线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

深基坑支护设计8篇

时间:2023-03-10 14:52:03

深基坑支护设计

深基坑支护设计篇1

关键词:深基坑支护;设计要点;结构类型;技术难点

一、深基坑支护方案设计要点

深基坑支护方案设计的重点在于深基坑工程总体方案的设计、深基坑周边围护结构形式的确定、支撑与锚固系统的选择、地下水控制及深基坑检测等方面。

1、影响深基坑支护方案确定的主要因素有:

(1)、深基坑所处场地的土层情况及其物理力学指标;

(2)、地下室外墙到用地红线距离,周边管线、临近建筑的情况等周围环境条件;

(3)、地下水的类型及分布、静止水位高度及水量大小情况;

(4)、深基坑面积及形状,主楼所处的位置及深基坑开挖深度;

(5)综合造价、工期、施工难度等各方面因素。

2、深基坑工程总体方案主要有顺作法、逆作法、顺逆结合法。

顺作法是传统的开挖施工方法,施工工艺成熟,支护结构与主体结构相对独立,施工比较便捷;逆作法则是支护结构与主体结构相结合,利用地下室楼层梁板作支撑,经济性好,但施工难度大。顺逆结合法,可充分发挥两者的优点,常采用中心岛顺作,深基坑周边逆作的方式。

深基坑周边围护结构常采用排桩和地下连续墙。排桩多用混凝土灌注桩,平面布置灵活,施工简单,较地下连续墙成本低。地下连续墙整体性强,防水性能好,但工程造价高,入岩难度大,工艺复杂。深基坑的支锚系统常采用内支撑和锚杆。内支撑支撑刚度大,控制深基坑变形能力强,而且不需侵入周边地下空间,但大量内支撑和竖向支撑需要设置和拆除,经济性较差,施工难度大。锚杆与内支撑相比,无需设置和拆除大量内支撑和竖向支撑,经济性好,为深基坑工程土方开挖和地下结构施工提供空间,但锚杆需侵入周边土体,控制深基坑变形能力不强。

二、深基坑支护结构类型

1、悬臂式支护结构

是指不加任何支撑或锚,只靠嵌入基坑底下一定深度的岩土体平衡上部土体的主动土压力、地面荷载以及水压力的支护结构。有地下连续墙、排桩结构。就该种支护结构而言,其嵌入深度极为关键。但是因为基坑底以上部分呈悬臂状态,不具有任何支点作用,桩顶位移及构件弯矩值相对较大,对支护结构构件有很高的要求。所以,该种结构应用广泛于基坑深度较小、土质条件较好以及对基坑水平位移要求不高的基坑。

2、内支撑结构

其结构形式由内支撑系统和挡土结构组成。内支撑为挡土结构的稳定提供足够的支撑力,对两端围护结构上所承受的侧压力加以平衡,一般钢筋混凝土支撑和钢支撑应用较为普遍。挡土结构主要承受基坑开挖所产生的水压力和土压力,通常采取排桩和地下连续墙结构。内支撑结构形式广泛应用于市政工程施工中。

3、拉锚式支护结构

其结构形式由挡土结构和外拉系统组成。外拉结构可分为两种:锚杆(索)支护结构和地面拉锚支护结构。锚杆(索)支护是由挡土结构及锚固于基坑滑动面以外的稳定土体的锚杆(索)组成。地面拉锚支护结构由挡土结构、拉杆(索)和锚固体组成。常用于深度及规模不大的基坑。

4、土钉墙支护结构

又叫土钉支护技术,是在原位土中密集设置土钉,并在土边坡表面构筑钢丝网喷射混凝土面层,支护边坡或边壁主要借助面层、土钉以及原位土体三者的共同作用。同时,土钉墙体构成了一个就地加固的类似重力式挡土结构。相较于已有各种支护方法,土钉墙支护结构具有设备简单、施工容易、需要场地小,开挖与支护作业可以并行、成本低、总体进度快,而且噪声小、稳定可靠、无污染、经济效益与社会效益好等,广泛应用于国内外的边坡加固与基坑支护中。

5、复合式支护结构

由于各种支护结构自身具局限性,地质的复杂性,以及施工现场环境的不确定性,必须对各种支护结构进行结合使用。复合式支护结构就是由地下连续墙、排桩、预应力锚杆、土钉及喷射混凝土等组合形成的综合性支护结构。在综合运用各种支护优点的基础上,复合式支护结构工程造价低,社会经济效益显著,但由于综合了各种支护结构,要求设计和施工要有较高水平。

三、深基坑支护设计中若干技术难点分析及解决方法

1、支护结构侧向土压力的计算

支护结构的计算,首先是土压力的取值问题。土压力的分布和计算,目前国内普遍采用古典的朗肯土压力理论,且假定支护结构是竖直的,土压力的作用方向水平,墙背光滑,不计土体对支护体的摩阻力。朗肯土压力理论用到支护结构计算上时,由于该理论的主动土压力和被动力土压力是建立在极限平衡状态概念的基础上。据现有的研究结果表明,达到被动土压力的位移一般为达到主动土压力位移的10-50倍。在实际工程中,由于支护结构常常不允许产生达到被动极限平衡状态时所需要的位移,实际的被动土压力一般均低于被动极限值。因此,在进行支护结构计算时,用朗肯土压力理论计算所得到的被动土压力是偏大的,使用时需要折减。折减系数的取值与被动区上体的土质和支护结构的型式密切相关,应根据被动区土体的土质和支护结构型式,以及对支护结构位移限制的程度,采用不同的折减系数。譬如对水泥土重力式挡墙,当被动区的土层为淤泥质粘土时,折减系数宜取0.5-0.6;当被动区土层为砂性土或被动区土体已经过水泥搅拌桩改良时,折减系数可取0.75-0.85。对于被动土压力的计算,如考虑土体的弹性抗力作用,会更接近于实际。由于土的弹塑性性质,其抗力问题比较复杂,目前仍普遍按弹性地基的假定进行计算,通常采用文克勒假定的弹性地基上竖直梁的计算方法。

2、用H.B1um理论计算悬臂式板桩墙支护结构

悬臂式板桩墙支护结构的内力计算,目前多用H.Blum理论来求解。此理论假定坑底出现的被动土压力近似地发生在弯点下面,并在这部分阻力的中心处(C点)用一个反力Rc来代替,支护桩插入深度t0用X来表示,它必须满足围绕C点使∑Hc=0的条件。由于土的阻力是向板桩方向逐渐增加,使用∑Hc=0的等式时会得到一个较小的插入深度,H.Blum建议计算所得的X增加20%,即插入深度t0=u+1.2X。为简化计算,H.Blum提供了理论计算曲线图,避免了多次方程求解,为计算提供了方便。

3、土水压力的计算

传统深基坑侧上压力的计算理论主要以朗肯理论和库仑理论为基础,这两种理论无论在基本假设上,还是在计算原理上都存在一些缺陷。主要表现为:①实际深基坑工程围护墙通常不满足古典土压力理论的假设条件。②古典土压力理论没有考虑围护墙的变形过程,而仅以墙移达到使墙后土体出现极限状态的平衡条件为计算依据.实际上围护墙变形通常达不到使土体出现极限平衡状态的位移值,且其变形是随开挖的深入而变化的,上压力也随着变化。此外,传统深基坑侧土压力的计算方法没有顾及深基坑坑内外通常存在较大水位差的实际情况,忽视了渗流效应对土压力的影响等问题。在设计时,应当注意影响土水压力的若干因素。具体包括:土体的应力状态和应力路径、孔隙水压力、边界条件等。

四、结语

由于深基坑工程及其复杂、多变,所以在施工中经常会遇见突发问题,尽管我国不同地区已经开展了很多经验,而且有很多成功案例,但是和国际先进技术比起来仍有很大的差距,因此,必须努力开展这方面的问题的研究,以适应现代化经济的需要。

