线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

卫星通信论文8篇

时间:2023-03-21 17:05:09

卫星通信论文

卫星通信论文篇1

该过程组负责对为客户提供服务所需的所有资源管理和运行维护工作,主要资源包括卫星空间资源、地面卫星系统、知识资源库、IT系统以及后勤配套设施等。该部分负责对基础设施资源进行管理、运行和维护,确保基础设施资源稳定可靠运行,保障基础设施资源处于良好状态并可快速响应客户需求或员工需要。另外,该过程还承担资源信息监控、收集、汇总和统计分析工作,通过对资源信息的汇总、关联和统计分析,从而提高资源使用效率。(4)供应商和合作伙伴关系管理。供应商/合作伙伴主要包含卫星建造商、设备供应商、系统集成商及工程服务商等合作伙伴,该过程组主要负责与各供应商或合作伙伴进行接口和管理,负责采购信息、分析评估、对比选择、合同签署、到货付款以及质量管理等工作。

2战略与基础设施模块垂直过程分组细化设计

战略与基础设施模块垂直过程分为战略和基础设施生命周期管理两个垂直过程分组,如图3所示。战略指出了为开发和实现某个特定市场战略所需的资源建设重点任务,基础设施生存期管理过程驱动和支持为客户提品。它们的重点是满足客户对商务的期望,包括为客户提供的产品或服务、支持运营服务的基础设施,或者在企业为客户提品的过程中涉及的供应商或合作伙伴。(1)战略。该过程负责制定支持产品服务和基础设施的战略,还负责在企业内为实现这些战略而建立的规划方案的落实实施。它覆盖了市场、客户、产品服务和资源各种层次的运营,通过所基于的服务和资源及涉及到的供应商/合作伙伴来满足客户需求。战略高度重视分析研究,其给出企业内专门的业务战略和业务购入策略的侧重点,战略实现的成功与否需要进行有效性跟踪,并且在必要时做相应的调整。(2)基础设施生命周期管理。基础设施生命周期管理负责对基础设施的性能进行评估,并确定新的基础设施或新服务引进开发和建设部署,从而为满足市场和客户需求的运营服务提供支撑。因此,基础设施生命周期管理对客户需求响应和提供企业竞争力具有重要的意义。

3战略与基础设施模块水平过程分组细化设计

与运营和服务模块的四个水平分组相对应,战略与基础设施模块也有四个水平的功能过程分组:营销和定价、业务规划和建设、资源规划和建设、供应链开发和管理。这四个水平的功能过程分组为战略与基础设施模块的垂直过程分组提供支持。如图4所示。(1)营销和定价。该部分包含制定和实施营销和定价策略、开发新的服务和产品、管理已有的产品等所有必须的功能。在竞争越来越激烈的卫星运营市场,革新的速度和品牌的认同决定了企业的成功,因此营销和定价管理是很重要的业务过程。(2)业务规划和建设。为运营过程提供支持,强调业务的计划、开发和交付。它包括制定业务生成和设计的策略;管理和评估现有业务的性能、确保有相应的能力以满足未来业务发展的需要。(3)资源规划和建设。为运营过程提供支持,强调卫星资源等基础设施的规划、建造和交付。主要包括卫星资源建造、知识共享库建设和基础设施配套互联互通,管理和评估现有资源的性能,确保拥有可满足未来业务发展需要的资源能力。(4)供应链开发和管理。强调企业与供应商及合作伙伴的交互,负责建立和维护企业与供应商及合作伙伴之间的所有信息流和资金流,确保企业能够选择最好的供应商和合作伙伴;确保企业有相应的能力与它的供应商和合作伙伴进行交互;确保供应商和合作伙伴能够及时地交付所需要的产品,并且供应商和合作伙伴对企业的整体的性能和贡献优于垂直集成的企业。

4企业管理模块分组细化设计

企业管理模块是为完成卫星通信企业所进行的任何商业运行所必须的基本的业务过程,我们将卫星运营企业管理划分为若干功能部分,主要包括企业发展规划,品牌管理、市场调研和广告,财务和资产管理,人力资源管理、利益相关者和外部关系管理,企业质量管理、流程、IT规划和架构,知识管理和党群纪检管理,如图5所示。

5卫星通信业务基本框架的系统集成

卫星通信业务基本框架通过自顶向下和分层分级分解方法,描述了整个卫星通信业务运行过程,涵盖了卫星通信企业的完整业务链,包括卫星基础设施、运营服务、卫星建造商、卫星应用供应商和合作伙伴等部分,形成了一个全方位的卫星通信业务框架模型,如图6所示。同时,我们可通过分层分级分解方法,根据任务需要,对卫星通信业务基础框架模型各个过程开展更进一步细化和发展,形成更为详细的卫星通信业务基本框架第二层级视图,如图7所示。此外,在基础框架的一、二级视图基础上,我们可以进一步细化和描述业务关键环节,很简便的绘制出各关键环节的直观流程图。综合以上研究成果,我们认为,卫星通信业务基本框架提供了一个企业内部整体活动图景的全方位描述,可结合运用钱学森综合集成思想,以基本框架为指导,利用信息网络技术,以人机集合的方式,开展卫星通信业务的运营管理平台建设、企业知识共享库建设、流程重组、机构优化调整等现实工作,助力企业实现运营管理的流程化和智能化,进一步提高运营效益和服务水平。本文所建立的卫星通信业务基本框架强调以客户为中心,面向外部客户提供业务交付。可为卫星通信企业的高层决策者提供了一个便利的评估工具,可以用于评估、指导整个企业的业务活动,使得企业中的所有组织都能够识别企业职责范围内的重要生产管理过程;为卫星通信运营服务的规范标准化、流程化、高效化服务提供思路;并能够以一种低成本高效率的方式实现企业自动化,增强服务提供商的企业管理能力,为企业提质增效打下坚实的基础。卫星通信业务基本框架的主要优点和功能还体现在:一是在战略方面体现了对卫星和其他软硬件基础设施资源的全生命周期管理和一体化管理的理念。二是在运营方面体现了面向客户关系管理、对客户提供端到端的快速的服务交付和营销理念。三是在企业管理流程方面明确标识了企业管理流程,把企业管理流程和运营、战略作为一个整体,以便企业中的每个人都能够确定其关键流程,从而使整个企业在流程框架中高效运行。

