线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

雷击风险论文8篇

时间:2023-03-08 14:53:47

雷击风险论文

雷击风险论文篇1

【关键词】山地旅游景区;雷电灾害风险分析;评估方法

0.引言

宝天曼是国家AAAA级景区,海拔1600-1845米,以风景独特的原始森林为主,空气负氧离子极高,是旅游度假的好地方。由于雷击的选择性,高耸突出的山地旅游景区成为雷击高发区,雷电灾害严重威胁着景区内密集的游客及珍贵的古建筑等文物的安全。而且山地旅游景区面积大、地形环境复杂,雷电防护困难,没有适用的雷电防护技术规范,对其进行雷电灾害风险评估,科学判断防护等级,确定有效的防雷措施尤为重要。

目前,尚无专门针对山地旅游景区的雷电灾害风险评估技术规范和防雷对策,而广泛应用的国际电工委员会提出的评估标准IEC62305-2《雷电灾害风险管理》不能完全适用于景区内平台、缆车等场所。

本文依据IEC62305-2的评估理论、方法,结合山地旅游景区的特点,以宝天曼风景区为例分析山地旅游景区重点防护场所雷电灾害的类型及损害概率,创建山地旅游景区雷电灾害风险评估模型,为山地旅游景区雷电灾害风险评估工作提供参考。

1.雷击危险性分析

山地旅游日益成为人们休闲娱乐的重要组成方式,由于其海拔高,林木丰富,旅游旺季一般集中在4月~10月,与雷电活动频繁时间重合。山地旅游景区又由于地理因素,较周围地区具有更高的雷电活动强度及频数,一方面,由于山地地形对气流的抬升作用有利于雷云的垂直发展,同时山峰对气流的阻挡作用有利于冷暖云团间的会合,加强了雷云的局部电场;另一方面由于雷云底部相对于平原地区而言较低,增加了雷云底部大气静电场强,而山区突陡的地形、地物又增强了下垫面场强畸变度,从而导致山区的雷云对地闪击的频率比平原或小丘陵地区的地闪现象较多,进而增加了雷电灾害造成损失的程度,提高了雷电灾害风险[1]。

2.雷电灾害风险分析

山地旅游景区由于地域广阔、地形地貌复杂、岩石等地表面泄流能力差等特点,导致其安装雷电防护装置困难、抵御雷电灾害能力差。对近年来山地旅游景区雷击事故进行分析、总结,山峰观景平台、缆车、古文物等处成为山地旅游景区雷灾高发场所,而景区栈道、停车场等处也由于面积广阔、地形复杂、无建筑物保护,有雷电直击危险[2]。

雷电灾害风险是指特定雷电灾害对象受到雷击时可能造成的潜在损失。雷电灾害风险评估分析、计算均以基本方程R=NPL=∑R=∑NPL为基础。

年预计雷击次数N主要取决于当地雷电环境及评估对象等效截收面积、位置因子,由于山地旅游景区本身即为高耸突出物,环境复杂,且主要景点往往位于山峰处,一般不会受周围更高物体影响,截收面积计算不考虑位置因子。

雷电灾害的损失概率P主要考虑接触电压、跨步电压伤害概率;直接雷击概率;电气电子系统失效概率,雷击损害概率主要与所采取的防护措施有关。

间接损失L主要考虑人员的密集程度及处于危险地点的时间,所采取的安防、消防措施,地质条件等[3]。

3.风险计算、分析

风险计算围绕年预计雷击次数、雷击概率、可能损失三个基本因子展开,在分析各基本因子主要影响因素的基础上确定各因子取值范围及取值方法。

在确定影响因子的基础上,计算各风险分量,之后将风险计算结果同风险允许值进行比较,判断是否需要增加雷电防护措施。风险允许值一般参照标准IEC62305-2中规定的经验值,特殊环境可与相关部门协商决定,本文选取宝天曼风景区望月台、陶公台观景平台人员生命损失风险、停车广场经济损失风险计算为例,介绍山地旅游景区雷电灾害风险评估方法和思路。

3.1雷击大地密度

4.总结

进行山地旅游景区雷电灾害风险评估时,应因地制宜的充分考虑该景区不同场所损失类型,计算时,宜根据山地特殊性,考虑不同的风险分量损害类型和损失结果的影响因素,对各影响因子进行分析,科学确定各评估因子。由于山地旅游景区地理、地形的复杂性,建筑物雷电灾害风险评估方法尚不完善。 [科]

【参考文献】

[1]李良福.山区雷电活动规律研究[A].第五界中国国际防雷论坛论文摘编[C].2006:72-74.

[2]舒国勇,黄红,晏理华[J].气象与环境科学.2011年11月5日贵州梵净山强雷电特征及天气成因分析,2013,(1):65-70.

雷击风险论文篇2

本文对于海上风电工程的雷击风险评估,主要依据IEC提出的标准进行分析,通过对然灾害风险管理模型的分析,结合本研究防雷措施研究部分提出的各项防雷措施,引入雷击风险评估模型,并讨论雷击风险评估中需要考虑的各种风险评估因子,分析海上风电机组遭受雷击的各种情况,并归纳到各种影响因子中,从而确定风电机组遭受雷击的风险评估模型,对各种风险因子确定概率值,并进行风险计算,确定各项防雷措施的有效性和必要性。

【关键词】

海上风电;雷击;风险管理

1引言

风力发电是一种绿色能源,得到了政府的大力支持,近几年来在我过也取得了迅速的发展,在我国西北及沿海的部分地区,都建成了大规模的风电工程,海上风电因为其得天独厚的优势,在近几年来也得到了迅猛的发展。然而,由于自然条件的原因,世界各国风力发电系统均存在雷害问题,根据一项统计显示,每年有8%的风力涡轮发电机会遭受一次直击雷击,风电发展至今,风力涡轮发电机遭受雷击损害的事件仍然层出不穷;海上风电工程往往所处环境更加恶劣,风电机组遭受雷击的概率更高,损失也更为严重[1~2]。所以,研究海上风电工程的雷击防护问题,具有颇为重要的意义,而风电机组的雷击风险评估问题,解决的是在海上风电项目设计阶段防雷措施在项目投资中所占比重的大小,是支撑风电机组防雷技术研究的策略性问题,它能够给出一个风电场以及每台机组在当地遭受雷击风险的大小,根据这个风险值,设计者可以考虑相应的防雷措施。

2雷击风险评估及其管理概述

2.1雷击风险评估风险评估是指为了评估风险而对特定风险做评价与估算的一个过程。雷击风险评估是根据己掌握的统计资料,对与雷击风险相关联损失的可能性及损失程度定量化的统计计算和分析研究,确定损失发生的概率及严重程度,确定种种潜在损失可能对经济单位、个人或家庭造成的影响。

2.2风险管理风险管理最早起源于20世纪20年代,在风险管理发展过程中,形成了许多较为成熟全面的定义,如美国学者威廉斯和汉斯就认为“风险管理是通过对风险的识别、衡量和控制,以最少的成本将风险导致的各种不利后果减少到最低限度的科学管理方法”。

2.3雷击灾害风险管理雷电灾害是风险事件的一种,雷电灾害的风险特征与一般的企业的风险特征有很多相似的地方,因此,现代企业风险管理的某些理论、方法可以应用到雷电灾害的风险管理工作中来。

