线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

电力电子器件论文8篇

时间:2022-09-11 17:37:26

电力电子器件论文

电力电子器件论文篇1

【关键词】电子科学与技术;电子材料与器件;教学方法

电子材料与器件课程是电子科学技术相关专业的基础性课程,对于学生巩固基础知识和提高专业技能是极为重要的。而提高电子材料与器件课程教学的质量,使课程与社会需求相结合,是高校教师探索的重中之重。笔者承担着我校电子材料与器件课程的教学任务,在总结教学经验的基础上,笔者在教学内容、课程安排和教学形式等方面进行了尝试,并取得了一定的教学成果。

1.电子材料与器件简介

处于电子科学技术产业链前端的电子材料和元器件是众多核心基础产业的重要组成部分,是计算机网络、通讯、数字音频等系统和相关产品发展的基础。电子材料与器件是指在电子技术和微电子技术中使用的材料和器件,包括半导体材料与器件、介电材料与器件、压电与铁电材料、导电金属及其合金材料、磁性材料光电子材料和磁性材料、电磁波屏蔽材料以及其他相关材料与器件。电子材料与器件是现代电子产业和科学技术发展的重要物质基础,同时又是科技领域中技术导向型学科。它涉及到物理化学、电子技术、固体物理学和工艺基础等多学科知识。根据材料的化学性质,可以分为金属电子材料,电子陶瓷,高分子电子、玻璃电介质、气体绝缘介质材料,电感器、绝缘材料、磁性材料、电子五金件、电工陶瓷材料、屏蔽材料、压电晶体材料、电子精细化工材料、电子轻建纺材料、电子锡焊料材料、PCB制作材料、其它电子材料。

2.电子材料与器件课程教学模式

2.1电子材料与器件课程教学形式

电子材料与器件课程既包含电子材料的物理特性和电子器件的工作原理,还包含丰富的电子材料与器件的理论知识,并且与实践应用紧密结合。为了更好的培养学生的时间能力,增强实践意识,达到学以致用的目标。因此,电子材料与器件的课程教学应采取实验教学和理论教学相结合的教学形式,教师安排合理的实验活动,将理论教学与实验教学有机结合,达到学生巩固理论知识、增强实践技能的教学目标。

2.2电子材料与器件教学课时安排

教学采用教材《电子材料与器件原理》。在电子材料与器件教学的课时安排上,该课程作为电子科学与技术专业的核心课程,电子材料与器件课程的总课时应不少于80学时,理论课学时设计应在64学时左右,实验课学时应在16学时左右,任课教师可以根据教学过程中的实际情况增加或减少某一章节的课时安排。

2.3电子材料与器件课程教材选择

在电子材料与器件课程的教材选择方面,由于电子材料与器件是电子科学技术的一部分内容,目前我国关于电子科学技术的参考书籍很多,其中也不乏经典教材,但考虑到本科生对于该课程接触时间段、基础知识薄弱等特点,笔者认为任课教师可以自行编写课件和讲义,以便学生更好的理解教学内容。除此之外,由加拿大萨斯喀彻温大学电气工程系教授、加拿大电子材料与器件首席科学家萨法・卡萨普编写的《电子材料与器件原理(第3版)》也是业界公认的电子材料与器件教学的参考书籍。

3.电子材料与器件课程的理论教学

在新时期素质教育的背景下,电子材料与器件课程的理论教学更侧重于加强学生的实践能力,因此需要对传统的电子科学技术教学中重视原理、定律和规律的模式进行调整,在教学内容的设置方面,为了便于学生更好的理解知识体系,以笔者讲授电子材料与器件理论课程(共80学时)为例,该理论课程共被划分为材料科学的基本概念、固体中的电导和热导、量子物理基础、现代固体理论等四个章节,这四个章节阐述了电子材料与器件涉及的基础理论,内容包括材料科学基础理论、固体中的电导和热导、量子物理基础和现代固体理论,以及对各种功能材料与器件的原理与性能的讨论。另外,在讲授每章内容时,任课教师应注意弱化理论知识,增加实践知识。

4.电子材料与器件课程的实验教学

电子材料与器件的实验教学要与理论教学紧密结合,并重点介绍理论课上讲过的电子材料与器件,实验课程学时不能偏少,开设实在要安排在理论教学完成之后,使学生能够充分将理论知识应用于实践中。在实验开始前,教师要要求学生充分掌握理论知识,实验结束后,学生要写实验报告,使实验切实产生作用,而不是走马观花。在实验课程的设定方面,要尽量避免与其其它验课程的重复,还要确保理论与实践相辅相成,充分利用实验资源。

5.电子材料与器件课程的学生评价体系

素质教育的电子材料与器件课程的学生评价标准应区别于传统的考试评价方式,教师要将学生的平时表现、理论知识掌握、实践能力等纳入对学生的评价体系中。促使学生不再局限于对电子材料与器件规律、定义等知识的僵化掌握,而是将学习重点偏向于实践和应用。这种评价方式的转变,有利于学生积极主动的掌握知识,在实践中巩固理论知识,在理论中深化实践知识,全面提高电子材料与器件的课程教学效率和质量。