6结束语

卫星通信论文篇2

半物理仿真平台的建立采用.NET环境下应用C#编程语言设计具有Windows风格的人机交互半物理仿真平台。通过各个模块的点击模拟操作,可以很好地实现用户对仿真模型的智能化运动控制,并且在完成仿真运动后,读取并记录显示卫星通信机动站运动过程的所有状态位置信息以及虚拟传感器的测距数据,最后生成仿真动画,达到直观的效果,虚拟场景测得的数据最终和真实环境中的实物所得数据进行比较,从而验证智能化控制算法的合理性、适用性。上位机用户平台包括虚拟现实展示、DLL调用测试、卫星通信机动站控制器半物理仿真通讯平台、状态信息的记录与读取、传感器测距信息的记录与读取,状态信号实现卫星通信机动站的虚拟现实运动动画的展示,人机交互半物理仿真平台,如图2所示。

2卫星通信机动站动力学模型的建立

Maplesim是一个多领域物理建模和仿真工具,它提供了一个三维可视化的环境建模以及动画显示仿真结果,在这种环境下,可以通过简单且直观的方式搭建各种复杂系统的模型,还可以可视化分析仿真结果。在Maplesim中能将建立好的模型转换到C代码中,可以在其他应用程序和工具中使用此C代码。在3D可视化建模环境下可以快捷、方便且直观地创建所需要的动力学仿真模型,之后将模型转生成C代码,在VC++环境下编译C代码生成动力学模型的DLL文件,这样可以方便其他应用程序的调用仿真。本研究基于.NET开发平台采用C#语言编写上位机仿真用户界面,进而对生成的DLL文件进行调用。半物理仿真系统开始执行,给定一个初始时间t0(初始值),每次经过t时间后,对动力学模型DLL文件进行调用,从卫星通信机动站的动力学模型DLL中输出第一个状态信号,将这个状态参数传递给卫星通信机动站控制器实物,控制器中对输入的状态参数完成控制算法后将再次发出控制信号并传递给C#软件环境,再经过t时间,再次调用DLL中的动力学模型。此时卫星通信机动站动力学模型的DLL输出第二个状态信号。如此循环反复执行此过程,如图3所示,形成了一个闭环的半物理仿真系统。

3半物理仿真系统设计

卫星通信机动站半物理仿真系统主要由人机交互操作界面、STM32控制器、信号转换器、数据采集系统以及PC机中的卫星通信机动站动力学模型5部分组成。以STM32控制器为核心的卫星通信机动站半物理仿真系统本身是一个闭环系统,在仿真通讯过程中,由卫星通信机动站控制器实物发出控制信号,控制信号模拟量经过信号转换器转换成数字信号,再通过USB虚拟串口通讯传递给PC机,PC机则调用WindowsAPI(Windows系统中可用的核心应用程序编程接口)对数字信号进行接收。PC机将接收到的信号再调用C#软件环境的动力学仿真模型,最后输出一个状态信号。PC机再将输出的状态信号通过WindowsAPI接口发送出去,状态信号经过USB虚拟串口传递给信号转换器。信号转换器将状态信号数字量转换成模拟量后传给卫星通信机动站控制器,在控制器中完成控制算法后,重新输出新的控制信号。此控制信号再经信号转换器PC机动力学模型的DLL,最终返回状态信号,如此循环地执行就形成了一个闭环的半物理仿真系统[4-5],如图4所示为半物理仿真系统框图。

4硬件系统的构建

卫星通信机动站的智能化控制是一个复杂的运动控制系统,其具有多自由度、多传感器、多驱动器、多运动形态的特点,对卫星通信机动站在现实运动过程中的多个传感器的输出模拟量数据进行采集,同时采用SPI串口通讯、蓝牙无线通讯的方式将数据传递给PC机上位机软件用户界面,以数据和虚拟动画相结合的方式直观地显示卫星通信机动站的实时运行状态。采用ADAS3022数据采集系统采集传感器数据,经ADAS3022的数字接口SPI与MCU选用的STM32芯片内部自带的SPI通讯,并且可实现内部自带的ADC(模/数转换器)进行信号转换,再通过HC-05嵌入式蓝牙模块与PC机进行通讯,如图5所示为系统总体设计方案。硬件系统设计了一个完整的5V单电源、8通道、多路复用的数据采集系统,可以集成用于工业级信号的可编程增益仪表放大器(PGIA)[6]。如图6所示为数据采集系统电路原理图。数据采集系统主要是以ADAS3022芯片为核心设计的,ADAS3022芯片上具有完整的DAS,它可以以最高1MSPS转换速率进行转换,能够接受的最大输入信号范围最高可达±24.576V的差分模拟输入信号。与传统的数据采集相比,在标准的数据采集方案中都会涉及到信号缓冲、电平转换、放大、噪声抑制以及其它模拟信号调理等,但是在ADAS3022中则无需这些辅助调理电路。这样一种高性能的核心芯片的应用,简化了具有高精密16位数据采集系统的设计难点,降低了成本。此外,在外观上,它具有更小的外形尺寸(6mm×6mm),40引脚的LFCSP封装;在性能方面,它可以提供最佳的时序和噪声性能,工作温度跨度-40℃到+85℃的工业温度范围[7-8]。此电路系统采用ADAS3022、ADP1613、ADR434和AD8031精密器件的组合,可同时提供高精度和低噪声性能。