参考文献:

深基坑支护设计篇2

关键词:高层建筑;深基坑支护;设计

中图分类号:TU208文献标识码: A

引言

在最近的几年中,由于社会的发展,城市居民住房的需要,建筑业衍生出了一门新的实践工程学,深基坑支护技术。在当前人口不断增长,住房需求越来越高的社会,需要建设高层的城市建筑,以满足居民的住房需求。这种实际情况下,对深基坑支护技术的发展,起到了一定程度上的推进作用。

1 深基坑支护技术概述

在高层建筑的施工建设过程中,需要深基坑支护技术的辅助。作为一种相对比较新颖的实践工程技术,在建筑业,深基坑支护施工技术被广泛的应用到实际工程中。基坑支护的目的是,确保基坑周边环境和地下结构施工的安全,基坑侧壁及周边环境则用支挡和加固的措施进行稳定性防护。基坑支护是一种特殊的结构方式,具有很多的功能。不同的支护结构适应于不同的水文地质条件,因此,要问题的实际情况,提出符合要求的解决方案,然后选择最优的支护结构。

1.1深基坑支护技术发展趋势

由于国家经济发展迅速,居民生活水平得到了很大程度上的提高,越来越多的居民搬进城市中居住。这大大促进了城市的发展,但也带来了住房资源紧张的难题。为了缓解住房资源紧缺,需要在各方面做出改进,其中最有效的一种方法就是增加建筑的高度,建造出更多住房。建造高层建筑,稳固的地基时不可或缺的,但现在城市的地下空间也是不可多得的稀缺资源,这就使得高层建筑的建设受到了局限性。深基坑支护施工技术很好的解决了这个问题,在建造高层建筑的时候,基于深基坑支护施工技术可以在面积很小的地方挖深度很大的基坑。基坑开挖是一种综合型岩土工程的难题,不仅要考虑强度和稳定性问题,还需要考虑深坑变形和岩土与支护结构之间的相互作用问题。这些问题随着测试仪器、施工技术和技术理论的提高和进步,得到了不同程度上的解决,但是,对于支护技术来说,依然存在着很多问题。目前,对于基坑开挖,面对城市改造工程,无疑是对高层建筑的挑战。

1.2深基坑支护施工的注意事项

在对高层建筑深基坑支护施工的时候,工作的内容主要是支护的施工工艺和研究设计。与设计和施工基坑支护同时进行的是要充分考虑基坑周围的环境条件、基坑需要开挖的理论深度、基坑的土质条件和地理位置。流砂、管涌、坑隆起、地面变形、地下水控制和基坑稳定性等险情是在基坑支护时需要控制的核心内容。此时,需要注意随时根据实际情况对支护方案进行调整,以确保,环境因素和地质条件不会影响施工。在设计和施工深基坑支护时,需要注意以下4方面内容:

1)如果是在城市中施工,那么对环保的要求会非常的高。因此,在选择支护体系时,不但要考虑化学浆液、泥浆、噪声等问题的影响,而且还要考虑在施工过程中支护工程所造成的振动。

2)为周边居民的居住安全考虑。在通常情况下,在施工场地周围,年代较长的建筑物会因为施工震动等影响产生一定程度的损坏。

3) 在城市的繁华地带施工时,由于施工地带高层建筑较为密集,而且地下会有较为复杂的管线系统,对于基坑的施工来说,无疑是一个巨大的限制。这时,垂直开挖技术就显得尤为重要,但在垂直开挖的同时,还必须考虑潜在的威胁。

4) 由于深基坑的场地一般都会十分的狭小,而且施工工期也相对较短,所以,施工时需要的合理安排施工的流程,在施工的过程要同时实施环保工程。

2深基坑支护设计方案

2.1钢板桩支护

钢板桩支护就是将各个钢板桩进行互联,做成一面钢板墙,钢板墙对于泥土和雨水的阻击防护效果是非常好的。钢板的使用使得防护变得非常简单,因此大部分的施工单位非常喜欢用该支护方法。但由于在建设钢板支护时会产生大量噪音和震动,甚至会改变地基的地形,造成地基开裂,这也使得钢板桩支护受到了一定的局限性。在进行地下室基坑支护时,为了防止钢板对深基坑造成破坏,应及时的脱出进行基坑支护时所用的钢板。

2.2排桩支护

柱列式钻孔灌注桩支护是排桩支护最常用的支护方式。在进行排桩支护时,需要将桩与桩之间排成一定的布局形式,如疏排布局、密排布局。在实际施工时,柱列式灌注桩必须需要用钢筋混凝土在桩顶浇筑大截面的帽梁,这样可以增加支护桩的刚度,同时也可以降低工程的成本。在桩背或者桩间,应该使用高压注浆技术,防止地下水或者其他杂志颗粒进入深基坑内。柱列式灌注桩作为排桩支护的一种具有很多优点的支护方式,同时也有一定的缺点,那就是施工的速度慢,工期长,在施工过程中的泥浆处理非常困难,这些也导致了柱列式灌注桩具有了一定的局限性。

2.3复合土钉墙支护

土钉壤支护技术由于支护效果好,性能稳靠,施工速度快,在我国的建筑业中发展迅速。土钉的作用是加固现场原位土体,在施工时,首先用变形钢筋构造出钉孔,然后用注浆的方式将土钉打进孔内。由于土钉与土体之间的粘合力和摩擦力非常的大,使得土体在发生变形时被土钉牵引着,使之成为支护墙,抵挡外力,防止基坑变形。

3深基坑支护施工时的管理

3.1审核施工单位的资质

施工单位是否具有施工资质是非常重要的,这直接影响着工程项目能否顺利完成。很多开发商为了节约成本,减少预算,而选择一些没有相应经验的建筑施工单位,这就导致了施工质量出现问题,影响着整个工程项目的进度与质量。为了防止这种现象的发生,相关部门应该仔细审查开发商所选择的施工单位,对不符合施工标准的施工单位进行严厉整治和处罚,保证建筑项目工程的整体质量过关。

3.2 加强深基坑支护的信息化管理

在深基坑开挖的过程中,应该进行实时监控,及时迅速的返回各种实时信号,防止意外情况的发生。通过施工过程的监督,可以在最大限度上及时的发现施工过程中出现的问题,如基坑支护是否变形,是否发生了沉降,水平位置是否发生平移等等。通过及时的发现问题,记录问题,可以迅速调整施工方案,减少施工事故的发生,确保工程的质量。

3.3对于施工时突发事故的应急措施

在施工现场需要准备相应的应急材料和设备,如钢筋水泥、喷浆机、水泥和沙袋等等。在施工的时候,如果施工地面出现了裂缝,为了防止地表水的渗入,需要灌浆对裂缝进行修补维护。当土移过大的时,首先要立即停止挖土操作,然后根据施工现场的实际情况,采取合理的回填措施,同时需要增加监测的频率,确保及时的发现问题。

4 结语

在建筑工程领域,科学合理的深基坑支护技术是不可或缺的,它影响着整个工程的质量和进度。为了提高工程经济效益,在施工时需要理论结合实际,选取最适合、最经济的支护结构,这样不但能保证工程的质量还能确保工程的进度。

参考文献

[1] 王锡平, 某高层建筑深基坑支护结构设计与监测[J], 油气田地面工程,2005(9):92-95.