3珠海桂山海上风电场雷击风险评估

3.1风电厂厂址条件珠海桂山海上风电场位于珠海市桂山岛西侧海域,实际用海面积约33km2,水深约6~12m,装机容量为198MW。第一批风电机组为单机容量为3MW级(3~4MW),总容量约为100MW(不少于100MW)的并网型海上风力发电机组,偏差不超过1台机组。风电场在三角岛建设升压站1座,通过2回110kV海底电缆与珠海陆域连接。珠海位于广东省珠江口的西南部,地势平缓,倚山临海,海域辽阔,百岛蹲伏,属亚热带海洋性气候,常受南亚热带季风影响,多雷雨,其中4~8月雨量集中,占全年降雨量的7成以上,近年来平均雷暴日数为62d。

3.2海上风电雷击风险评估计算步骤

3.2.1风险评估步骤风险评估流程图如图1。对于雷击涉及人员生命损失、公众服务损失或文化遗产损失,表1给出了具有代表性的风险容许值的RT。

3.2.2雷击大地密度的计算雷击大地密度(Ng)是进行雷击风险评估的重要参数之一。计算公式为:Ng=D/SD———某地区一年中的地闪次数(次/a);S———该地区的面积(km2)。根据目前的技术水平和条件,D和S都可以得到较为精确的数值,所以用D和S去计算得到的Ng值,通过查阅相关资料得到Ng=5。将用上面两种方法计算得到的Ng带入时序多指标决策下TOPSIS中的时间权重法公式。

3.2.3风电机组雷击频率评估风机年平均遭受的直击雷频率可由下式估算:电机附近没有其他物体时适合取Cd=1,在山地或山坡上安装时适合取Cd=2,位于特别潮湿的环境下适合取Cd=1.5。按照IEC61400-24的原则,所以风机的有效截收面积为。

3.2.力发电机可以接受的雷击频率根据IEC61024-1-1标准阐述的原则,可以接受的的雷击危险事件数Nc与直接雷击Nd及防雷系统效率E应遵循以下关系。一般原则,引下线的直径越大防雷系统越有效,接地系统越大防雷系统越有效。本工程中,风机位于海上,取Cd=1.5,风机的有效高度取h=90+55=145m,该地区雷击大地密度Ng=5.6。按照我国工程标准,针对本次工程中的实际情况进行分析,取Nc=10-3。因此,对于处于此环境下的海上风电机组,需要安装一个效率为99.98%雷电防护等级为Ⅰ级的防雷防护系统(LPS)。

3.3用模糊概率方法计算单台风电机组的雷击风险根据之前的分析,要求雷击风险R:在影响因子不确定的情况下,用以下模糊概率方式表达:3.4防雷措施安装效果评估从R1的计算过程和结果得到如下结论:分析R1的计算结果可以看出,风险R1主要受以下因素影响:内部系统失效产生的风险区域Z2中物理损坏产生的风险与入户线路上感应出的并传导进入建筑物内的过电压引起内部系统失效有关的风险评估过程中,由于风机没有采取防雷保护系统,对于线路也没有装设很好的屏蔽装置,因此计算结果R1≈62.06×10-5,大于容许值RT=10-5,需要对风电机组和线路进行防雷保护。对计算结果进行分析后采取以下防护方案:风机安装I类LPS;电力系统和控制系统安装I级的SPD保护装置,达到PSPD=0.01;Z2区安装自动火灾探测系统;风机和线路均安装屏蔽装置;采用本方案后,部分参数有所变化,各类损害概率如表3~4。由计算结果可知,当机组和升压站采取了高等级的防雷防护系统后,上述各因素造成的风险分量得到有效地抑制,根据最终计算得到的R1≈0.73×10-5,小于容许值RT=10-5,即雷击风险低于容许值,可知当风电机组安装一个雷电防护等级为Ⅰ级的防雷防护系统(LPS),即使处于多雷区(Td=62d)防雷保护系统依然能够可靠有效地防护雷击可能造成的各类风险,保护机组的正常工作。

4结束语

本次雷击风险评估计算过程中,对于各项参数的选取均参考实际海上风电工程中的实际环境和条件,结合IEC62305中规定得到,并根据规定中的方法进行计算得到结果。由于雷击的各种不确定性如雷击点的随机性、雷击是否造成损失以及损失大小均无法作出精确的判断等等原因,对于雷击灾害风险的评估,只能作出大概的判断而无法针对其有详尽的研究。由计算结果可知,由于风机所处环境遭受雷击概率较高,且遭受雷击后损失较大,针对机组和升压站需要配备I级的防雷防护系统,对机组和机组内部的各种设施以及升压站内部设施和布线均需要安装良好的屏蔽设施,对电力线路还需要配置性能良好的SPD,否则,雷击对于机组和风电场将产生远高于IEC规定的风险值,此外,各类防火措施也不容忽视,在有人员工作的区域需要采取良好的防触电保护措施。

参考文献

[1]孟德东.风电机组雷雷击损害风险评估方法研究[D].华北电力大学,2009.

[2]陈青山,等.汕头南澳风力发电场雷电环境分析和防雷技术研究[J].中国雷电与防护,2005,2.

雷击风险论文篇3

关键词:雷击;风险评估;评估技术;探究

中分类号:U652.5文献标识码:A

引 言

青海省海西州气象局是国家设立的一个事业单位性质的气象局,其工作涉及范围非常的广泛,为青海省人民的生活提供了保障。在海西州行政区域内组织对重大灾害性天气跨地区、跨部门的联合监测、预报工作,及时提出气象灾害防御措施,并对重大气象灾害做出评估,为海西州人民政府组织防御气象灾害提供决策依据。总之,青海省海西州气象局对于青海省天气的详细研究对于当地民众的生产生活都产生了深刻的积极影响。

一、雷击风险评估技术现状

(一)雷击风险评估技术的发展应用

进入21世纪后,科学技术发展的非常迅猛,进而带动了一系列的科技的发展,其中对于作为研究各种天气状况的青海省海西州气象局来说,研究雷击风险评估对于提前防范和认识雷击的严重后果具有重大的意义。当然,雷击风险评估是认识和评价雷击风险最有效和最适当的方法之一,所以说雷击风险评估技术也就显的更加的重要了。好的雷击风险评估技术对于雷电天气所造成的影响和灾害来说有着非常重要的意义,能够将一次雷电天气所造成的影响准确的分析出来,进而避免造成进一步的危害。雷击风险评估技术的发展应用经历了很长的时间,对于青海省的雷电天气来说,雷击风险评估技术就非常的适用青海省海西州气象局。由于青海省的海拔普遍比较高,所以也就更容易产生雷电天气,雷击的可能性也是更加的大,所以采用先进的雷击风险评估技术对于雷电天气产生的影响来说也是非常的重要的,不仅仅对民众的生产生活产生的积极影响。

对于雷击风险评估技术的发展应用来说,先进的雷击风险评估技术往往能够带动雷击风险评估的最大科学化,另一方面科学化的雷击风险评估才是当今社会雷击风险评估技术的主流,因为科学化的雷击风险评估无论对于雷击风险评估的质量还是造成的影响来说都是非常重要的。下面我将通过一张图表针对雷击风险评估技术的发展应用进行详细的说明分析,并通过对比先进的雷击风险评估技术和一般的雷击风险评估技术,这样才能达到雷击风险评估的最优化效果,如下图表所示:

(二)雷击风险评估技术的特征分析

雷击风险评估技术的特征分析对于雷击风险评估来说同样不可或缺的,雷击风险评估技术的特征分析对于雷击风险的评估同样是非常重要的。雷击一般是伴随着暴雨天气一同形成的,所以雷击风险评估需要考虑到暴雨天气的影响因素。暴雨天气一般是降水量非常的巨大,还会伴随着雷击和闪电的发生,所以对于雷击风险评估来说,其特征分析需要对暴雨天气的特征分析规划在内,那么我将通过不同的方面针对雷击风险评估技术的特征进行详细的分析。首先是雷击发生时的天气因素分析,一般雷击的产生是电荷间的相互作用,所以这个方面的因素需要认真的考虑。其次是雷击产生时的能量释放因素,这个就比较复杂了,不同的条件下产生雷击的能量释放大小也不同,有些雷击释放的能量非常的大,所以我们会听到很大的雷声,这些能量就通过声音的形式释放出来的。

在探究了雷击风险评估技术的特征后,气象站的工作人员会根据雷击的具体情况采取不同的措施进行各方面的评估探究。对于青海省的天气状况来说,由于青海省的特殊地理条件,海拔比较高气候条件恶劣,所以往往雷电更加能对当地的民众造成一定的伤害和影响。另外,在人口稠密的平原地区,雷电灾害会对这些地区的经济发展和人民的生活造成一定的影响,所以对于高原地区和平原地区的雷电灾害都要进行系统仔细的研究,只有这样才能够真正的了解雷电灾害发生的机理,才能够对雷击风险的评估技术特征分析的够透彻,进而可以得到有关雷电灾害的最新消息。总之,对于雷击风险评估技术的特征来说,需要气象站对于不同的雷电灾害做充分深入的研究,这样才能得出最可靠的雷击风险评估结果。

二、雷击风险评估技术的探讨

在雷击风险评估技术的探讨中需要对雷击风险评估的方法进行充分综合的探究。那么对于雷击风险评估方法的综合应用探究来说,需要掌握雷击风险评估技术的基本方法,这些方法对于气象站的工作人员来说都是必须掌握的。在对雷击风险评估技术的探讨中,评估的技术非常重要,气象站往往需要掌握最新的评估技术才能够在雷击风险评估中占据绝对优势,才能对雷击风险评估做出合理科学的探讨。气象站在雷击风险评估技术的探讨中,需要针对具体的情况做一些针对性的实验模拟,这些模拟实验对于工作人员研究雷击风险评估技术会有很大的帮助作用。在雷击风险评估技术的探讨中,科研人员会根据不同种类的气候条件下的雷电灾害进行讨论,这样更加有助于工作人员对雷击风险评估技术进行深入的探讨。

三、结语

本文通过对雷击风险评估技术的探讨做了具体详细的概述说明,通过青海省海西州气象局的相关监测和数据支持对未来的青海省天气状况都有了一些详细的了解,对于及时的掌握青海省的天气状况有着积极的影响。其次,对于雷击风险评估技术的探讨对于全国各地区共同对抗雷电灾害也有一定的启示作用。

参考文献;

[1] 李兴龙,丁新亚.Excel在建筑物雷击风险评估计算中的应用[J].建筑电气.2007年12期.

雷击风险论文篇4

以电网遭受雷害多影响因子作为研究重点,采用层次分析与模糊数学相结合理论,对高压电网展开雷害风险评估研究。以某地500kV高压电网为工程背景,以雷击跳闸率、雷击重合闸率、手动强送成功率、供电可靠性、线路重要性等级、运行时间、设备损害性指标为评估电网雷害风险的分析因子,将该地电网雷害风险等级定为Ⅲ级中等雷害风险,并对此提出针对性的防雷措施,以给工程实际提供指导与借鉴。

关键词:

电网雷害;风险评估;层次分析法;模糊数学理论;防雷措施

近些年来,随着国民经济的迅速发展与电力需求的不断增长,对输电线路供电可靠性的要求越来越高,电力生产的安全问题也越来越突出。对于输电线路来讲,雷击跳闸一直是影响高压送电线路供电可靠性的重要因素[1-2]。而大气雷电活动的随机性和复杂性,造成架空线路的雷击跳闸成为困扰安全供电的一个难题。尽管国家电网取得了快速的发展,但是相应的电网安全问题也开始越发突出,其中雷电灾害作为无法避免的外部灾害,给电网的安全运营带来了很大的风险。通常情况下,由于变电站安设有直击雷防护装置而使得雷电灾害对变电站的影响有限,其影响主要集中在高压输电线路。

架空输电线路防雷是电力系统防雷工作的重要方面,常用的防雷改进措施有[3]:架设避雷线、安装避雷针、加强线路绝缘、采用差绝缘方式、升高避雷线减小保护角、装设消雷器及预放电棒与负角保护针、使用接地降阻剂等。解决线路的雷害问题,要从实际出发因地制宜,综合治理。

通常而言,雷电灾害轻则造成输电线路同一输电通道多回线路相继跳闸、同塔双回线路同时闪络等故障,重则造成长时间电力供应中断甚至永久性故障。目前,对于高压输电线路遭受雷害的风险研究[4],相关学者及机构仅以雷击跳闸率作为高压输电线路遭受雷害的评价指标,这是不合理的,因为尽管雷击引起的线路跳闸次数较多,但因重合闸成功率较高,其占非计划停运比例要比其占跳闸比例低。此外,输电线路的雷电灾害影响因子不是单一的,它除了受雷击跳闸率控制,还与输电线路雷电活动强度、地闪密度、线路走廊雷电活动频率、地形地貌、输电线路对电网重要性程度等因子有关,需要考虑多因素影响结果[5]。因此,本文从电网遭受雷害的多影响因子作为出发点,采用层次分析与模糊数学相结合的理论,对其展开风险评估研究,并对此提出防雷措施,以给工程实际提供指导与借鉴。

1理论方法

1.1层次分析法20世纪70年代初,美国学者SattyT.L.提出了层次分析法[6],它是一种层次权重决策分析方法,该方法基于网络系统理论和多目标综合评价,能够将定量分析与定性分析相结合,对多目标、复杂问题展开准确的决策。层次分析总的来说包含4个步骤:建立层次结构模型、构造两两比较的判断矩阵、层次单排序及一致性检验、层次总排序及一致性检验。

1.2模糊数学法模糊数学又称Fuzzy数学,是研究和处理模糊性现象的一种数学理论和方法,1965年,模糊数学开始得到快速发展[7]。模糊数学法首先要求给出电网雷害影响因素集合U及雷害风险发生级别集合V,U中每一个单因素对应雷害风险级别V的模糊子集为单因素模糊矩阵R,再根据每个因素对目标贡献程度,得到权重矩阵A,最后对矩阵R进行关于A的模糊变换,得到目标事物的评判集B。

1.3综合评价层次分析的优点是能够定量地得到定性的因素的权重值,再结合模糊数学理论,才能够综合计算出要分析对象的结果。基于层次分析-模糊数学综合评价,首先要确定各层次各因素两两之间的权重。为避免对权重定性赋值带来的失准,SattyT.L.提出了一致判断矩阵法,该方法采用1~9标度法的相对尺度,以提高准确度,当一致性比率小于0.1时,认为能够得到满意的一致性[8]。