5结语

卫星通信论文篇3

MAC层有MAC-Idle、MAC-Shared、MAC-DTM、MAC-Dedicated四个状态[4]。它们之间的转换图如下。

1.1MAC-Idle状态MAC-Idle状态中不存在TBF,MES监视CCCH上子信道的相关传呼。MES可能采用DRX(非连续接收)监视CCCH。在MAC-Idle状态,上层可请求传输一个上层PDU(协议数据单元),这就会触发在PDCH上建立一个TBF并由Idle状态转入MAC-Shared状态,或者有可能通过RRC流程或者是RLC/MAC流程在DCH上触发建立一个TBF,MES会在完成建立DCH后由Idle状态转入MAC-Dedicated状态。

1.2MAC-Shared状态在MAC-Shared状态中,MES分配无线资源提供TBF用于在一个或多个PDCH上产生点到点连接。TBF用于在网络和MES之间单向传输上层PDU。在MAC-Shared状态,上层可请求传输一个上层PDU,这就会通过RRC流程在DCH上触发建立一个TBF,这将会使MES由MAC-Shared状态转入MAC-DTM状态。当上行链路和下行链路中的TBF都被释放时,MES返回到MAC-Idle状态。当重新配置PDCH到DCH的所有无线承载,释放完PDCH上所有的TBF并建立第一个DCH时,MES将会由MAC-Shared状态转入MAC-Dedicated状态。

1.3MAC-DTM状态在MAC-DTM状态MES将无线资源分配给一个或多个DCH和一个或多个PDCH。在MAC-DTM状态当所有在PDCH上上行或下行的TBF都被释放之后,MES进入MAC-Dedicated状态。在释放了所有的DCH之后,MES进入MAC-Shared状态。在释放了所有的PDCH和DCH之后,MES进入MAC-Idle状态。

1.4MAC-Dedicated状态在MAC-Dedicated状态MES分配无线资源以提供一个或多个DCH(专有信道)。在释放掉所有的DCH之后,由MAC-Dedicated状态转入MAC-Idle状态,当从DCH到PDCH(分组数据物理信道)的所有无线承载都被重新配置以后,MES将会在释放完所有的DCH并在PDCH上建立第一个TBF时由MAC-Dedicated状态转入MAC-Shared状态。

1.5MAC层对组呼的支持由于GMR-1系统的MAC层不支持组呼功能,所以要对MAC层做一些改变。我们设计了组呼模块,它和单呼模块是并列的关系。根据逻辑信道的映射和MAC层的状态来区分单呼和组呼两个模块通道。组呼工作在电路域,只跟DCH有关,跟PDCH无关[5]。所以在MAC状态机中加入两个状态,分别是MAC-Ready-Gcc(组呼控制)状态和MAC-Dedicated-Gcc状态。工作在MAC-Dedicated-Gcc状态下的主/被叫移动台,正常接收MACDATA,状态不变;在释放掉所有DCH后,由MAC-Dedicated-Gcc状态转入MAC-Idle状态。主叫移动台发起组呼时,RRC层利用原语参数配置MAC层状态;接收下行报文时,MAC层根据MAC-Dedicated-Gcc状态将消息递交给上层组呼模块。图4是主叫用户的组呼MAC转移图。被叫侧成员移动台根据接收到的NCH逻辑信道通知MAC层转入MAC-Dedicated-Gcc状态,工作在组呼模块。流程如图所示。图5是被叫成员移动台组呼MAC状态转移图。集群组呼中,网络要向多个成员移动台发送寻呼通知消息,因此需要采用广播的方式发送。我们增添NCH为组呼通知信道。由于系统资源有限,这里我们借用未配置的CBCH逻辑信道的位置来配置NCH逻辑信道,NCH逻辑信道的突发结构和调制解调编解码方式与CBCH逻辑信道保持一致。例如,如果BCCH指派CBCH使用第一帧,则NCH使用2、3、4帧,如果BCCH指派CBCH使用第1、2帧,则NCH使用3、4帧,余此类推。

2MAC层PTT竞争随机接入回退策略

当组呼讲话方释放组呼上行信道时,讲话方用户在上行DACCH(专有随路控制信道)信道上发送“UPLINK_RELEASE”消息,表明讲话完毕。当一个组呼中有几个用户要同时讲话时,会产生讲话权的竞争。组呼成员也可能有不同的优先级,这时候需要一种竞争策略来解决[6]。以下举例为组呼信道采用8时隙结构,编码的话音为2.4kbits/s。网络收到讲话方上行信道的“UPLINK_RE-LEASE”消息以后,在组呼信道的下行信道的DACCH上向所有组呼移动台发送“UPLINK_FREE”消息,表明上行信道空闲,允许新的讲话方使用上行信道。需要讲话的组呼用户,在下行信道上收到“UP-LINK_FREE”消息以后,采用直接强占和随机接入相结合的方式,在组呼上行信道发送“UPLINK_AC-CESS”消息,消息被封装在NT5上,直接抢占第一帧,随后的随机时间选择为T,回退的最大帧数为F,则T=40ms*F。考虑到2比特的用户优先级,让优先级高的用户有较大的概率竞争成功,设用户优先级为m,退的次数为n,回退的最大帧数为F,则F=(m+5)*n,其中m=1,2,3;n≥1。

当n=0的时候,四个级别的用户都抢占第一帧,此时F=1。用户优先级m和回退次数n与回退最大帧数F关系部分如表1所示。下面以用户优先级m=0为例,随后的随机时间选择为200ms(5帧),400ms(10帧),600m(15帧),和800ms(20帧)总计2s秒钟的时间争用上行信道,方法如图6所示。按下PTT移动台,在最初开始的一帧直接发送“UPLINKACCESS”请求,若有碰撞,随机占用之后的5帧之一发送“UPLINKACCESS”请求,若还有碰撞,随机占用后续10帧之一发送“UPLINKAC-CESS”请求,还有碰撞,随机占用后续15帧之一发送“UPLINKACCESS”请求,一直到,随机占用后续20帧之一发送“UPLINKACCESS”请求,任意帧周期,当下行链路由“UPLINKFREE”转换成“UPLINKGRANT”时竞争结束。任何一个按下PTT的移动台直接抢占最初的一帧发送“UPLINKACCESS”,在后续的2秒钟的时间内又可以竞争上行信道四次,竞争期间,如果收到网络在下行信道上发送“UPLINK_GTANT”,则竞争结束。