深基坑支护设计篇3

1基坑支护设计

支护桩、冠梁、内支撑、锚杆等的设置如下。

1.1支护桩设计支护结构的侧压力主要包括土压力、水压力和地面附加荷载产生的侧压力。支护结构的土侧压力应分层按土的重度、内摩擦角、粘聚力由朗肯或库仑土压力公式予以计算[1]。支护桩采用钻孔灌注桩,设计直径为1000、1100、1200mm,桩身混凝土强度为C30;支护桩桩顶标高为-3.85m(相对标高,余同),桩底标高以进入中风化基岩不小于2m控制桩底标高。支护桩配筋为9种形式,主筋最大配筋为3625,主筋最小配筋为2425,箍筋为8@100,加强箍为18@1500。支护桩主筋锚入冠梁长度应不小于800mm,支护桩超灌高度为800mm。见图1。图1基坑支护典型剖面图

1.2冠梁设计为增强支护桩的整体刚度,桩顶设置冠梁,梁截面为1400mm×900mm,混凝土强度等级为C40,冠梁两侧各配825,梁面、梁底各配820;冠梁沿基坑周边形成封闭结构。

1.3冠梁梁面标高以上放坡、喷锚设计梁面标高为-3.00m,其上部土体按1∶0.5放坡,坡面进行80厚C20喷射混凝土内配6.5@200双向钢筋网片,并设置48×3钢管土钉@1200,L=4.5m。

1.4局部锚杆设计在局部坑底设置28钢筋锚杆@1600,L=12m,90,锚杆倾斜角为倾角20°,以增加支护桩桩端稳定性。

1.5内支撑杆设计内支撑杆分三层,内支撑杆混凝土强度为C40。第一层内支撑杆标高为-3.000m,截面尺寸及配筋分别为900mm×1000mm(配筋为杆上下各配825,杆两侧各配320,箍筋为8@200(四肢箍)+8@400双肢箍);第二层内支撑杆标高为-8.500m,截面尺寸分别为1000mm×1200mm[配筋为杆上下各配925,杆两侧各配325,箍筋为10@200(四肢箍)+10@400双肢箍];第三层内支撑杆标高为-14.000m,截面尺寸分别为1100mm×1200mm[配筋为杆上下各配1025,杆两侧各配325,箍筋为10@200(四肢箍)+10@400双肢箍]。

1.6坑内支撑的立柱设计格构式井字形钢构架作为立柱便于施工,且抗压能力及稳定性方面都较好,因此立柱设计采用格构式井字形钢构架。立柱采用Q235钢,焊条E50型,用4根角钢∠180×16与缀板440mm×200mm×10mm三边围焊焊接而成,均为满焊,焊接尺寸不得小于6mm,缀板中心间距为500mm,焊接完成的钢格构柱外包尺寸为500mm×500mm,井型钢构架的四根角钢的接头可采用剖口熔透焊,接头应错开600mm。钢构架的放置方位应有利于基础钢筋的穿越,当基础钢筋数量较多且难以穿越时,可在钢构架上开孔,但角钢开孔面积不得大于角钢全面积的20%。竖向立柱桩桩底除部分锚入工程桩,其余均锚入新打设的直径900mm的灌注桩内。钢格构柱应与钢筋笼一起置入,格构柱制作时应复核其长度,钢构柱顶部锚入支撑梁内不小于400mm、下部插入钻孔桩内3000mm。钢构架的止水片应在挖土结束后,地下室底扳混凝土浇注前施工,止水片应设在承台或底板厚度的中部附近,止水片与角钢、止水片与止水片之间焊接,焊缝高度不得小于5mm。

1.7基坑降排水设计对于施工用水及雨水等地表水,应在基坑坡顶修筑400mm×400mm砖砌排水沟截流、汇集然后抽排。基坑壁设置简易管井降水,钻孔D800,波纹管Φ300,外包二层80目尼龙网布,再外包一层7目铁丝网。基坑支护桩外侧设置三轴水泥搅拌桩止水帷幕,搅拌桩直径3Φ850@600,标准套打,相邻两桩施工间隔不得超过12h;采用42.5级普通硅酸盐水泥,水灰比1∶1.5,水泥掺入量22%;水泥搅拌桩28d无侧限抗压强度不低于1.2MPa。局部设置高压旋喷桩止水帷幕,高压旋喷桩采用三重管法高压旋喷工艺,设计采用直径Φ800@500。基坑西南角碎石层分布处采用Φ800自流管井降水。局部基坑内壁上挂网、喷射混凝土并设置泄水孔。坑底设置明沟、集水井抽水。

1.8换撑设计施工底板时,底板混凝土浇至支护桩边形成传力带;施工楼板时,应同步实施传力构件,支护桩上的泥皮应清理干净。换撑构件(宽×高:1500mm×200mm),板面标高同楼板顶标高,配筋为14@150双层,分布筋为10@200,混凝土强度等级同地下室楼板(C30),与楼板同时浇注,最初设计换撑构件达到C30强度后方可拆除相应支撑,换撑构件间距为3000mm,但由于工期要求,难以等到换撑构件达到100%再拆除内支撑[2],因此将换撑构件中心间距调整为1500mm,换撑构件达到C20强度后拆除相应支撑。支撑拆除宜采用人工凿除,应先撑后拆,先拆除次撑,后拆除主撑。

1.9地下室后浇带处内支撑设计本工程内支撑主要为对撑与角撑相结合,由于后浇带分割楼面,导致楼面作为换撑构件时对撑方面抗压刚度减弱,同时由于本地下室结构工程中沿对撑方向布置抗侧移的混凝土墙很少,建筑结构本身不足以承担基坑侧壁的土压力,易导致基坑侧壁发生较大变形,为增强楼面轴向抗压刚度,减小轴向变形,在后浇带处增设Q235A[14槽钢,间距为1500mm,每段锚入混凝土350mm。见图2。

2土方开挖

根据本工程特点,土方开挖遵循分层、分段、分步、对称、限时的原则,尽量减少未支护暴露时间[3],在支护结构及支撑体系未达到要求之前,不得进行下层土方的开挖。机械挖土方式开挖时,严禁挖土机械碰撞支撑、立柱和支护桩。挖土机械不得直接压在支撑上,应在支撑两侧先填土,填土须高出支撑顶面,然后铺设路基箱,方可在上面通行机械车辆。每层土开挖深度不得超过1.5m。因本基坑挖深达20.8m,基坑自身狭长且周边场地狭小,通过与传统土坡道挖土方式分析对比,选择混凝土栈桥具有提高机械施工效率、节省工期、节约投资等优点。栈桥用钢格柱桩(同内支撑下的钢格柱桩)支撑;行车顶板中梁截面尺寸为900mm×1400mm(配筋为杆上下各配1025,杆两侧各配418,箍筋为10@150(四肢箍),梁侧拉筋为8@300),行车顶板厚300mm(配筋18@150双层双向),混凝土强度为C30。栈桥的纵向跨度为8m,主支撑间设置联系梁与斜撑使其连成整体,坡度1∶8,栈桥设计荷载为50kPa,并设防滑及安全防栏,栈桥平面布置见图3。

3施工顺序

三轴水泥搅拌桩施工支护桩(钻孔灌注桩)施工高压旋喷桩施工冠梁标高上放坡及第一层土方开挖施工冠梁施工及第一道内支撑施工第二层土方开挖施工第二道内支撑施工第三层土方开挖施工第三道内支撑施工第四层土方开挖施工地下室底板结构及底板传力带施工地下室第五层顶板结构、换撑构件施工及第三道内支撑拆除地下室第四层顶板结构、换撑构件施工及第二道内支撑拆除地下室第三层顶板结构、换撑构件施工及第一道内支撑拆除地下室外墙防水施工及回填土。