2电网雷害多影响因子分析

输电线路是电力系统的最重要的组成部分,由于它暴露在复杂多变的自然环境里面,因此很容易且无法避免受到外界环境的影响和损害,尤其是当雷雨天气发生时,输电线路易于遭受雷击,并发生停电事故。因此,要进行电网雷害研究,首先要确定影响电网雷害的因素有哪些。电网遭受雷害的影响因子不是单一的,也不是几个因子单独发生作用,而是多个因子发生耦合作用。根据目前国内外的研究成果[9-10],评估电网雷害风险的因子主要有雷击跳闸率、雷击重合闸率、手动强送成功率、供电可靠性、线路重要性等级、运行时间、设备损害性指标。据此,建立电网雷害多因子层次结构示意图,结构为:A为目标层,即:电网雷害风险;B为准则层,具体为B1(供电可靠性)、B2(运行时间)、B3(重要性等级)、B4(设备损害性);C为方案层,即:各个线路,具体为C1(线路1)、C2(线路2)…Cn(线路n)。层次结构示意图见图1。

3工程实例分析

3.1工程概况我国南方某地区500kV电网含有3条输电线路D、E、F,现以该地区这3条输电线路2007—2012年的实测数据,来分析预测该地区的雷害风险等级。3条输电线路的准则层实测数据占比如表1所示(以1为基数)。

3.2综合分析

3.2.1层次分析结构根据电网雷害多因子分析结果,结合应用实例表1数据,在Yaahp层次分析软件建立电网雷害风险等级的层次结构模型,层次结构模型如图2所示。对于层次结构模型中的电网雷害风险等级,本文划分为4个级别:Ⅰ级无风险、Ⅱ级低风险、Ⅲ级中等风险、Ⅳ级高风险。

3.2.2一致性检验矩阵在层次结构模型的基础上,结合1~9标度类型及专家系统意见,赋予B1~B4、C1~C3相应的权重分值,最终得到A-B、B1-C、B2-C、B3-C、B4-C5个判断矩阵。

3.2.3计算权重在矩阵判断一致性检验的基础上,进一步计算A-B、B-C排序的单排序权重值及6个因素的总排序权重值,权重计算结果如表2所示。把表2中的权重值用向量的形式表示,即得权重矩阵:A[0.475299,0.257689,0.267112]。

3.2.4隶属函数和模糊矩阵就每个雷害影响因素进行统计与分析,每个因素对应的不同雷害级别为一个隶属函数。本文定义该隶属函数为降半阶梯分布函数,取阶次k=1。分布函数的方程。3.2.5综合评判根据上述计算,现对模糊矩阵R进行关于权重矩阵A的模糊变换,最终得到目标事物的最终评判集B。根据模糊数学中的贴近度原理,所得到的评判集B=[B1,B2,B3,B4]=[Ⅰ,Ⅱ,Ⅲ,Ⅳ级雷害风险],其中最大隶属度Bi所在的位置即对应目标的最终评判级别。因此,该地区电网的最大隶属度为B3=0.902=Ⅲ级中等雷害风险,需要采取相应防雷害措施。

4输电线路的雷害原因分析

输电线路雷击闪电是由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿[11]。这种过电压可分为直击雷过电压和感应雷过电压。输电线路感应雷过电压最大可达到400kV左右,它对35kV及以下线路绝缘威胁很大,但对于110kV及以上线路绝缘威胁较小[12]。110kV及以上输电线路雷击故障多由直击雷引起,并且同接地装置的完好性有直接的关系。直击雷又分为反击和绕击,都严重危害线路安全运行。反击雷过电压是雷击杆顶或避雷线出现的雷过电压,主要与绝缘强度和杆塔接地电阻有关,一般发生在绝缘弱相,无固定闪络相别。绕击雷过电压是雷电绕过避雷线直接击中导线而出现的雷过电压,主要与雷电流幅值、线路防雷保护方式、杆塔高度、特殊地形有关,主要发生在两边相。

5电网线路防雷措施

结合目前我国输电线路的电压等级、我国各地雷电活动的规律、线路所经区域的不同地形、地貌特点、土壤电阻率等自然条件,目前常用的防雷保护措施主要有以下几种[13-15]。(1)架设避雷线避雷线能够对雷电产生分流作用,降低杆塔顶端电位,同时,其对导线有耦合作用,对导线有屏蔽作用,它是高压及超高压输电线路基本的防雷手段。(2)改善接地网形式由于接地装置的接地电阻大小是防止雷击闪络的关键,因此可以通过改善接地网形式,降低杆塔的接地电阻值,对杆塔降低接地装置的工频接地电阻,是提高线路耐雷水平、防止雷电波反击的有效措施。(3)架设耦合地线架设耦合地线无法减少雷电绕击率,但其能够通过增加避雷线与导线间的耦合作用,来降低绝缘子串上电压,达到分流雷电流的目的,进而增加输电线路的耐雷水平。(4)适当提高杆塔的绝缘水平提高杆塔的绝缘水平,能够对防止绕击起到一定的作用,也能对防止雷击杆塔顶部的反击过电压产生效果。(5)采用不平衡绝缘方式当普通的防雷措施不能满足现代高压及超高压线路的防雷要求时,可以通过采用不平衡绝缘方式,以避免双回线路在遭受雷击时同时跳闸。(6)装设避雷器避雷线的架设在一定程度上降低了导线上的感应过电压,但不是完全消除,这就要求安装避雷器来将雷电流泄放到大地,从而限制过电压,保障输电线路及设备的安全。一般在线路交叉处、高度较高的杆塔顶端、终端塔上装设避雷器以限制过电压。

6结语

电网雷害尽管是小概率事件,但其具有随机性强,一旦发生损失大的特点,而输电线路的雷电灾害影响又是受诸如雷击跳闸率、雷电活动强度、地闪密度、线路走廊雷电活动频率、地形地貌、输电线路对电网重要性程度等多因子控制,因此在实际电网雷害风险评估中,需要考虑多因素耦合作用的结果。此外,还应结合高压输电线路运行经验以及系统运行方式,通过比较选取合理的防雷设计,以提高高压输电线路的耐雷水平。

参考文献

[1]赵淳,陈家宏,王剑,等.电网雷害风险评估技术研究[J].高电压技术,2011,37(12):3012-3021.

[2]马御棠,王磊,马仪,等.云南电网雷害风险分布图的绘制与应用[J].高压电器,2013,49(4):76-81.

[3]程宏波,何正友,胡海涛,等.高速铁路牵引供电系统雷电灾害风险评估及预警[J].铁道学报,2013,35(5):21-26.

[4]崔雪.用电负荷管理系统终端设备雷害风险评估[D].上海:上海交通大学,2009.

[5]张晓明,吴焯军,甘艳,等.一种基于改进层次分析法的输电线路雷害风险评估模型[J].电力建设,2012,33(8):35-39.

[6]赵焕臣.层次分析法[M].北京:科学出版社,1986.

[7]杨纶标,高英仪.模糊数学原理及应用[M].广州:华南理工大学出版社,2004.

[8]孙雷雷,王小霖,龚学毅.基于雷电定位数据的广州白云机场10kV配网雷击风险评估[J].电网与清洁能源,2014,30(3):40-47.