当网络成功收到一个“UPLINK_ACCESS”消息以后,在组呼信道的下行DACCH信道上发送“UP-LINK_GRANT”消息,用于告知竞争成功用户可以使用上行信道,其它用户不再进行竞争,直到再次收到“UPLINK_FREE”消息为止。这里我们考虑的是有竞争冲突时,保证优先级高的用户有较大的概率竞争成功。通过以上的描述,分析计算可得。从公式可以看出,优先级高的用户,产生冲突的概率低,这样就很好的保证了优先级高的用户有较大的概率竞争成功。假设一个优先级为0、3的用户,其竞争产生冲突的概率曲线如图7所示。从图中可以看出,优先级高的明显比优先级低的冲突概率小,当n的取值逐渐变大,p越小,当n为5时,概率几乎为零了。事实上,n值不能取很大,应为值越大,虽然冲突概率很小,但是从PTT按下到响应这个时延过大,这不是我们所期望的。所以这个退避算法兼顾了n值不能太大,冲突概率小。

3结语

卫星通信论文篇4

1.1协议基本类型目前CFDAMA基本协议类型有CFDAMA-PA、CFDAMA-RA、CFDAMA-PB等几种。CF-DAMA-PA的上下行链路帧结构和基本的CF-DAMA相同,不同的是协议中的每一个用户在上行链路都有自己的预约请求时隙,系统将该时隙固定的分配给相应的用户,用户在这个固定的预约请求时隙中发出请求消息进行预约。CFDAMA-RA的上下行链路帧同样与CFDAMA-PA协议类似,不同的是其控制部分的预约时隙不再是固定分配给用户或者通过星上调度采用轮询的方式进行分配,而是用户终端通过竞争预约的方法来获取预约请求时隙的位置。CFDAMA-PB的上行链路帧结构不同于前面两种接入方式,如图2。上行链路帧不再划分为控制部分和数据部分,而是由一系列的数据信息时隙组成,数据信息时隙里面包含有按需分配时隙和自由分配时隙,它们随机的被安排在上行链路帧中,每一个数据信息时隙都对应一个业务分组,各用户的预约时隙请求信息附带在相应业务分组上以捎带的方式发送给星上集中调度器。

1.2性能分析CFDAMA基本接入方式能够实现较好的时延/吞吐量性能。CFDAMA-PA成功的将按需分配和自由分配结合在一起,采用固定预约时隙分配的形式来保证用户接入的公平性和实际业务需求量,在信道负荷较低的时候,其平均时延和固定分配方式保持一致,在信道负荷逐渐增大和接入用户数变化较大时,存在资源利用率下降的问题。CFDAMA-RA在低信道负荷时由于采用的竞争方式进行接入,对信道利用率更高,但对于用户接入的公平性却不能保证,并且存在接入过程中的碰撞,在高信道负荷时碰撞概率逐渐增大,平均时延性能也急剧下降。CFDAMA-PB通过对上行数据帧结构的改进,减小了用户发送预约时隙请求的间隔时间,但随着信道负荷的增大,某些用户会因为其他用户预约请求的资源占用导致无法发出预约时隙请求,同样不能保证接入的公平性。因此,如何保证用户的接入时延和接入过程中的公平性,成为本文的一个研究重点。

2CFDAMA-PRI

2.1CFDAMA-PR由于当前网络数据业务大多突发性较强并且业务类型呈现多样性,抽象出来这类数据业务流通常用ON-OFF信源模型来表示[5]。而在此信源模型的情况下,数据业务具有很强的突发特性,用户的预约时隙请求也带有很强的随机性和不确定性。基本的CFDAMA接入方式此时由于多次请求造成的再分配策略和预约请求的冲突概率增大,在信道负荷较高和接入用户数逐渐增大时,其性能受到明显的影响。CFDAMA-PR协议在用户时隙申请阶段对发送队列的堆积状况进行判断,比较当前时刻和上一时刻发送队列中数据分组的差值Δ,如果Δ>0表示当前发送队列有数据包的堆积,则通过加权的方式向星上调度器发送更多的预约时隙请求[6]。该协议的好处在于实际应用中可以根据用户发送队列的堆积情况获得更多的分配时隙,能在突发数据分组到来情况下实时的将新的数据分组发送出去。因此,本文在CFDAMA-PR的基础上提出了基于用户优先级排序的改进协议CFDAMA-PRI,优化星上调度算法,进一步保证接入的时延性能和接入的公平性。

2.2用户优先级排序在对CFDAMA-PRI优先级排序的详细描述过程中,设置如下的参数。在卫星收到上行链路帧之后,进入星上处理的优先级排序阶段。资源调度器的按需分配表如表1所示,每个预约用户都含有优先级条目,卫星在收到上行帧之后,首先获取每个用户的预约时隙数,按照从高到低的顺序对用户进行排序并设置优先级号prinumber_i,优先级号越小代表当前用户申请的预约时隙数越多,然后根据优先级号从小到大的顺序依次将用户ID填入按需分配表中,因为有预约时隙申请并且foreslots_i>0的用户排在按需分配表的前端,所以由表1可以看出,a≤k。如果frame_slotsremain>0,代表当前还有剩余时隙可供自由分配,此时资源调度器实施按需分配方式,将已经分配过的用户从按需分配表中删除,同时在自由分配表中将该用户移到表的尾端,按需分配完成之后,资源调度器为自由分配表中的用户轮询分配剩余时隙,直到将剩余时隙分配完。由于按需分配中用户的优先级设置,有预约时隙申请的用户在自由分配表的尾端仍然是按照优先级号从小到大的顺序进行排列,这样可以保证在轮询的过程中时隙需求量大的用户仍然可以得到更高的时隙分配权。CFDAMA-PRI的下行帧同样分为控制部分和数据部分,如图3所示,资源调度器根据按需分配表中各个用户优先级号从小到大的顺序将响应信息填入相应的时隙中。当用户收到下行链路帧时,时隙请求量越大的用户就能越快的获取卫星的分配时隙。