4基坑监测、检测

根据本工程基坑特点,为准确掌握基坑支护及土体变形情况,需要监测内容为土体沉降、深层土体水平位移、支撑轴力监测、地下水位观测、立柱沉降监测等。观测构件、建筑物为支撑、支护桩、周围建筑物、道路裂缝的产生和开展情况。监测频率为开挖前至少测3次初值,开挖期间1次/d,底板浇好图3栈桥平面布置示意图7d后2d1次,拆除支撑及拆后3d内2次/d。经过详细计划,落实措施,在土方开挖期间最大地面沉降为65.6mm(西面3层楼房处,出现在土方开挖完成后,地面沉降65.6mm一方面是由基坑开挖引起的,另一方面是该新建楼的自然沉降引起的)。深层土体水平位移最大一个点为60.71mm(该点位于瑏瑡轴/轴处,最大水平位移深度为11m,在土方开挖至坑底时出现,是由于土方开挖后在坑侧土压力作用下产生的),监测数据都符合要求。

5结语

深基坑支护设计篇4

深基坑支护不仅要求确保边坡的稳定,而且要满足变形控制要求,以确保基坑周围的建筑物、地下管线、道路等的安全。

如今支护结构日臻完善,出现了许多新的支护结构形式与稳定边坡的方法。

根据本地区实际情况,经比较采用钻孔灌注桩作为挡土结构,由于基坑开采区主要为粘性土,它具有一定自稳定结构的特性,因此护坡桩采用间隔式钢筋混凝土钻孔灌注桩挡土,土层锚杆支护的方案,挡土支护结构布置如下:(1)护坡桩桩径600mm,桩净距1000mm;(2)土层锚杆一排作单支撑,端部在地面以下2.00mm,下倾18°,间距1.6m;(3)腰梁一道,位于坡顶下2.00m处,通过腰梁,锚杆对护坡桩进行拉结;(4)桩间为粘性土不作处理。

2.深基坑支护土压力

深基坑支护是近些年来才发展起来的工程运用学科,新的完善的支护结构上的土压力理论还没有正式提出,要精确地加以确定是不可能的。而且由于土的土质比较复杂,土压力的计算还与支护结构的刚度和施工方法等有关,要精确地确定也是比较困难的。目前,土压力的计算,仍然是简化后按库仑公式或朗肯公式进行。常用的公式为:

主动土压力:

Eα=1/2γH2tg2(45°-Φ/2)-2CHtg(45°-Φ/2)+2C2/γ

工中:Eα——主动土压力(KN),γ——土的容重,采用加权平均值。H——挡土桩长(m)。Φ——土的内摩擦角(°)。C——土的内聚力(KN)。

被动土压力:EP=1/2γt2KPCt

式中:EP——被动土压力(KN),t——挡土桩的入土深度(m),KP——被动土压力系数,一般取K2=tg2(45°-Φ/2)。

由于传统理论存在达些不足,在工程运用时就必须作经验修正,以便在一定程度上能够满足工程上的使用要求,这也就是从以下几个方面具体考虑:

2.1.土压力参数:尤其抗剪强度C/Φ的取值问题。抗剪强度指标的测定方法有总应力法和有效应办法,前者采用总应力C、Φ值和天然重度γ(或饱和容量)计算土压力,并认为水压力包括在内,后者采用有效应力C、Φ及浮容量γ计算土压力,另解水压力,即是水土分算。总应办法应用方便,适用于不透水或弱透水的粘土层。有效应力法应用于砂层。

2.2.朗肯理论假定墙背与填土之间无摩擦力。这种假设造成计算主动土压力偏大,而被动土压力偏小。主动土压力偏大则是偏安全的,而被动土压力偏小则是偏危险的。针对这一情况,在计算被动土压力时,采用修正后的被动土压力系数KP,因为库仑理论计算被动土压力偏大。因此采用库仑理论中的被动土压力系数擦角δ,克服了朗肯理论在此方面的假定。可以求得修正后的KP是:KP=〔CosΨDCosδ[KF)]-Sin(Ψo+δ)SinΨo〕2

式中是按等值内摩擦角计算,对粘性土取ΦD=Φ是根据经验取值,δ一般为1/3Φ-2/3Φ。

2.3.用等值内摩擦角计算主动土压力。在实践中,对于抗深在10m内的支护计算,把有粘聚力的主动土压力Eα,计算式为:E=1/2CHtg2(45°-Φ/2)+2C2/γ。

用等值内摩擦角时,按无粘性土三角形土压力并入Φo,E=1/2γH2tg(45°-Φ/ 2),而E=E由此可得:tg(45°-[SX(]Φo2= rH2tg2(45°-Ψ/2)-4CHtg(45°-Ψ/2)+4C2/r2rH2

2.4.深基坑开挖的空间效应。基坑的滑动面受到相邻边的制约影响,在中线的土压力最大,而造近两边的压力则小,利用这种空间效应,可以在两边折减桩数或减少配筋量。

2.5.重视场内外水的问题。注意降排水,因为土中含水量增加,抗剪强度降低,水分在较大土粒表面形成润滑剂,使摩擦力降低,而较小颗粒结合水膜变厚,降低了土的内聚力。

综上所述,结合本场地地质资料以及所选择的基抗支护形成,水压力和土压力分别按以下方式计算:

2.5.1.水压力:因支护桩所处地层主要为粘性土层,且为硬塑中密状态,另开挖前已作降水处理,故认为此压力采用水土合算是可行的。

深基坑支护设计篇5

关键词:深基坑工程;桩锚支护;设计计算; 内力分析

深基坑支护问题已经成为建筑界的热点和难点之一,我国的很多城市或地区相继发生多起深基坑事故。造成基坑事故的原因有很多,其中基坑支护方案的设计就是其中一个重要的原因。基坑支护设计是一个半理论半经验的设计,如何确保基坑的稳定,满足周边环境的要求,设计经济,并且在设计中考虑到尽可能多的因素,降低不可见因素的影响等等都具有着重要的现实意义。下面,笔者以重庆轻轨五号线巴山站基坑工程为例,对该深基坑工程的结构设计进行了研究。

1.工程概况

巴山站基坑位于金开大道西段,两侧有民用住宅,建筑密度较高,周边场地狭窄。基坑起讫里程为YAK9+294.350~YAK9+564.350;基坑成矩形分布,南北方向宽23.2m,东西方向长272.0m,开挖面积达7000 ;设计±0.00标高为+307.50m,场地地面标高+306.90m~+307.30m,基坑最深开挖深度为20.24m,属于Ⅰ级基坑。

2.支护工况

根据工程特点及场地条件,经过对土移变化、基坑稳定性、施工速度、工程造价等方面综合考虑,决定该工程采用排桩(截面:1.5m×1.8m、间距: 4.0m)进行支护,加五道锚索(分别距基坑顶2.5m、5.5.0m、8.5m、11.5m、14.5m)。

肋板锚杆挡墙支护形式在本地区应用比较广泛且技术成熟,其特点是施工速度较快,支护效果好,对其他工序的干扰较少,比较经济。其工况图如图1所示。

图1 支护工况图

3.基坑支护结构计算分析

3.1 土压力计算模型及系数调整

土压力计算采用朗肯土压力 理论,“规程”分布模式,除砂土层采用水土分算外,其余土层均采用水土合算,计算所得土压力系数表如表1所示:

表1 土压力系数表

土层

素填土 0.552 0.743 — —

粉质粘土 0.507 0.712 1.973 1.404

砂岩 0.832 0.937 2.572 1.603

粉质泥岩 0.725 0.862 2.035 1.445

3.2 支护结构嵌固深度及桩长的确定

支护结构的嵌固深度,目前常采用极限平衡法 计算确定。根据支护结构可能出现的位移条件,在桩墙的相应部位分别取主动土压力或被动土压力,形成静力极限平衡的计算模型 。由极限平衡法计算得到该工程支护结构最小的嵌固深度3.50m,取作4.0m,从而桩长: ,为便于施工,取做25m。