[9]赵淳,阮江军,李晓岚,等.输电线路综合防雷措施技术经济性评估[J].高电压技术,2011,37(2):290-297.

[10]李振,余占清,何金良,等.线路避雷器改善同塔多回线路防雷性能的分析[J].高电压技术,2011,37(12):3120-3128.

[11]方宏,周青.高压架空输电线路防雷措施的研究与实践[J].南京工程学院学报(自然科学版),2011,9(3):61-66.

[12]孙禔,孙鹏.湖北省高压输电线路防雷现状及综合防雷措施[J].中国电力,2006,39(2):35-38.

[13]莫付江,陈允平,阮江军.输电线路杆塔模型与防雷性能计算研究[J].电网技术,2004,28(21):80-84.

[14]高峰,周利军,曹晓斌,等.直流输电线路防雷侧针防护效果研究[J].电瓷避雷器,2012(6):56-61.

雷击风险论文篇5

关键词:勘察工作 前期勘察 雷击灾害风险 风险评估

中图分类号:P413 文献标识码:A 文章编号:1674-098X(2013)01(b)-0-01

雷击防护是一项系统工程,涉及建筑、电子信息等多个领域的知识,由于人才的缺乏,很多从事防雷击工程设计的人员往往在这方面却较为缺乏,对防雷减灾工作带来了一定的影响。由于以往对雷击灾害风险评估工作重视不够,导致工程项目在防雷装置设计和施工中受到较大影响,甚至造成严重的雷击事故,因此,加强对雷击风险评估工作的重视程度,科学合理的开展好雷击风险评估工作意义重大。

1 雷击灾害风险评估前期勘察工作的意义

雷击灾害风险评估工作是雷击风险管理的重要环节,为雷击风险管理工作提供必要的基础,也是进行防雷工程设计和施工的依据。根据中国气象局8号令和11号令的要求,雷击风险评估是一项不可或缺的基础性工程,雷击灾害评估的根本目的是对雷击产生的直接或间接的建筑物损害程度和遭到雷击的风险因子进行科学的评估,包括防雷工程的规划、设计,对现场的地质情况及气候条件等环境进行必要的勘察和测绘,为风险评估工作的顺利开展提供真实的、准确的依据。高质量的雷击灾害风险前期勘察报告,能够为防雷工程提供准确的参考,保证各项工程的安全性和可靠性。

2 防雷工程前期勘察的内容

2.1 勘察收集防护区域的基本资料

在资料中,包括勘察建筑物的地理、地质、土壤、气象、环境等条件和雷电活动规律,以及被保护建筑的特点等,通过这些资料能够真实、全面的反映出建筑物周边的环境特点。这些资料可以由被评估单位提供,如果提供的资料不充分、不全面,也可以向当地相关部门进行原始资料的查询和收集。具体应当包括:建筑的总平面图、地形、地貌、交通情况、地物状况以及雷电活动状况等。

2.2 施工区域的地质资料

在不同的地区有着不同的地质地形,这也是决定接地工程难度的重要因素,同时也对雷击概率有着较大的影响,因此要有详细的地质资料作为依据。第一,应当对施工现场的土质、岩石的成分比例、周围是否存在金属矿等进行勘察,第二,对于施工区域周围的土壤电阻率进行勘测,如果测量获得的数值较大,则要考虑对测量的范围进行适当的扩展,这样便能够对周围土壤的导电能力有更为全面的了解。第三,通过对于使用年限较长、接地稳定性要求高的工程(如埋地油罐)还应测量土壤酸碱性。第四,对该施工地点曾经是否有过雷击事故进行了解,对发生雷击事故的原因进行分析,做好记录,为防护工作提供参考。

2.3 被保护对象的资料

第一,要了解被保护对象的用途,是作为居住,或者生产,或者是存储,如果不是居住,则要了解具体的生产和存储的物品特性,从生产设备到工艺流程,从存储的原料到商品的成品,都应当有详细的了解,只有这样才能保证防雷工程体现出更强的针对性和可靠性。当存储的物品带有一定危险性时,则需要按照不同的防雷级别做好相应的防静电措施。雷击风险灾害的评估工作也需要根据不同的保护对象来实现对防雷级别的划分,而且需要根据被保护对象的具置分布以及体积大小来确定详细的数据,对其周围的建筑物高度和防雷设备的安装等问题也要有全面的了解,只有保证相关资料的完整性才能够保证数据信息的全面性和准确性。

第二,对建筑物本身的楼层高度以及本身的电子信息设备的安装情况进行了解。当前的建筑物中使用了大量的电子信息系统设备,而且有着十分广泛的分布,这些设备的分布状况与雷电电磁脉冲防护设计有着密切的关系,其是确定SPD种类、数量以及安装位置的重要依据。同时需要根据屋面保护设备的分布情况来确定避雷针和避雷带的数量和安装高度。

第三,了解工程相关的设备和人员分布的详细情况,对现场的管道、通信电缆、电力线路的埋设位置、深度、走向等有准确的把握。

3 撰写雷击灾害风险评估报告

雷击灾害风险评估报告是利用勘察中取得数据和资料通过存在各风险因子的估算进行归纳分析得出的雷击风险报告,是防雷工程设计和施工的重要依据。对于雷击灾害风险评估报告来说,不仅要保证其数据信息的真实性和完整性,同时也应当具备相应的工程资料,以此来保证其内容的完整性。

在雷击灾害风险评估报告中包含以下基本内容:被评估的防雷工程的概况;该评估区域内的地质条件、大气环境以及雷电分布的特点等,同时也应当包括当地的社会环境和服务设施等全面的描述;在勘察工作进行过程中所涉及到的评估标准和依据;雷电截收面积、雷击次数以及对雷击风险评估计算的数值;不同数据的记录和汇总信息,以及勘察工作的最终结论。

4 结语

雷击灾害风险评估是防雷减灾工作的一个重要组成部分,是否能够获得科学、准确的雷击风险数据对于防雷装置设计、施工都有着十分重要的影响。

因此雷击灾害风险评估前的勘察工作,必须做到认真、细致,勘察内容全面,勘察数据真实,为防雷减灾系统工作中的设计与施工提供科学依据。

参考文献

[1] 刘杰,朱云凤,田芳,等.浅析雷击灾害风险评估工作存在的问题及建议[C]//2011年第二十八届中国气象学会年会.2011.

[2] 邓春,林季,严飞,等.基于雷电定位数据的区域雷击灾害风险评估方法探讨[J].南京信息工程大学学报,2010

(3).

[3] 谢海华,曾山泊,肖稳安.电子信息系统雷灾风险评估方法[J].气象科学,2006(3).

