方向。

2.3 分析检验技能

包括制药及相关过程中的药物分析、生物医药分析、药物检验、微生物学检验、药品包装检验等,主要技能可归纳为滴定分析技术、光谱分析技术(红外、紫外)、色谱分析技术(高效液相、气相)、微生物学检验技术等,是劳动部颁布工种药物检验工的主要岗位职业技能。

2.4 拓展技能

以管理学、营销与谈判、药事管理学、药学综合知识为基础,主要满足生产管理、医药购销等岗位需求,是由于就业面的拓展而衍生的岗位职业技能。

2.5 分析

以上各项技能(包括生物制药各项生产技能)对应相关岗位群,通用性强,适用面广,相对独立而又有机关联,几乎囊括了适合高职生物制药技术毕业生就业的所有岗位技能,组成了一个完整的专业核心技能体系。在这个技能体系当中,最核心的莫过于分析检测技能与生物制药生产技能,前者通用性最强,后者专业性最强。从专业口径与就业面的拓展分析[1][8],中药制药生产技能可以嫁接到生化提取制药技能之中,而化学制药中的分析检验岗位、食品生产中的发酵生产与检验岗位、生物化工领域则与生物制药技术有着天然的亲缘关系,生物药物的制剂生产工艺相对单一,以冻干与无菌制剂技能为要。由此可见,设立核心技能大大“拓展”了生物制药技术专业的“内涵”。

上述为生物制药技术专业的核心技能体系,然而对于个体来说,在有限的学制中完全掌握以上所有核心技能是不现实也是不必要的,这就需要在教师的指导下,结合就业意向以及个体的兴趣爱好,选取一到两项核心技能(生化分离生产技能仍需细分),进行特长培养,这也是核心技能培养模式的特色之一,即专业上的“宽口径”与个体上的“窄口径”相结合。

3. 课程体系设置

3.1 课程体系设置的思路

本科教学的课程设置是以理论课程为主导,辅以实验课程;传统的高职工科课程设置是理论与实验合开一门课,教学思路还是学科式授课。目前,高等职业教育大力倡导“能力为本”,培养技能型人才,课程体系设置也必须进行调整[9]。新的课程体系要以技能养成为核心,以实训课程为主线,建立核心技能培养模式。在实训课程的开设中更要打破原有的学科界定,以核心技能为轴来组织教学的开展,教学内容的选择上仍然要把握“适用、够用”的原则。

3.2 分段目标制的“工学交替”课程体系设置

目前,我院生物制药技术专业采取的是“2+1”的“工学交替”课程体系设置,每学期均以实训(课程)为主导,培养目标明确,辅以理论课程与专业选修课程,提升学生的综合职业素养和可持续发展能力。

第1学期,开设基本实验技能实训课程,辅以基础化学、微生物学等理论课程,使学生掌握基本化学实验操作技能与微生物操作技能。

第2学期,开设生化分析实验实训课程,辅以基础生物化学、仪器分析等理论课程,使学生掌握基本的生化物质定性、定量分析技能。

第3学期,前1个月,开设制药分析与检测技术实训课程,使学生初步掌握基本的制药过程中所涉及的分析与检测技术;后3个月,学生进生产企业岗位实训,最后1周返校完成课程设计,对岗位实训进行总结。

第4学期,开设生物制药技术实训课程,辅以相关理论课程与专业选修课程,对岗位实训中遇到的生物制药工艺的生产原理与技术(可包括发酵、生化分离、中药提取、合成制药中的生化环节、疫苗制备、制剂等)进行展开教学与实训,同时完成职业资格考证。

第5学期,前半学期以专业选修课强化学生专项专业知识,后半学期开设专项综合实训课程,实行小班授课、小组实训,实现专业内分方向、“准订单”培养、“特长培养”,同时养成学生的自主学习能力、就业后可持续发展能力与行业内转岗能力,完成“人才的组装”,即核心技能的分化养成。

第6学期,开设毕业(设计)实习课程,学生进企业完成顶岗生产实习,同时完成毕业论文。

3.3 存在问题及对策

1) 课时大幅减少下的理论课程如何开

以“倒推”的方式确立理论课程的授课内容,即从核心技能出发,确立必备的技术支撑,然后确立专业课程的授课内容,进而确立专业基础课程的授课内容,将对核心技能养成不是那么重要,或者生产实践中几乎用不上的理论知识砍掉,还可以在实践过程中遇到时现场加以讲解,甚至可以结合实训项目引导学生自学。

2) 重视技能培养的同时如何搞好素质教育

依据核心技能整合课程后课时总量大大减少,学生自主支配的课余时间增多,有利于学生综合素质的养成。此外,重点抓好专项综合实训课程,搞好毕业设计环节,培养学生的“在岗学习”能力,加强可持续发展能力,提升学生综合职业素质。

参考文献:

[1]罗合春.建设有中国特色的生物制药技术专业[J].文教资料,2006,(10):156-157.

[2]沈光涛,常灏,黄耀江.我国的生物产业状况与前景[J].生物学通报,2006.41,(10):15-17.

[3]刘南槐.论按岗培养问题[J].职业,2007,(3):22-23.

[4]雷利芳.我国生物制药业发展之我见[J].海峡药学,2007.19,(1):104-106.

[5]滑静,杨柳,张淑萍,王虹.生物工程制药研究进展[J].中国畜牧兽医,2006.33,(10):25-29.

[6]熊宗贵.发酵工艺原理[M].北京:中国医药科技出版社,2001.

[7]孙彦.生物分离工程[M].北京:化学工业出版社,2002.

推荐期刊