3.3 内力类型

支护结构为多层桩锚支撑,计算方法采用逐层展开支撑力不变等值梁法,根据开挖顺序用等值梁法分别计算各工况下桩的最大弯矩和最大剪切力。

该工程基坑内力类型以及等值梁法计算所得的内力值如下:

① 基坑最大弯矩为1104.38 KN/m;

② 基坑最大剪力为1188.0KN;

③ 基坑最大侧压力为1272.83KPa。

3.4 桩身的配筋计算

可求得弯矩、剪力的设计值如下:

截面弯矩设计值:

截面剪力设计值:

此桩的配筋为二级环境类别(采用强度为C30的砼,钢筋采用HRB335的Ⅱ级钢筋)下,为截面为 的矩形截面梁进行配筋。经计算 ,故选用28 32( )

3.5 锚杆设计计算

采用非扩孔预应力锚杆,锚固体直径设为130mm,锚杆倾角设为 ,锚杆横向间距为2250mm,竖向间距为3000mm。根据《建筑基坑支护技术规程》(GJ120-99)中4.4节对锚杆拉力设计值如下:

锚杆自由段长度计算得8.15m,取做9.0米;锚固段长度计算得4.56m,取做5.0米。故锚杆总长 ;锚杆配筋计算中,预应力钢筋截面面积计算为614.6 ,锚杆钢筋取1φ28(A1=615.8 )

3.6 基坑稳定性验算

经各项基坑指标稳定性验算均满足要求。

4.结 语

重庆近年来轨道交通的飞速建设出现了大量的地铁与轻轨站基坑,这些(超)深基坑开挖面积极大、挖深极深、又紧邻大型建筑物,兼之“山城”的地质特点,此类深基坑工程的探究已成热点,笔者通过实际工程经验探讨肋板锚杆挡墙的支护形式及内力计算,为该地区类似深基坑工程提供了一种经济上合理、技术上可行的措施,对今后类似工程具有参考意义。

[参考文献]

[1] 洪毓康.土质学与土力学[M].第2版.北京:人民交通出版社,1 990:30—32.

深基坑支护设计篇6

【关键词】:深基坑;中心岛开挖;排桩;抛撑

【 abstract 】 : combined with a housing project deep foundation pit engineering, this paper introduces in soft soil area construction is convenient to the row pile (bored piles) + concrete supporting cast, and the center of the excavation and supporting the island form construction method, think the support system have the enough strength, stiffness and stability, and achieved good economic benefit.

【 keywords 】 : deep foundation pit; Center island excavation; Row pile; Supporting cast

中图分类号:TV551.4文献标识码:A 文章编号:

1工程概况

某住宅工程位于绍兴县柯桥中心区,项目总用地面积37996㎡,建设用地面积14102㎡,建筑占地面积12006㎡,总建筑面积93495㎡,地下一层,由4幢酒店式公寓、16幢2~4层的商业及会所组成,地下设有南北各一个一层整体地下室(分别为1# 地下室建筑面积12171㎡、2#地下室建筑面积15166㎡)。目前2#地下室已施工完毕以进入主体结构的施工。

结构±0.000相当于绝对标高5.800m,场地内自然地面相对标高为-0.940~-0.475m,一般为-0.60,基坑大面挖深为5.2m,局部电梯井深坑挖深-8.55m,属深基坑。

1.1周边环境

该场地地貌属杭州湾南岸萧山—绍兴平原地貌,场地北侧紧邻群贤路,东侧紧邻湖西路,西侧为金柯桥大道,1#地下室和2#地下室之间为湖面。基坑周边道路交通繁忙,对交通组织要求高,另周边还分布有多条公共事业市政管线,其中,煤气、高压电力等重要管线距离基坑最近处仅2m。

1.2工程地质水文情况

本基坑开挖深度范围土层主要为粉质粘土、粘质粉土、淤泥质土,基坑影响的(1)~(3)号土层土质为松散~中软土层,基坑开挖时坑壁易失稳。本场地地下水位埋藏较浅,地下水埋深为0.6~1.50m。

2基坑原设计方案

1#基坑北侧及东侧、2#基坑南侧及东侧基坑支护设计拟采用SMW工法+钢管抛撑支护形式,西侧有较宽阔的绿化带,采用土钉墙支护。坑中坑采取水泥土重力式挡墙支护。

SMW工法采用三轴搅拌桩机,单钻头直径650mm,三轴桩中心距2x450mm,搅拌桩内插入500×200×10×16型钢。抛撑采用φ426×12、609×12钢管。

土钉采用48×3.0钢管,钢管从离坑壁2m处沿管长设φ8@500注浆孔,坡面采用钢筋网片Φ6.5@200×200喷100厚C20混凝土护坡。

目前2#地下室已施工完毕正在进行主体结构的施工,考虑到2#地下室SMW工法桩+钢管抛撑的支护形式施工过程中基坑变形较大,特将1#地下室由SMW工法桩+钢管抛撑的支护形式设计变更为钻孔灌注桩+钢筋混凝土抛撑的支护形式。

3基坑围护设计优化

在支撑体系中,围檩的刚度对整个支撑结构的刚度影响很大,但目前普遍存在对型钢围檩制作不规范、认识不足的现象,造成了一些因围檩失稳引起的基坑事故。因此设计、施工单位都必须高度重视这个问题。

考虑到基坑变形控制要求较高及2#地下室SMW工法桩+钢管抛撑的支护形式施工过程中出现基坑变形较大等因素,根据掌握的基坑施工经验,选用混凝土抛撑能有效地控制基坑变形,对基坑施工的安全性能起到重大作用。

对原有SMW工法桩+钢管抛撑的支护形式基坑剖面设计为排桩(钻孔灌注桩)+混凝土抛撑的支护形式,土钉墙支护设计剖面不变。特将1#基坑东侧、北侧采用φ700@1100钻孔灌注桩作为排桩结合500×800钢筋混凝土抛撑的支护形式。

4基坑施工

按照“时空效应”理论,以“分层、分块、对称、平衡、限时”的原则,依次开挖,将“大坑化为小坑”进行挖土施工,待中心岛土方开挖完毕,立即施工该区域内的钢筋混凝土底板及抛撑,各分块严格按挖土方案工序流水施工,每块的无抛撑暴露时间严格控制,从挖土开始到支撑浇捣,控制在48h内完成。

4.1施工流程

场地平整测量放线放坡开挖土方至压顶梁坡面加固以及压顶梁施工压顶梁养护达到设计强度中心岛土方分块分层开挖至坑底标高中心岛底板及抛撑施工中心岛底板及抛撑养护达到设计强度开挖抛撑下三角土。

4.2 施工要点

根据基坑支护设计方案及底板后浇带设置情况,整个基坑土方开挖按三个阶段、7个区块进行施工。

5.4.1第一阶段土方开挖

本阶段共分二次开挖,考虑到第二次土方要留设中心岛,第一次土方开挖采用开槽退挖,开挖标高-1.050m~-2.800m,开槽宽度8.0m左右为压顶梁施工提供操作面,每个区段内土方开挖完毕立即施工混凝土护坡及压顶梁;第二次开挖中心岛土方至-2.800标高,为大面开挖。

5.4.2第二阶段土方开挖

本阶段为中心岛土方开挖(共分两次开挖),当压顶梁混凝土达到设计强度80%以上时开始开挖中心岛土方。保留三角土区域土方及穿越2、5、6区块的临时道路,其余分两次开挖至坑底。挖至设计标高后及时跟进施工底板。

5.4.3第三阶段土方开挖

本阶段为三角土开挖。待钢筋混凝土抛撑施工完毕并达强度到80%后,开挖钢筋混凝土抛撑下方的三角留土,所有三角留土通过多台挖机驳运至中间出土通道装土外运,底板上出土道路铺路基板并避开框架柱及墙板插筋。周边三角土区域底板应分块浇筑,减小围护位移。