雷击风险论文篇6

[关键词]雷击自然灾害;风险评估;必要性;重要性

[中图分类号]TU856 [文献标识码]A [文章编号]1672-5158(2013)06-0415-01

一、雷电自然灾害概况

近年来人类社会与自然界之间的矛盾愈加尖锐,各种极端天气也频频发生,例如持续暴雪干旱,全球气候变暖等,自然灾害以其不可抗力已成为我们研究的课题。常见的自然灾害有雷电、地震、火山喷发、泥石流、海啸和台风等,其中气象灾害因为在我国种类多,发生频率高给经济活动和人民生活造成了不小的经济损失。迈入信息时代之后,电子电器日渐普及,雷电灾害一旦发生不仅会使电子器件瘫痪而且还会使依赖电子信息等的工作中断,例如使飞机航线和火车停运,通讯和计算机系统短路,在油田和炼油厂这个危险高发地还会造成爆炸和火灾,甚至是扰乱军队作战,人类一旦遭遇雷击还会有生命危险,对于雷电造成的人员财产损害时有发生,因此它被列为除台风和暴雨外危险性最高的气象灾害。我们如果能科学安装避雷设备,同时采取有效工作对雷电进行预测那势必会对防灾减灾产生积极的影响和作用。

二、开展雷击风险评估工作的必要性

(一)城市发展的必要性。城市化脚步的不断推进,城市面积不断扩大,各种钢筋混凝土建筑拔地而起,高楼大厦一方面是现代都市的标志另一方面也给自然灾害提供了“可乘之机”,为什么这样说呢,昕了下面的陈述相信你会明了。为了节省空间很多建筑物都是用金属管道和线路相连的整体布局,即使是有避雷针也只是不堪一击的,但雷电是可以无孔不入的,他们可以透过金属管和线路以电波的形式扩展到相关联的一个区域,直接对电器和人身造成危害,让人防不胜防。为此一个综合全面应对雷电的防护体系亟待建立,以适应不断变化的雷电灾害形式,综上所述开展的雷击风险评估也正是为适应当代的防雷工程而应运而生的,这一体系能对雷电风险和成因及防护措施进行更加直观科学的分析和评价。

(二)法律法规和政策导向的必要性。由于气象灾害在我们国家造成的损失较大,所以在很近以前立法机关已经制定了关于气象灾害相关的法律法规,例如以《中华人民共和国气象法》的为首的《气象灾害防御条例》、《防雷减灾管理办法》及《国务院办公厅关于进一步做好防雷减灾工作的通知》等,透过这些文件我们也不难发现国家在防范雷电灾害工作上的政策倾斜。2008年总书记在大会上强调说“我们必须把自然灾害预测预报、防灾减灾工作作为关系经济社会发展全局的一项重大工作,进一步抓紧抓好”,同时他在党的十七大报告中也强化了减灾防灾工作的工作,国家领导人如此重视,这也凸显了开展雷击风险评估工作的必要性。

三、开展雷击风险评估的作用

(一)雷击风险评估可以科学的划分防雷类型帮助科学选址。如果工程项目在投建前开展有效的雷击风险评估设计便能在以后使用中减少不必要的雷电带来的损失,例如学校的选址经过评估和测算后有的即使是不安装防雷装置,因为它没有任何防雷设计上的失误所以也不会出现学生被雷电击死的可能,更不会出现学校选建在山顶高树下的失误,这在将来都是存在巨大安全隐患的。一些工程建设项目在经过了评估、然后科学论证,可以把原有划定的三类防雷调整为二类防雷或者二类防雷调整为三类防雷,这样会大大节省资金的投入,减小工程成本,以求建在最合适的位置,采取最节省且最有效的防雷类别系统。

(二)雷击风险评估能减小灾难发生的损失。利用雷击风险评估可以准确的获得目标所在地雷电电流强大小和雷电发生规,可以对雷电散流分布特征、主导方向进行预测,为灾难的发生做好应急工作提供技术支持。这一评估不单单仅限于建筑群上的防雷电,还包括了对工业控制系统、电视系统、信息安防系统、通讯电力和火灾报警系统的保护。经评估可以把这些与生产生活紧密关联的系统的建设提出科学建议并提供SPD浪涌保护器的合适型号和规格,不仅可以弥补现行设计的缺失也且避免了资金投入大却设防不到位的后果。

四、开展雷击风险评估的重要性

城市化步伐的不断推进,城市安全工作愈来愈凸显了,为了保障城市健康发展的,人民能够在其中安全放心生活,不怕自然灾害特别是雷电威胁,做好雷电风险评估是非常重要的,对于生活中存在的雷电威胁我们应切实做好此项工作。

小结:由以上可知做好雷击风险评估工作是关系到社会公共安全的大事,它涵盖的内容广,涉及的范围大面广,肩负的责任重,因此把开展雷击风险评估工作放在生产生活中的重要位置是很有必要的。气象等防灾减灾部门要严格按照国家的《防雷装置设计审核和竣工验收规定》落实本职工作,另外按照《防雷减灾管理办法》科学判定组织雷电减灾,但并不是所有的技术和系统都是完美无缺的,即使是精确的雷击风险评估系统如果不经过精确的测算,那建立的模型就会存在误差,误差越大往往会给防雷作业带来越大的困难,评估只是一种防御手段,如果完全依赖于它也是不明智的,所以在实际的工作中我们还是要遵循全面护防和综合治理的原则,明确开展雷击风险评估工作是非常科学使用且重要的,各级政府部门也要给予配合和帮助,使防雷电工作扎实稳健的推进。

参考文献

雷击风险论文篇7

【关键词】 雷电灾害 风险评估 标准 防雷

1 引言

从标准角度看,目前国内外有多个关于雷电灾害风险评估的标准,本文主要就雷电灾害风险评估的各种标准进行对比,并分析其优缺点。

2 雷电灾害风险评估的标准介绍

我国各个省市所应用风险评估的方法和规范并不相同,例如江苏省评估工作基于IEC62305和GB21714,重庆、西安则基于QX/T85-2007,但总体来说,有关雷电灾害风险评估的标准主要有以下几种:(1)《气象信息系统雷击电磁脉冲防护规范》(QX3-2000),适用范围是由雷击电磁脉冲(LEMP)对气象信息系统造成损失的风险的评估,所用的方法基于早期国外防雷标准中的因子分析法,评估的重点是确定年平均直击雷次数和年平均允许雷击次数;(2)《通信局站雷电损坏危险的评估》(ITU-T K.39),适用于通信局站雷电过电压(过电流)造成的设备危害和人员安全危害的风险的评估;(3)《建筑物电子信息体统防雷技术规范》(GB 50343―2004),按建筑物电子信息系统所处环境进行雷电灾害风险评估,确定雷电防护等级;(4)《雷击损害风险评估》(IEC6166),主要阐述了建筑物与服务设施的分类、雷灾风险、防护措施的选择过程以及建筑物与服务设施防护的基本标准等问题;(5)《雷电防护》(IEC 62305),共分5个部分,IEC 62305-1清楚地说明了在防雷电保护结构中遵循的一般原则;IEC 62305-2表述了保护的需要、安装保护措施的经济利益和适当的保护措施的选择程序,以及风险管理的方法;IEC 62305-3涉及减少对建筑物的物理损害和威胁生命安全的方法;IEC 62305-4阐述了减少建筑物内电器和电子系统故障的方法;IEC 62305-5涉及减少与建筑物有关的服务(主要是电力和电信)的物理损害和出现故障的方法;(6)《雷电灾害风险评估技术规范》(QX/T85―2007),此规范将雷电灾害风险评估分为预评估、方案评估与现状评估,主要包括大气雷电环境评价、雷击损害风险评估、雷电灾害易损性评估、雷电灾害环境影响评价等内容。