3仿真分析

本文采用OPNET仿真平台[7],将基本的CF-DAMA-PA、CFDAMA-PR和改进的CFDAMA-PRI进行对比仿真。具体的仿真参数设置如表2所示。对信道负荷固定但用户数目变化条件下的仿真结果进行分析,目的是为了得出CFDAMA-PRI的时延性能和在用户接入公平性方面的优越性。选取信道负荷为0.8,用户数目依次为5、10、20、40、80,CFDAMA-PA的预约时隙数为20,得到的仿真结果如图5、图6所示。由仿真结果可以看出,当系统中用户数不断增大时,由于CFDAMA-PA在一个链路帧中仅使用了一部分时隙用作预约请求时隙点,那么更多有请求的用户就无法通过预约时隙点接入链路帧,加之信道负荷较大,突发数据强,用户申请时隙的不确定性也大。如果增大预约请求时隙数的比例也会以牺牲数据时隙为代价,平均时延和队列的分组累积同样会增加。CFDAMA-PRI则采用CFDAMA-PR对信源突发数据分组的计算方法,并使用优先级排序的方法对时隙需求量大的用户给予更高的时隙分配权,确保了用户的可接入次数,降低了时延,提高了接入公平性。

4结语

卫星通信论文篇5

2013年11月15日,通用动力C4系统公司宣布,通过移动用户目标系统赤道地区的卫星,该公司的一对AN/PRC-155单兵电台成功实现了语音和数据呼叫。该软件定义电台配有移动用户目标系统波形。无论是从北极还是南极的高纬度地区,连通地球赤道静止卫星都是一个难题,因为这些卫星靠近地平线。由于地球是扁圆的球体,在两极地区它会变平,因此,地球表面某些区域看不到赤道上的卫星。“在几近结冰的温度下,在刺骨的北极寒风里,在地球纬度最高地区,唯有PRC-155单兵电台才能连接移动用户目标系统,安全传送语音和调用数据。”通用动力C4系统公司总裁克里斯•麻兹利这样评价该系统。这次验证展示活动于2013年10月中旬进行,涵盖通用动力公司所描述的多种真实场景,包括在阿拉斯加州安克雷奇和巴罗的固定地点,以及绕整个北极圈飞行的飞机。该公司称,除了5名参加试验的人员进行了电话会议,这种双通道AN/PRC-155电台还完成了多重一对一语音通话和数据调用。在演示中,数据调用速率达到了64kb/s。通用动力公司进行过多次测试活动,将该公司的单兵携带和手持电台连通移动用户目标系统。2013年10月份的这次测试为其最新的一次。而在2013年8月,该公司成功通过AN/PRC-155电台将AN/PRC-154“步”电台与移动用户目标系统的一架航空器连通。之前的4月份,该公司基于2012年2月第一次通信验证展示,通过移动用户目标系统完成了电台对电台的语音和数据测试。2012年的演示只是使用卫星模拟器以及装载移动用户目标系统波形的AN/PRC。

2.哈里斯公司“猎鹰”III

哈里斯公司宣布,该公司的AN/PRC-117G“猎鹰”III多波段单兵电台于2013年12月2日与移动用户目标系统卫星成功连通。接下来,该公司又在北极圈进行测试,将“猎鹰”III电台装在一架货运飞机上从阿拉斯加飞往北极,然后返回。北极圈地区当前使用的是甚高频系统。根据该公司提供的数字,有多达30000台的AN/PRC-117G电台可以升级使用移动用户目标系统波形软件。

3.Alico公司相控阵终端

尽管相控阵天线在雷达应用中很常见,但是在通信领域相对少见。然而,Alico系统公司已经在其宽带分布式孔径移动卫星通信系统终端中植入相控阵天线技术,并于2013年6月公布了技术详情。这种X波段系统显示,4个小型矩形平板式天线安装在M1“艾布拉姆斯”坦克和M2“布雷德利”步兵战车车体顶部四周以及MaxxPro防地雷反伏击车的出入口四周。对宽带移动卫星通信相阵天线而言,这种设计考虑非常周全,因为它并没有在车辆的可视部位增加设备,这样就可避免炮塔或者车辆上的货物阻挡信号,也可防止在非常传统系统的突出部分遮挡信号。这就意味着它能在0°~90°的全半球覆盖,从而实现0°~360°连续的全方位覆盖。借助电子束自动转向功能,该系统实现了自动操作,其电子束可以在100Hz频率上指向并跟踪卫星。也就是说,该系统每秒要计算该卫星的相对位置100次。分布式相阵天线还解决了“钥匙孔”(keynole)以及“常平架自锁”(gimballock)问题。前者是稳定电子机械天线系统的难题。由于俯仰角不到90°,这样在顶点处就会有一片空域无法被天线光束覆盖。后者的问题在于其天线系统俯仰角>90°、<180°,所以当常平架达到其仰角极限时,方位转台必须旋转180°才能继续跟踪,因而不能平滑跟踪经过其顶点的卫星。宽波束可以缓解这个问题,但是高增益天线都是窄波束,必须要有所取舍。在相控阵天线覆盖重复区域,可以通过电子方式轻松解决。由于设计之初就是为了解决移动中的语音、数据以及流视频问题,这种全双向系统可以用于很多卫星通信系统,比如美国的全球宽带卫星通信系统(WGS)和XTAR系统、西班牙卫星系统(SpainSat)以及英国的天网卫星系统(Skynet)。该系统采用115V交流电或28V直流电,功耗700W,重68kg。