5.4.4混凝土抛撑施工

(1)对坑边留置土开槽进行抛撑施工,控制坡度和标高,先根据混凝土抛撑坡向标高开挖沟槽,标出混凝土抛撑的中心灰线,再进行抛撑处的土方开挖及垫层施工。

(2)抛撑钢筋放样、绑扎等施工应精确,切实做好抛撑钢筋的绑扎及支模,确保基坑支护结构的整体稳定,其抛撑定位时,须全部避开格构柱、结构柱,以便地下室结构顺利施工。

(3)在中心岛底板及与底板相接处(中心岛底板外边)抛撑牛腿支墩混凝土浇筑完成,养护至设计强度75%后,进行抛撑混凝土的浇筑。

5基坑监测

5.1监测项目

基坑监测主要项目:

(1)深层土体水平位移监测:在基坑靠近围护结构的位置,共设置6只深层土体水平位移监测孔,测斜孔深度为22m。

(2)支撑轴力观测:在基坑支撑体系的抛撑布设6组轴力监测点,主要观测支撑体系在深基坑开挖过程中的支撑应力随时间和工况的变化情况。

(3)围护结构顶及道路人行道水平垂直位移观测:在基坑四周大道靠近基坑的人行道上级围护结构顶设若干个观测点,以监测其随基坑开挖变化的情况。

5.2监测工期频率及警戒值

(1)监测工期:从开挖前一周进场埋设测点至斜抛撑拆除,且监测数据稳定或结构做到±0.000。

(2)监测频率:按围护设计方案,根据挖土的进展速度及基坑的变形情况来定。基坑开挖阶段每天监测1次,在基坑开挖接近坑底,如遇超警戒值或变化速度的异常情况应加强观测次数,必要时每天2次或更多。拆撑期间加密监测频率。

(3)监测警戒值:土体测斜孔最大水平位移和沉降警戒值为40mm,水平位移和沉降速度警戒值一般取大于3mm/d。

4.3监测数据

表1 深层土体水平位移监测情况

表2 支撑轴力监测情况

表1、表2的监测数据显示:水平位移随着挖土施工进度增长较快,日平均变化率约为+1.0mm,特别是CX2、CX4、CX5等孔在开挖三角土期间日增量的最大值为10mm,水平位移总量超过设计警戒值,但水平位移速率一直未超过。分析其原因主要是混凝土抛撑、中心岛底板、压顶梁达到设计强度需要时间,从而增加了总的水平位移量。支撑轴力在基坑开挖过程中监测一直相对稳定,未超过设计值要求值。

6结语

采用排桩(钻孔灌注桩)+混凝土抛撑支护形式,结合中心岛开挖的施工方法,在本工程中取得了良好的效果,也带来了较好的经济效益;而且还方便了施工,节省了工期,更节约了施工成本。

【参考文献】

[1]GB5O010-2010,混凝土结构设计规范[S].北京:中国建筑工业出版社,2010.

[2]唐孟雄,陈如桂,陈伟. 深基坑工程变形控制[M].北京:中国建筑工业出版社,2006.

[3]JGJ120-99,建筑基坑支护技术规程[S].北京:中国标准出版社,1999.

[4]龚晓南,高有潮. 深基坑工程设计施工手册[M]. 北京:中国建筑工业出版社,1998.

【第一作者简介】

深基坑支护设计篇7

关键词: 深基坑; 支护变形控制; 设计; 分析

随着建筑行业的迅猛发展,建筑工程的数量与日俱增,而深基坑正是在建筑工程数量较多的情况下使用的一种关键性技术。这也是保证建筑工程质量与安全的重要技术措施。为了保证深基坑正常发挥作用,就要对其进行支护,因此,需要对深基坑进行合理设计,避免其发生变形,如果支付变形,会直接影响到工程的施工质量与安全。在这种情况下深基坑支护变形控制设计,就非常重要。其中深基坑支护变形控制设计,既包括支护本身的结构设计也涵盖了与之相邻的建筑、管线和道路,而本文主要是针对支护本身的变形控制设计进行分析探讨。

1. 深基坑支护变形控制设计的具体要求分析

深基坑支护变形控制设计在具体设计中,要具有一定的依据,主要是深基坑的尺寸,最大荷载力,附近建筑环境、道路环境、管线环境以及地理地质条件等。为了符合设计标准,要在一定的设计要求之下进行合理设计。具体如下:

1.1 技术要求

深基坑支护变形控制设计,(1)要具备一定的抗滑稳定性,抗倾覆稳定性,同时要达到抗管涌和抗隆起的要求。[1](1)要对深基坑支护结构强度进行合理设计,保证强度是实际变形量与深基坑支护变形控制设计的要求相符合。

1.2 投资要求

要根据工程实际情况进行综合分析,研究,制定科学的深基坑支护变形控制设计方案,设计的每个环节造价最低,在保证设计方法符合工程施工标准的基础上,尽量减少投资,降低造价,提高工程的经济效益。

1.3 工期要求

深基坑支护变形控制设计,要结合施工具体情况,对施工程序,施工标准,每个施工环节的具体期限等有一个明确的标记,尽量使施工简洁快速,提高施工效率,缩短工期,避免延误工期。

1.4 深基坑周围的环境要求

深基坑支护变形控制设计,不能只考虑深基坑本身情况,还要关注与之联系密切的周围环境。注意周围环境对深基坑变形的实际要求。保证在深基坑施工时,其周围的建筑、管保、道路等发生位移、沉降和倾斜的程度都在规定范围之内,避免对其周围的各种建筑、管线、道路造成损害和严重的影响。

2. 深基坑支护变形控制设计方案分析

2.1 科学建立深基坑支护变形控制设计模型

深基坑支护变形控制设计,一般需要建立科学的设计模型,对整个设计方案进行完整的呈现,便于发现问题,方便修改,以保证设计的科学性和合理性。[2]建立深基坑支护变形控制设计模型,一般主要包括四个设计要素:一是设计变量的确定。首先要根据实际情况,正确选取深基坑支护的具体形状和参数等数据信息,对相关数据信息进行分析、比较,为优化深基坑支护变形控制设计提供参考依据。二是明确目标。深基坑支护变形控制设计,要确定一个明确的目标,要具备一个目标函数。在深基坑支护变形控制设计的整个过程中,要有一个完整的整体目标,有目的地进行设计,而且这个目标的设定要具有科学性与合理性,同时,造价上要保证最低。三是确定一个约束条件。基坑支护变形控制设计,需要对设计的变量进行科学取值,在取值的过程中,不能没有限制,任意选取,要保证具备一个合理的约束条件,保证取值的科学性和规范性。四是要建立一个数学模型。在深基坑支护变形控制设计中,要建立一个完整的数学模型,有利于保证设计的精准性。要根据设计变量,列出相应的函数,再根据设定的约束条件,优化数学模型,在限制条件下,选取一个适当的变量,从而使函数值最佳。

2.2 合理设计单支点锚桩

首先要合理选择锚点的具置,这也是保证单支点锚桩设计最优的前提,[3]接着就是锚桩截面的设计,要在改变锚点受力情况,改变锚杆位置的基础上,使反弯点的弯矩值大概一致,然后把这个具体的值作为锚桩截面设计的具体依据。一般锚桩的位置与深基坑的顶端越接近,其产生的位移距离就越小。所以,在对锚桩位置进行选择时,压尽量减少锚杆的位移距离,同时要保证深基坑顶端的位移距离尽可能的小。此外,还要算出深基坑支护的入土深度、最大正弯矩和向弯矩,以此作为参考数据,准确选择深基坑支护的最优位置,确定最佳锚桩截面积和锚点承受力,从而保证单支点锚桩设计的合理性、准确性。