3 雷电灾害风险评估方法

目前,雷电灾害风险评估的方法大致有两种,一种是定性评估,一种是定量评估。GB50057-2010中规定建筑物应根据其重要性、使用性、发生雷电事故的可能性和后果,按防雷要求分为三类,这属于定性评估。而IEC62305-2以及由此衍生出的GB/T21714、 QX/T85-2007则通过对损失量的影响因子的选择,然后进行计算,得出雷击风险的各种损失的数值,这属于定量评估。

综合来看,我国的雷电灾害风险评估采用了定性与定量相结的方法,有的地方用定性,有的地方用定量,还没有统一。在该方法的基础上,结合中国国情,在个别参数的选取上细化或有少许变动。

4 雷电灾害风险评估标准的分析

4.1 评估标准的局限性

任何方法都是有其适用的范围的,同样,评估中经常用到的标准也是有其适用范围的,下面对常用的雷电灾害风险评估标准的范围进行简单的分析:

IEC62305-1适用于建筑物包括其中的装备和设备,也包括人身以及进入建筑物的公共设施。不适用于铁路设施,车辆、船只、飞行器、海岸设施以及地下高压管道。

IEC62305-2适用于由雷击导致的建筑物内或公共设施内的风险评估。

GB/T21714.2适用于建筑物和服务设施的雷击风险评估。

QX/T85-2007适用于新建、改建、扩建项目的雷电灾害风险评估。

以上三个规范,均不适用于铁路设施,车辆、船只、飞行器、海岸设施以及地下高压管道。因此,当评估对象出现特殊化时,雷击风险评估需要加入新的技术标准。

4.2 评估标准的比较

4.2.1 评估标准的相似性

(1)各评估标准都把重点放在雷电灾害损害次数这个参数上,而决定损害次数的子参数的选取大多以经验为主。

(2)各评估标准都需要计算出实际损害次数(实际风险)和允许损害次数(允许风险),然后给出风险级别并提供适当的防护措施。

(3)各评估标准在处理雷电灾害损失和雷电灾害风险时,都使用相对值,且大部分参数都以表格等形式给出一定的典型值,取值不连续而且很难达到比较高的精度。

(4)各评估标准都要求精确得到评估对象(建筑物或服务设施)的雷击有效面积,乘上当地的雷击密度而计算其可能雷击次数,然后需要求得允许雷灾水平(可承受雷灾水平)。

4.2.2 评估标准的区别

虽然个标准之间有一定的相似性,但同时也存在着许多区别:(1)从评估结果考虑,通过对各个标准之间做比较,可以发现ITU-T k.39和IEC61662都是以公式R=N×P×δ基本计算公式,两个标准都考虑了人身损失和财产损失等,都是通过计算防雷装置的拦截效率E来最终确定评估对象的雷电防护必要性和防护等级(防护级别)。而IEC62305、GB/T21714.2和QX/T85-2007都是以公式Rx=Nx×Px×Lx基本公式,三个标准都考率了人身伤亡损失风险、公众服务损失风险、文化遗产损失风险及经济损失风险,都是通过确定风险分量并计算风险分量值,将其分量值与其分量最大允许值相比较最终确定该建筑物是否在风险允许范围内

(2)IEC61662、IEC62305标准包括尤其衍生出来的GB/T21714.2和QX/T85-2007是最复杂、准确度及可信度最高的,也是我国目前气象行业开展雷击灾害风险评估的主要技术规范,综合了建筑物所在区域预计年遭受雷击次数N、在建筑物区域内遭受到雷击后可能发生雷电灾害损失的概率P及建筑物在遭受雷击后可能发生的后果及损失程度L三个因素,而每个因素的计算都是通过一系列的相关限制因子来确定的。但是GB/T21714.2里面的分量、因子、概率、损失率等数据是德国人根据欧洲的雷电特性、雷电环境、年平均雷暴日、土壤电阻率等统计、计算出的,适合欧洲情况。而中国在雷电特性、雷电环境、年平均雷暴日、土壤电阻率等各方面是截然不同的。因此,还需要将GB/T21714.2的分量、因子、概率、损失率等统计、计算出适合中国国情的数据(3)QX3-2000与GB50343―2004标准的评估重点是确定年平均允许雷击次数Nc,但其所采用的公式不同,QX3-2000计算Nc的公式为Nc=5.8*10-3/C或Nc=5.8*10-4/C,其中C=C1+C2+C3+C4+C5,因此其评估精度主要取决于建筑材料因子、信息系统重要程度因子、设备耐冲击类型因子、设备的LPZ因子和雷击后果因子。而GB50343―2004计算Nc的公式为Nc=5.8*10-1.5/C,其中C=C1+C2+C3+C4+C5+C6,C1~C5同QX3-2000中规定的,C6为区域雷暴等级因子。两种标准虽然计算公式类似,但所用的指数不同,同时GB50343―2004也比QX3-2000多了一个因子(4)QX3-2000和GB50343―2004与IEC61662标准在计算雷击大地的平局密度Ng的计算公式上也是不同的,QX3-2000和GB50343―2004计算Ng的公式为Ng=0.024Td1.3,而IEC61662中为Ng=0.04Td1.25(5)ITU-Tk.39标准的评估重点是确定雷电损害次数F,F=Fd +Fn +Fs+Fa,其中Fd=Ng*Ad*Pd,Fn=Ng*An*Pn,Fs =Ng*As*Ps,Fa=Ng*Aa*Pa,一般情况下以Fs为主;而面积Ad,An,As和Aa,在评估时要注意各类面积可能重叠,概率因子P的确定方法基本上来自于经验,其大小与设备自身性质和特定的保护措施有关。

由以上分析可以看出,这些常用雷电灾害风险评估标准中包含了三个评估评估重点,即确定雷击风险R,确定年平均雷击次数Nc以及确定雷电损害次数F,并且各标准所采用的公式及所需因子等也不尽相同,采用的方法也不相同,但各有其优缺点,应当根据评估对象的特点进行选取。

5 结语

通过对雷电灾害风险评估常用标准的分析,各标准都对雷击损害风险评估的方法、流程及各因子的选取等方面进行了详细的介绍,但是对大气雷电环境的评价都是简单介绍,而进行大气雷电环境评价的基础是拥有数量足够、信息可靠的闪电资料,对目标地点周边一定距离内雷电环境分析,区别于以往一贯的基于雷暴日进行大气雷电环境分析的粗略计算;即使是同一地区相距较近的两地,也有可能得到不同的雷电环境分析结论。

参考文献:

[1]QX3-2000气象信息系统雷击电磁脉冲防护规范.

[2]ITU-T K.39《通信局站雷电损坏危险的评估》.

[3]GB 50343―2004《建筑物电子信息体统防雷技术规范》.

[4]IEC6166《雷击损害风险评估》.

[5]IEC 62305《雷电防护》.

[6]QX/T85―2007《雷电灾害风险评估技术规范》.

[7]GB/T21714.2-2008《雷电防护 第2部分 风险管理》.

[8]钟万强,肖稳安.建筑物雷电灾害风险评估的标准、体系和方法,http://qxbzjk.cma,/servlet/News?Node=15611.