4.埃尔比特公司

2013年9月,以色列艾尔比特公司(Elbit)在伦敦国际防务展上展示了基于MSR-2000系列的下一代天线Elsat2000E。该天线采用新型被动波导平面面板技术,能够全面覆盖Ku波段。该公司称Elsat2000E技术性能有了巨大提升,大大超越了采用印刷电路多成分平板技术的Elsat2000。Elsat2000E新型天线直径50cm,重15kg,性能和效率是Elsat2000的两倍。埃尔比特公司称其具有30Mb/s的下行速率和5Mb/s的上行速率。该公司强调该系统有个关键特性,即它有先进的三重跟踪机制,具备100°仰角能力,因而可以提升移动中的跟踪和重新锁定性能。该公司声称该系统的G/T比为7dB/K,而这是信号噪声比方式,是天线能够接收的信号。该比值越大,从背景噪音中提取微弱信号的效果就越好。和Elsat2100相似,2000E也集成了该公司的InterSky4M军用战术卫星通信系统平台,能够在视线内、视线外以及超越地平线模式下,提供“无缝”宽带连接。该系统在机械扫描中结合平板相阵技术,最大限度提升了覆盖角度。它能够达成360°全覆盖,俯仰角度从0°~100°,这是其他系统做不到的。通常情况下,天线系统会采用碟状天线,这是因为其增益很好,但是由于高度原因极易被探测到。

5.Ibetor公司X波段终端

2014年2月28日,西班牙Ibetor公司在华盛顿哥伦比亚特区2014卫星展上推出了新型的X波段Ib-Stom100X终端,其特点就是低矮不易探测。由于该终端高度只有20cm,该天线系统实现空气动力的高效能和自由调整(discretion),同时还能在极端地形情况下高效可靠连通。Ib-Stom100X专为舰船、飞机和地面车辆设计,加入了Ibetor公司设计的天线控制单元(ACU),包括惯性单元(IMU)、同千赫兹双GPS接收器、三轴陀螺仪、加速计和磁力计。通过这种组合,该系统号称指向精度提高0.3!,能在移动车辆上获取卫星信号并能“瞬时”再次找回。能做到这一点,部分原因是由于该系统使用的软件程序始终让机械扫描天线指向卫星位置,即使信号受到遮挡仍旧如此。其关键参数为瞬间频率500MHz、G/T比7.5dB/K以及波束中心上行速率高达8Mb/s。依据不同配置,其重量从75~85kg不等。根据Ibetor公司的信息,该系统已在西班牙军队服役。

6.Indra公司

西班牙的Indra公司提供了备选方案,它的Sotm解决方案运行在X和Ku波段上,使用低矮天线,并集成惯性导航。通过IP电台和骨干能力,该系统的卫星通信可为旅、营一级的巡逻部队提供服务。该系统经过专门设计,可用于任何车辆,甚至可用于小型船只。另外,其可选方案还包括Ku波段扩展频率(13.75~14.5GHz)、加密、运行时间20min的不间断电源,还可载有发电机,能够提供10h电力供应。

7.吉拉特卫星网络公司

就在Ibetor公司推出低矮天线终端之后,以色列吉拉特卫星网络公司(Gilat)也紧随其后,于2014年3月11日推出了“低矮光线卫星隐形光线(RaySatStealthRay)300X-M”。该系统经过专门设计,可与任何X波段卫星配套使用,可用于全球宽带卫星通信系统(WGS)以及崎岖道路行驶的车辆。它集成了多种动作传感器,可以进行准确跟踪、在最短时间获取信号以及能够“瞬间”再次找回信号。该系统经过设计,可以轻易装到未经改装的车辆上。它包含一个外置天线,长55.6cm、宽49cm、高25cm、重15kg。另外,它还有内置天线控制单元(ACU),重4.5kg。但是,由于它可以和集成MLT-1000调制解调器一起使用,故不必安装天线控制单元。吉拉特公司新产品的G/T比为2dB/K,传输和接收增益分别是23和25dBi,其接收频率为7.25~7.75GHz,传输频率为7.9!8.4GHz。SR300系列还包括用于Ku波段和Ka波段的低矮天线。

8.DRS技术公司X46-V认证

2013年5月,随着DRS技术公司的X46-V终端获得认证,允许用于美国国防部高性能卫星网络,该公司已能提供X-波段,为更多的偏远、分散的军事单位提供接入全球信息网络(GIG)。该认证由美国国防部联合卫星通信工程中心和美国陆军战略司令部颁发,从而允许X46-V用户接入全球宽带卫星通信系统(WGS),其语音、数据和视频传输速率高达6Mb/s。除了美国部队,澳大利亚、加大那、丹麦、卢森堡、荷兰以及新西兰军队都可以使用该系统卫星。另外,由于可以运行K-y以及Ka波段,该系统能为其它商业和军事卫星提供更大灵活性和冗余能力。该公司还于2013年8月27日宣布,其L-3Linkabit可以提供系列移动卫星通信终端,刚刚升级了Alsat永久移动地球站许可证,可以在美国境内以及其它商业航空器上使用其Ku波段终端。该证书允许的终端包括L-3DatronFSS-4180-LP(0.33×0.46m)、FSS-4180-LC小型孔径天线(圆周长0.46m),还包括LinkabitMPM-1000网络中心IP卫星通信调制解调器。美国陆军的“战术级作战人员信息网”(WIN-T)以及美国海军陆战队的“移动网络”中都采用了L-3终端。