2.3 优化设计多支点锚桩

在多支点锚桩的设计过程中,(1)挖掘基坑到第一道锚杆的位置,保证深基坑支护呈悬臂状态,接着对支护桩的内力和桩顶位移距离进行准确计算,然后根据实际情况的变化,做出适当调节,使其达到设计的标准,保证设计方案合理。[4](2)在正确确定第一道锚杆的位置之后,对第二根锚杆的锚杆的位置进行确定。在实际确认过程中,要对第一道锚杆的撑反力进行计算,一般采用弹性抗力有限原发计算方法,接着对锚点的受力和锚桩顶端的位移进行计算,最后对第二根锚杆的最大位移和支护结构的内力进行计算。(3)以此类推,在确定第一根和第二根锚杆位置的基础上,深基坑挖至坑底进行标高,根据实际情更合理调整锚撑点的位置进行调整。从而使多支点锚桩的设计更加科学。

3. 深基坑支护变形控制的策略分析

3.1 保证嵌固深度

在对深基坑支护变形进行控制的过程中,根据观察分析发现,围护桩嵌固深度不断增加的过程中,桩体发生的水平位移和深基坑底的隆起程度就会相应减小,其中,深基坑底隆起减小的程度要比桩体发生的水平位移减少的程度大。[5]当嵌固深度_到一定程度和标注时,桩底慢慢地不再发生变形,如果桩长继续延长,降低围护桩变形的作用也不再明显,但是对减少深基坑底隆起还是具有一定的作用。为了更好地控制深基坑支护变形,要保证嵌固的具体深度。

3.2 强化支撑的位置设置

深基坑支护变形受到很多因素的影响,其中支撑的位置变化对其影响很大。一旦深基坑支付支撑的位置发生变化,必将引起深基坑支护变形的发生。支撑位置变化的具体程度直接影响着深基坑支护变形的程度。因此,在对深基坑支护结构进行设计时,要根据深基坑支付结构的内力和变形的具体影响,结合深基坑施工空间环境等各方面的因素,进行综合考虑,从而正确设置支撑的位置,尽量避免其大幅度的变化。

3.3 控制支撑刚度

深基坑支护变形与支撑刚度的变化也具有一定的关系,通过实际研究发现,支撑刚度的增加会减小围护桩水平位移的最大值,但是不会对深基坑支护位移发生过大的变化,因此,可以根据实际情况,适当采取增加支撑刚度的方式,进一步控制深基坑支护变形。

3.4 合理设置隔离墙

深基坑技术一般是应用于数量较多的建筑群,因此,在施工过程中,面临的施工环境比较复杂。更好地发挥的深基坑的实际作用,为了防止深基坑变形,要采取深基坑支护,为了进一步控制支护变形,需要根据实际情况合理设置隔离墙。隔离墙的设置很大程度上能够起到加固深基坑的作用,但是如果设置不合理,很可能会适得其反,不但不会发挥加固作用,还会加重深基坑的变形,因此,在实际设置中,要综合分析施工实际,结合各种影响因素,保证隔离墙设置的科学性、合理性。

3.5 对深基坑坑底进行加固

对基坑坑底的土体进行加固,是控制深基坑支护变形的重要途径之一。加固的具体方法一般是在坑底增加土体,主要采用裙边加固法、抽条加固法和二者结合的加固法,通过加固作用,保持坑底的稳定性,从而控制深基坑支护变形。

结论:在现代建筑工程建设中,深基坑技术发挥着重要作用,但深基坑支护变形控制设计的水平,对深基坑施工质量的影响很大,因此,要在实际设计中,根据设计的具体要求,根据设计的具体程序和要点,不断优化设计方案,采取有效的措施,加强对深基坑支护变形控制的力度,从而整体上提高建筑工程的质量,促进建筑行业又好又快发展。

参考文献:

[1] 吕三和. 深基坑支护变形控制设计与研究[D]. 中国海洋大学, 2003.

[2] 张钦喜, 孙家乐, 刘柯. 深基坑锚拉支护体系变形控制设计理论与应用[J]. 岩土工程学报, 1999, 21(2):161-165.

[3] 宋建平. 深基坑支护变形控制设计与研究[J]. 低碳世界,2015,35:129-130.

深基坑支护设计篇8

关键词: 深基坑;施工现状;问题;建议

Abstract: this paper according to the deep foundation pit supporting some of the problems encountered in construction, and analyzes the reasons, and focuses on the deep foundation pit supporting design and construction experience and puts forward some Suggestions for reference.

Keywords: deep foundation pit; Construction the present situation; Problem; suggest

中图分类号:TU74文献标识码:A 文章编号:

深基坑支护设计和施工现状

目前的建筑施工, 其中的深基坑支护因其专业性较强, 一般都分包给了岩土专业施工公司, 比较大的公司一般是当地的勘察设计施工单位, 另外还有一些规模和实力较强的专业公司, 当前市场上,个人岩土公司也有一些。

从设计和施工资质上看: 比较大的岩土专业施工公司既有施工资质又有设计资质; 而一些小的岩土专业施工公司只有施工资质, 而没有设计资质,这种情况在当前的岩土工程施工中为数较多。最近两年, 一些业主为了提前开工等多种因素, 在招标时改变常规, 对地下岩土工程部分在结构主体招标前先进行招标, 随之而来出现了一些新现象: 许多大的建筑总承包单位为了抢占市场, 纷纷参与了投标, 一些大的建筑总承包单位进入了岩土工程施工。然而, 不论是业主还是监理单位, 他们都忽视了建筑总承包单位一般都没有岩土工程设计资质的问题, 这给将来的施工造成了很多隐患。

从承包模式看: 基坑支护施工一般都实行分包, 有些是业主直接将基坑工程分包给了专业公司, 然后纳入总承包单位管理; 而另一种模式是业主将基坑任务交给了总承包单位, 而由总承包单位进行分包。前一种模式因业主将任务直接分包, 故

在总包单位管理时易出现管理难的问题, 而后一种模式容易出现工程质量问题。

从深基坑工程特点看: 深基坑开挖深度大, 很多深基坑紧邻其它建筑物(或构筑物) , 施工难度较大, 除了合理设计外, 必须加强施工管理, 确保严格按设计和相关规范施工, 必须对基坑边坡和周围建筑物(或构筑物) 加强监测, 实现信息化施工。

2 施工中遇到的问题

2.1基坑边坡坍塌

这种情况一般发生在基坑施工阶段和基坑支护施工刚结束不久。在某一工地, 基坑支护刚完工不到两天, 边坡从上至下整体坍塌,长度达50 余米。纠其原因, 支护施工单位没有经过合理的设计, 也没有严格按设计施工。从坍塌的坡面看, 尽管是土钉支护, 但是没有按土钉支护规范进行。大多数土钉没有注浆, 只是打了一些孔把钢筋去; 有些土钉虽然注了浆, 但是孔内浆体没有注满; 有些土钉孔位置根本没有打孔, 只是将土钉杆体直接击入土体。

2.2边坡水平位移较大

一些基坑边坡水平位移较大, 达到4cm 以上,并且经监测, 水平位移还在继续加大。面对此种情况, 结构主体施工单位停止了地下主体施工, 业主不得不立即召集基坑支护设计、施工单位和专家对基坑重新进行稳定性分析, 并就出现的问题提出处理措施。

2.3 附近建筑物变形

在城市建设中, 很多基坑紧邻建筑物, 处理稍有不当, 附近建筑物就极易变形。一般来说, 建筑物变形都是其地基沉降引起的。建筑物出现较大变形后, 不仅危及楼上的居民或工作人员的安全, 而且也对在施的工程造成威胁, 使得工程难以继续进行下去。