雷击风险论文篇8

关键词 移动基站;雷电;风险评估;必要性;方法

中图分类号 S761.5 文献标识码 A 文章编号 1007-5739(2014)01-0257-02

随着移动全球气候变化,雷电灾害的发生范围和破坏的强度正在慢慢加大,目前已被联合国有关部门列为“最严重的10种自然灾害之一”,被中国国家电工委员会称为“电子时代的一大公害”。对于通信行业而言,雷暴天气产生的危害同样不容忽视。多年来,雷暴一直威胁着通信基站的安全,损坏移动基站的设备,影响网络运行,影响市民正常通信,对经济建设也造成很大损失,因此加强移动基站的雷电灾害的风险评估有着很大的必要性。近年来,气象部门都相继开展了雷电灾害的风险评估,雷电风险评估技术也已发展到了一个相当成熟的阶段,但唯独对移动基站雷电风险评估在山西省目前来说还是一片空白。

1 雷击事故调查

1.1 现场调查

2012年8月,武乡县的1座移动基站塔在短短的1个月内就连续2次遭受雷击,基站的传输信号线被烧坏,主设备死机,AC屏空开跳闸,移动基站为电源线架空引入,引入后均未在配电屏安装电涌保护器,进入移动基站的低压电力电缆不从地下引入机房,走线架上塔的馈线及同轴线缆,其屏蔽层均未做好接地且馈线金属外护层直接与避雷针专用引下线(扁钢)相连接,也影响其附近的百家用电器不同程度受损,造成很大经济损失(图1)。

2010年6月中旬,武乡县的一座移动通信基站被雷击,并使得周围居民的大部分电器损坏,民房也严重损毁,是由于其基站的防变雷设施安装不规范,其铁塔与输电线路连接,铁塔受雷击时,其周围原本就会产生强大磁场并感应出较大电位,并通过架空并绑扎在铁塔上的电力电缆线引入机房内,加剧雷电电磁脉冲的危害程度,扩大雷电灾害的影响范围,此种做法在各地非常普遍,存在很大的安全隐患(图2)。

1.2 原因分析

据统计,移动基站的雷击事故,其95%以上都是由电源线、信号线引入,电源线路侵入造成雷电流过电压,是基站遭受雷击的罪魁祸首。平阳县等移动基站也不例外,其电源线架空引入,引入后均未在配电屏安装电涌保护器,进入移动基站的低压电力电缆不从地下引入机房,根据YD/T5098-2005《通信局(站)防雷与接地工程设计规范》规定:进入通信局(站)的低压电力电缆宜全程埋地引入,其电缆埋地长度不宜小于15 m;建在郊区或山区,地处中雷区以上的通信局(站),低压电缆引入配电室或配电屏终端入口处,应安装电涌保护器;进入移动通信基站的低压电力电缆宜从地下引入机房,电力电缆在引入机房交流屏处应加装避雷器。现有很多移动基站其机房地网、铁塔地网、变压器地网无共地或已采用共地但受地理环境所限,两地网之间距离很近,当雷电被引入到地网后,由于电位差,从而引起地电位反击,造成设备烧毁。不过造成这些原因的根本还是在于未在选址、施工前进行雷击风险评估,规划建设时,其设计图纸没有进行相关的防雷图纸审查,竣工后也不做相应的防雷设施竣工验收就开始开通运行,埋下了最初的雷击隐患。

2 移动基站雷电灾害风险评估的必要性

2.1 移动基站风险评估依据

一是法律依据。移动基站风险评估的法律依据见表1。二是技术标准。技术标准包括:《雷电防护-风险管理》(GB/T21714.2-2008)[1]《雷电灾害风险评估技术规范》(QX/T85-2007)[2]《气象信息系统雷击电磁脉冲防护规范》(QX3-2000)[3]《建筑物电子信息系统防雷技术规范》(GB50343-2004)[4]《通信局站雷电损害危险的评估》(ITU-TK.39)[5]。

2.2 移动基站雷电灾害风险评估的意义

累计风险评估是以实现系统防雷为目的,针对雷害的特性以及建设项目的使用性质和所在地雷电活动规律的复杂性等因素进行分析,对保护对象是否应采取防雷措施以及做何种等级的防雷措施做出判断,对采取某项措施前后存在的风险做出评估,以使决策正确防患于未然。对移动基站进行雷击风险评估,分析雷电对该移动基站造成危害的影响因子和因此带来的风险,确定该移动基站所需的防护等级,并提出合理可行的建议及安全对策措施,将雷击所导致的风险降低到最小的概率。有助于将防雷高新技术研究成果应用于建设项目防雷工程设计的实际工作中,避免了因移动基站的防雷工程设计不完善或不合理而造成雷击所带来的重大经济损失。

3 移动基站雷击风险评估的方法

3.1 一般建筑物雷击风险评估的方法

一般建筑物电器、电子信息系统的雷击风险评估可按GB50343-2012《建筑物电子信息系统防雷技术规范》,简易雷击风险评估方法进行简易雷击风险评估后按防雷装置的拦截效率确定雷电防护等级,或是按电子、电器、信息系统的重要性、使用性质和价值确定雷电防护等级。对于特殊重要的建筑物电器、电子信息系统和用户需要详细完整雷击风险评估的建筑物电器、电子信息系统应按IEC62305-2雷电防护风险管理的雷击风险评估要求进行雷击风险评估后确定雷电防护等级。

3.2 移动基站的雷击风险评估方法

通信局(站)雷击损害风险的评估,若按一般建筑物雷击风险评估的方法进行计算,那移动基站的L、W、H和各类因子C是如何取值,建筑物的年预计雷击次数是如何计算,笔者认为移动基站的雷击损害风险评估除按《建筑物电子信息系统防雷技术规范》(GB50343-2012)中定性的方法确定雷电防护等级,还应参照《通信局站雷电损害危险的评估》(ITU-TK.39)的雷击损害风险评估方法进行专项专业雷击风险评估后,确定雷电防护等级。虽然国际电信联盟(ITU)制定的《通信局站雷电损害危险的评估》(ITU-TK.39),适用范围是通信局站雷电过电压(过电流)造成的设备危害和人员安全危害的风险评估。但此标准技术方法比较复杂,结构庞大,而且是建立在国外防雷工作基础上,没有能考虑到中国广袤大地的具体情况的差异,不宜完全照抄照搬或全盘引用。在国内,虽然起步较落后于发达国家,但伴随着经济的发展和人们防雷意识的增强,我国相应了一系列防雷技术规范。然而基本都集中在雷电防护系统上,关于移动通信基站的雷电灾害风险的评估和预测研究还比较少,也没有形成一个公认的理论体系和评估方法。

4 结语

以部分移动基站的雷击事故调查为基础,通过查阅相关规范,对移动通信基站遭受雷灾原因进行分析,提出移动通信基站雷击灾害风险评估有着很大的必要性,并总结了动基站雷击灾害风险评估的方法。

5 参考文献

[1] 中华人民共和国国家质量监督检验检疫总局,国家标准化管理委员会.GB/T21714.2-2008 雷电防护-风险管理[S].北京:中国标准出版社,2008.

[2] QX/T85-2007雷电灾害风险评估技术规范[S].北京:中国标准出版社,2007.

[3] QX3-2000气象信息系统雷击电磁脉冲防护规范[S].北京:中国标准出版社,2000.

[4] GB50343-2012建筑物电子信息系统防雷技术规范[S].北京:中国建筑工业出版社,2012.

[5] ITU-TK.39通信局站雷电损害危险的评估[S].日内瓦:国际电信联盟,1996.

推荐范文
推荐期刊