9.全球移动网络主动布局系统

Elexis公司宣布,在成功将全球移动网络主动布局系统(Gnomad)集成到“斯特赖克”装甲车辆之后,公司又将这一经受战斗考验的系统扩展到另一美军的重要平台,并在美国乔治亚州本宁堡的美国陆军第7远征作战试验部队完成安装。全球移动网络主动布局系统易于安装,并且不需要对现有车辆进行改造。该系统包括卫星天线、RF组件以及几代模块底盘,使其可以安装在美国军用产品目录内以及商业用等车辆上,比如“悍马”等。该低矮型天线尺寸为45×35×7in(合114.3×88.9×17.78cm),重量不到25kg,可用于商业和军事卫星。由于采用开放式架构,该系统可以和许多视线内电台以及卫星调制解调器共用,并通过解调器实现全双向语音、数据和视频通信。通过和超高频或甚高频电台配合,比如和“单信道地面及机载无线电系统”(Sincgars)以及嵌入式GPS共用,该系统能够在运行图像中直接嵌入跟踪蓝军数据。该系统传送频率为14.0~14.5GHz、接收频率为17.7GHz或11.7~12.75GHz,速率分别高达512kb/s和2Mb/s。在30°仰角、23℃情况下,G/T值最低为8dB/k。

10.罗克韦尔•柯林斯公司

罗克韦尔•柯林斯瑞典通信技术公司的终端和萨博公司的四轴稳定平台结合,从而产生了一种新型的移动卫星通信终端,既可适用崎岖路面也可用于海上。它可以安装到轻型越野车辆和小型船只上,也可以安装在指挥所车辆和中型滨海船只上。这些应用由于速度快、颠簸剧烈、移动幅度大,建立和保持卫星连接非常困难。但是,该系统可以轻易解决这些问题,在高海况下时速高达50节以及崎岖地形下速度超过40km/h,它都能在1s内自动恢复丢失的连接,同时宽带通信速率可达10Mb/s。该系统全重约140kg,在20°仰角、11.0GHz情况下,G/T值为19dB/K。

11.泰利斯公司

卫星通信论文篇6

1.1北斗卫星通信系统的主要特点

北斗卫星通信系统的主要特点体现在抗雨水能力强,具备高可靠性和低功耗且简单维护的特点,再加上是由我国自主独立研发,因此在信息的保密性和安全性方面都更有保障。另外其多元化的不同制式能够实现和水情测报系统的无缝集成。特别是水情自动测报系统更加注重短通信的数据传输,而这一点正是北斗卫星通信系统所特有的优势。这个系统的工作频段主要有L/S/C,其频段范围较宽,所以在信息传输方面拥有其独特的优势。

1.2北斗卫星技术下的水情自动测报站的主要构成

北京市的北斗卫星技术下的水情测报站的主要构成包括了四个方面。第一是北斗通信模块。主要选择的是用户终端。该北斗卫星的用户终端主要有天线设备和主机设备两种,而且这两种设备的终端体积也相对较小,且操作比较简单,安装维护工作也非常容易。其主要信号的传送机制是通过瞬间突发的模式,这样也能够有效的降低用户终端的功耗。而且也能够支持环境恶劣的野外水情测报。第二是测试中心的终端机。测试中心一般远离监测中心,所以需要通过遥测的方式来实现。这种终端机能够和不同的传感器进行连接,并支持不同的数据通信模式。北京的水文测试中心的遥测终端就支持北斗卫星通信,同时也支持了GSM通信和GPRS通信等。并能够根据信号的变化自动切换,从而保障遥测数据能够及时的反馈到监测中心。第三就是前端的传感器。这些传感器主要有涉及到测报水情的相关数据需求,包括了水位传感器和雨量传感器以及水质、水位等传感器等。第四就是电源。电源主要选择的是密封的蓄电池,并能够通过太阳能板进行充电,这样能够具有一定的环保性。另外这些电池还具有自动启动和切断的装置,只有在发送数据的时候才会启动,从而提升蓄电池使用寿命,并节省用电。

1.3北斗卫星通信链路分析

北京市某地北斗卫星的通信链路构成主要包括了北斗卫星以及网管中心。这个链路的功能就是对水情测报站的数据进行备份以及进行查询和下载。

1.4北斗卫星的监测中心

北斗卫星的监测中心自然是这个水情测报系统的核心,主要有由卫星指挥型终端以及数据接收端和数据库等构成。这个监测中心是所有数据的交汇点。同时也是控制中心。第一是卫星接收终端。主要具备兼收功能和通播功能以及全信道锁定以及大数据处理功能。同时还包括了内置的电池。第二就是接收数据服务器。这是专门集中管理数据的重要设备。具备两个信道来进行接收。其中第一个信道主要是连接互联网,通过互联网来进行数据接收。第二个信道则是通过卫星系统。在北京某地的水情测报系统,这个信道就是和北斗卫星通信系统进行实时的数据接收。这个数据也能够通过RS232串口来接收。第三就是水情数据库。当数据接收服务器接收到各种途径获得数据之后,就会对这些数据进行解码和分析,然后将水情数据录入到水情数据库中,从而为各种水情的应用提供服务。第四是数据应用服务器。这个服务器主要是对水情数据进行处理和存储以及统计报表等。另外监测中心能够将指令或者某一个执行动作信息发到各地的遥测站点,或者指定某个遥测站点进行发送。

1.5北斗卫星自动测报的软件设计

北斗卫星自动测报的系统软件主要包括两个部分。其一是控制测站的软件。在北京的水情自动测报系统中,主要是有北斗卫星监控中心以及遥测站点形成一对多的传输关系。遥测站将感应信息通过卫星传输到监控中心,然后监控中心反馈收到信息。而这些遥测站点会根据相应的反馈信息进行相应的处理,或者转入休眠,抑或是重新要求遥测站点进行收集数据。其二就是软件系统的处理。这是系统软件的关键部分,能够对遥测站点传输的数据进行多元化的处理,从而为相应的使用人员提供多种的水情服务,有助于提升当地的水情观测水平。