2.4 边坡堆载不明确

基坑支护完成后, 如果不需要地基处理, 则很快就转入了结构主体施工。因可利用场地有限, 同时为了施工方便, 很多钢筋都放在了离基坑上口线不到1m 的位置, 并且堆载量较大; 在进行结构混凝土浇筑时, 混凝土罐车离基坑上口线也较近; 在进行塔吊安装时, 大吨位吊车非常靠近边坡坡顶。结果, 基坑边坡因承受不了太大的压力发生了较大的变形, 有的甚至坍塌。之所以出现如上现象, 主要是因为施工人员不明确基坑坡顶的极限承载力,不明确基坑坡顶容许堆载量与距离的关系。

2.5临建对基坑边坡的影响没有考虑

基坑支护单位在进行基坑支护设计时, 除了特别强调说明外, 坡顶荷载一般考虑较小, 通常为20kPa , 但是等到总承包单位进场时, 由于现场临建需要较多, 同时受场地条件限制, 临建不得不靠近边坡设置, 并且一般都设置2~4 层。对于深基

坑边坡支护, 临建荷载是一个不小的数值, 并且其存在时间较长。因很多临建都是在基坑支护施工一段时间后才搭建的, 故施工各方都忽略了临建荷载对基坑边坡稳定性的影响。很多基坑因临建荷载而发生了不同程度的边坡变形。北京市东城区某一在施工地, 基坑深度达16m 之多, 在基坑支护施工前期, 经基坑变形监测, 水平位移仅几个毫米, 但三层临建办公楼搭建后, 靠近临建的边坡坡顶发生了218cm的水平位移, 根据最近观测, 水平位移仍在继续增大。

3 深基坑支护设计和施工的几点建议

针对深基坑支护施工中出现的一些情况, 为了后续的结构主体施工能够顺利、安全、有序地进行, 特对深基坑支护设计和施工提出如下几点建议。

3.1明确基坑支护设计单位

深基坑工程越来越多, 而深基坑坍塌的事故也频频发生, 为防止深基坑工程事故, 地方主管部门出台了许多有关深基坑的强制性文件。所有这些都说明了深基坑工程事故的严重性和做好深基坑工程的重要性。在包括深基坑支护在内的岩土工程专业施工单位, 同时一般也是设计单位。只有明确了深基坑支护设计单位, 提交了深基坑支护设计单位资质, 这在将来的施工中如出现问题时才能容易找到责任单位和责任人, 可追溯性强。

3.2 投标和施工时提交基坑支护设计

深基坑支护施工的依据是深基坑支护设计, 故加强深基坑工程设计的审核和监督非常必要。无论在基坑支护投标时还是在基坑支护施工之前, 都应单独提交基坑支护设计, 设计封面和设计图上均应有设计人、审核人和审批人签字。这样, 在基坑支护施工中如出现问题需做设计变更时, 才能够很快找到设计人, 也便于快速解决问题, 同时也便于追究责任。

3基坑支护应明确的几个问题

基坑支护不仅负责基坑支护施工阶段的安全与稳定, 同时应考虑到将来的结构施工能顺利、有序地进行。基坑支护设计应包括如下方面的内容。

(1) 基坑坡顶堆载的说明

对于坡顶堆载, 应结合现场实际情况, 充分考虑结构施工阶段现场堆载要求, 在进行基坑支护设计荷载选择时进行全面考虑。在设计说明中, 应明确边坡堆载量与坡顶距离的关系。这样在将来的结构施工时非常明确基坑边坡堆载要求, 有效避免了基坑坡顶过量堆载而导致的基坑边坡变形或破坏。

(2) 临建的布置

在进行基坑设计时, 应结合现场情况, 主动了解或最大可能地考虑总承包单位临建的布置位置,以便在设计时考虑坡顶荷载。

(3) 塔吊的布置与吊装

塔吊的位置选择应根据总承包单位的要求, 但是在基坑支护及土方开挖时必须考虑, 如果布置在槽内, 则需进行塔吊位置处的土方挖除; 如果塔吊布置在基坑边坡处并与基坑边坡下口线重合, 则需考虑塔吊处的土方开挖和边坡支护。在进行塔吊安装时, 基坑支护应给出大吨位吊车离开边坡上口线的最小距离。

3.4 专项施工方案的编制与下发

在基坑支护施工时, 应编制专项施工方案。考虑到上报、审阅与返回周期, 专项施工方案应在施工前几天编制, 并及时上报监理。监理应抓紧批复, 在批复后及时返回施工单位, 以便施工单位能够及时准确下发到各相关部门和人员。施工单位在接到正式批复的施工方案前不得进行施工。在当前的基坑支护施工中, 施工方案未批复前就开始施工的情况时有发生, 这作为深基坑支护规范化施工是应当避免的。

3.5 施工前开总动员会

施工前的施工动员会是很有必要的。参加人员应包括业主现场代表、施工监理、总承包单位主要管理人员、深基坑支护所有施工人员和深基坑支护设计人。会上应介绍各方主要施工负责人员, 明确各方的责任, 强调安全文明施工和施工质量, 让所有施工人员特别是深基坑一线施工人员都有一个明确的安全意识和质量意识。设计人应留下联系方式, 以便在工程出现问题时及时沟通。深基坑支护单位技术负责人和安全员应向所有施工人员进行技术交底和安全交底。通过总动员会, 不仅每个人员都更明确自己的职责, 而且更方便在将来施工中的快速沟通。

3.6 施工过程控制

深基坑支护施工中, 应加强过程控制。施工中必须严格按照基坑支护设计、基坑支护施工组织设计、技术交底和相关规范等进行施工。施工中如出现异常情况, 应由现场技术负责人根据情况的性质和大小,向基坑支护设计人汇报, 设计人应及时根据现场实际情况进行设计变更, 将问题消灭在萌芽中。

3.7 地下水的控制

“十坡九塌因为水”, 这应该作为所有深基坑支护人员的警言名句, 我们必须加强对地下水的控制。

对于边坡内土体积水, 宜疏不宜堵, 除了采用降水方式降低地下水位外, 而且还应在基坑边坡上每隔一定距离设置泄水孔。施工时必须保证泄水孔的质量, 保证基坑边坡土体内积水快速从泄水孔排出。否则, 坡内土体则会因积水饱和而导致基坑变形乃至破坏。

在基坑开挖之前, 应加快地下水的抽降, 以保证基坑开挖的正常进行和基础底板的正常施工。当能保证基础底板正常施工后, 应严格限制地下水的继续抽降, 其一, 地下水对附近建筑物(或构筑物) 影响较明显, 过度的降水会使其发生沉降、变

形乃至破坏; 其二, 在我国的很多城市中, 因城市建设不断抽取地下水, 形成了较大的降水漏斗, 现在, 我国的地下水资源比较贫缺, 尤其是大中型城市供水紧张情况更为严峻。据最近报道, 我国正面临50 年以来的最严重枯水期, 故珍惜地下水资源是我们每个人的责任和义务。

4深基坑支护施工预案

对易发生的情况和可能预见出现的问题做预案设计,有些预还应经过审批。有了充分的应急准备,遇有异常情况时,才能及时调整施工措施,若出现紧急情况时,必须采取果断措施,采取回填反压、坡顶卸载等其他预备措施,目的是要阻断事态的发生,再进行加固处理,消除隐患后发可继续施工。

5 结语

对于深基坑支护设计和施工必须加强管理, 要做好深基坑支护设计和施工, 需从以下几方面着手解决。

(1) 设计应全面考虑深基坑支护的设计依据和条件, 这是做好深基坑支护工程的前提条件。

(2) 深基坑支护应重视设计, 加强对设计的全面管理; 投标时应单独提供基坑支护设计。

(3) 基坑支护施工是工程得以安全、顺利进行的保证, 应加强施工过程控制。

推荐期刊