1.6通信机制的设计应用

北京的水情自动测报系统的通信机制设计的关键在于解决了通信频度控制问题以及信息格式的设计问题两种。其一是通信频度的控制策略。基于北斗卫星通信系统的收费标准要比移动的GSM以及全球卫星定位系统的GPRS的费用都要高出不少,根据北京市场大概要高出5倍多。因此在发送信息策略上和普通的移动遥测站的数据传输策略要尽心差异化。只有在出现明显差异的水情数据时,才会性发送。根据北京的通信费用,每次传输为0.5元。因此北京的遥测站点设置传输策略为每小时传输一次。如果没有发生变化,如没有下雨,每天在早晨8点发送一次平安数据报。这样就能有效的降低信息的传输次数,节省了传输费用。其二就是在信息格式设置上,北斗卫星通信系统可以设置的短字节有43字节数和70字节数以及98字节数三种,字节数越大,那么单次的传输内容就越多,因此费用也就越高。由于水情数据相对较为复杂,而且为了提升数据的准确性,在北京的水情自动测报系统上,就采用了98字节数进行传输,所以每次的传输价格在1元。

2结束语

卫星通信论文篇7

本系统采用LabWindowsCVI来进行设计与开发,系统软件框图如图2所示。软件系统由监控界面、参数设置模块、数据采集模块、程控命令模块、数据处理模块、图像显示模块和数据存储模块组成。各模块功能通过LabWindowsCVI进行模块化设计。计算机通过GPIB通信接口对AV4033的功能控制是通过程控仪器标准指令来实现的,程控指令是可以对频谱仪进行远端控制的一组特殊格式串,包括仪器设置、通道配置、数据扫描方式、控制输出、读取数据、状态报警、接口设置等指令集。这些指令的发送均是字符串形式,所有的频谱仪命令都必须符合特殊的语法规则,在应用高级语言进行编程时,程控指令一般是作为一个独立的参数在调用函数中出现,这类针对远程控制的函数随GPIB接口和采用的高级语言的不同而不同,但其程控指令是相同的,AV4033系列频谱仪的语法命令图如图3所示。本文利用程控指令和频谱仪进行通信时,选择LabWindowsCVI自带的GPIB函数库,可以方便地进行程控命令发送和数据读取操作。

2应用举例

卫星固定通信台站天线口径大波束窄,对天线伺服系统的自动跟踪性能要求较高,为确保通信效果,需定期测量卫星天线系统的自动跟踪性能,传统的测试方法需用频谱仪在射频方舱内测试,且测试结果保持和记录都不方便,利用本系统可以方便进行远程测试,而且可以将测试结果保存在数据存储单元中,方便后续查询和参考。卫星天线跟踪性能测试流程如下:(1)调整卫星天线使其对准通信卫星;(2)在监控主机上按下述过程设置频谱仪;a)按卫星信标频率设置频谱仪中心频率,设置SPAN为0到100KHzb)根据信标信号的电平变化范围设置Sacle/DIV,以使测量过程中的载波电平变化始终落在频谱仪的可显示电平范围内c)根据信标频率稳定度,选择尽可能窄的RBWd)根据载波的峰值频率和功率,调整频谱仪的中心频率和参考电平e)利用键盘调窄SPAN,重复4f)重复5,将SPAN调整到最小g)将SPAN置0,使载波显示谱线作水平运动h)输入扫描时间,确定扫描长度(3)用手控方式调偏卫星天线的方位角和俯仰角,频谱仪显示谱线的电平将随天线偏离卫星而下降(4)启动天线自动跟踪功能,观察卫星信标电平随时间的变化,记录自动跟踪天线的对星过程以及跟踪速度和精度(5)存储记录数据,重复3、4步骤,多记录几次测试结果,分析卫星天线自动跟踪性能。

3结束语

卫星通信论文篇8

信道群时延响应是相位频率响应的导数,用于表示相位频率响应的畸变程度,在信道频带的边缘由滤波器过渡带抑制变化引起的相位畸变尤其严重。式(1)中,θ(w)为相位频率响应,群时延响应τ(w)可以表示为:τ(相位噪声采用在频域模拟的方法,为了使仿真相位噪声情况更为接近实际的相位噪声,按分辨率1Hz产生数字相位噪声。假定其他信道参数为理想情况下,仿真了3种相位噪声对卫星通信系统性能的影响,仿真条件如表5所示。仿真发现在相位噪声值1的情况下会出现误码平台,在相位噪声值2和相位噪声值3的情况下,传输性能损失小于0.2dB。

2综合仿真及系统指标建议

假设功率放大器在不同非线性工作点的群时延特性、幅频特性和相位噪声特性是一致的,选择带宽36MHz卫星转发器,依据上述仿真参数对信道群时延特性、幅频特性、相位噪声特性和非线性失真进行综合仿真。将卫星转发器的放大器的输入功率相对饱和点回退10dB,保证功率放大器工作在近似线性状态。对卫星信道的群时延特性、相位噪声特性及幅频特性进行综合仿真,仿真结果表明,当误码率1×10-6时传输性能损失约11dB。将转发器的放大器的输入功率相对饱和点回退0dB(即饱和)、2dB、5dB和10dB时,综合仿真卫星通信系统的群时延特性、相位噪声特性、幅频特性对系统传输性能的影响,仿真结果如表7所示。

参考综合仿真结果,对系统指标分配提出如下建议:当转发器的功率放大器工作于饱和点时,接收机射频指标在中频指标的基础上增加大于2.3dB;在功率放大器的输入功率回退2dB的情况下,接收机射频指标在中频指标的基础上增加大于1.6dB;在功率放大器的输入功率回退5dB的情况下,接收机射频指标在中频指标的基础上增加大于1.3dB;在功率放大器的输入功率回退10dB的情况下,即在功率放大器工作于线性状态下,接收机射频指标应在中频指标的基础上增加大于1.1dB。

3结束语

推荐范文
推荐期刊