电子材料与器件在信息产业的发展与科学技术的研究中的重要性与日俱增。它既是电子科学技术体系专业知识中的重要环节,更为电子科学专业的学生提供了良好的科研基础和就业竞争力。本文通过对电子科学与技术专业特点与电子材料与元器件课程内容的分析,探讨了电子材料和元器件在电子科学专业领域的重要性,笔者还结合自身多年电子科学专业的教学经验,对电子材料与元器件教学的教学形式、课时安排、教材选择进行了新的探索,对电子材料和元器件的理论和实践课程提出了新的意见和建议,以便于提高教学质量,提升学生专业素养。

【参考文献】

[1]萨法・卡萨普.《电子材料与器件原理(第3版)》.西安交通大学出版社.2009年6月

[2]安毓英,刘继芳,李庆辉.光电子技术[M].3版.北京:电子工业出版社,2013

电力电子器件论文篇2

关键词 半导体器件 半导体物理 教学思考

中图分类号:G642 文献标识码:A 文章编号:1002-7661(2017)02-0058-02

随着半导体技术的发展,微电子技术已渗透到渗透到国民经济的各个领域。《半导体器件物理》是微电子技术的理论基础,是理解半导体器件内部工作原理的课程,是分析器件物理结构、材料参数与器件电学性质之间的联系,其提供了半导体物理与电子电路设计间的物理逻辑与数学联系,是基于CMOS工艺设计集成电路的必备知识。因而,在教学过程中,如何将物理图像、数学模型与电子电路设计间的关系讲解清楚,让学生从物理和集成电路设计的角度深层次理解半导体器件成为授课关键。

一、教学内容与预期

《半导体器件物理》是微电子科学与工程专业的重要专业基础课程,是在半导体物理课程基础上继续开展器件物理的分析、建模和应用,具有物理理论抽象、概念细节多、半导体物理与电路等学科知识相交叉等特点,学生学习较为困难。基于此,本课程授课以施敏先生著的《半导体器件物理》为主要教材,依据教学大纲和学生未来的工作实践,对《半导体器件物理》课程教学内容进行了调整、充实和删减。具体来说《半导体器件物理》教学内容可分为以下几部分:1)介绍半导体材料、PN结、半导体表面的特性等,2)讲解双极型、MOS型晶体管的结构和工作原理,3)分析几种有重要应用的半导体器件,如功率MOSFET、IGBT和光电器件等。[1,2]期望学生接受教学后的预期能力:1)能够深入理解半导体器件关键物理概念和能带理论;2)能够将半导体物理与半导体PN结的行为结合起来理解分析;3)能够以半导体PN结为基础理解几种不同的半导体器件;4)能够理解和提出新型半导体器件设计中的关键物理和电学问题。

二、教学方法及学生能力目标

本课程以课堂授课为主,同时引入小组和班级讨论、课后建模实践等互动教学方法,培养学生构建器件物理图像、建模和与电子电路设计综合联系的能力,独立发现、分析、解决器件问题的能力。同时基于《半导体器件物理》课程的特点,在教学手段上采用板书公式推导与多媒体器件模型演示为主,网络教学资源为辅,同时邀请集成电路产业半导体器件资深专家讲座等形式,提高学生掌握知识和设计实践的能力,提高教学质量。让学生渐进达到如下能力:(1)知道基本概念,(2)从理论上理解和解释,(3)能够根据器件理论做出计算、模拟和实际的器件应用,(4)对器件进行综合、设计、分析;(5)对器件能够从物理和电学的角度做出专业评价。

三、学生学习效果评价方式

为了客观评价每个学生的实际学习效果和激励学习兴趣,改革评价方式是十分必要的。在期末闭卷考试基础上,对成绩评价方式作如下新探索:增加平时成绩比例,每个月进行一次小测试,针对几个集成电路广泛应用的建模理论和半导体器件,要求学生从半导体物理的角度作出独立的分析报告,可以在课后查阅文献资料,并在后续课堂上进行交流讨论,增强学生独立思考与实践动手能力,培养学生深度器件分析能力。

课堂教学改革需要教师不断思考、总结与创新,即要传授知识,又要与学生互动反馈,让学生更深刻迅速的理解专业知识,并能灵活的实践运用。

参考文献:

[1]施敏等,耿莉等译.半导体器件物理[M].西安:西安交通大学出版社,2008.

[2]Donald Neamen著.赵毅强等译.半导体物理与器件[M].北京:电子工业出版社,2013.

[3]杨虹等.面向21世纪的微电子技术人才培养-微电子技术专业本科生教学计划的制订[J],重庆邮电大学学报,2004.

电力电子器件论文篇3

[关键词]纳米电子器件;纳米电子技术;纳米电子器件分类;纳米电子设备加工技术

中图分类号:TN405 文献标识码:A 文章编号:1009-914X(2016)02-0074-01

引言

根据摩尔定律,当价格恒定时,集成电路上的元器件数目,每经过18到24个月便会增加一倍,性能也会提升一倍。但是在未来的几十年内,在继续提高计算器的运算能力和存储能力等方面将面临严峻的挑战,这其中既有技术性的工艺限制,也有原理性的理论限制。主要有:(1)当电子器件的大小尺寸处于微米级别时,电子主要表现为粒子性,而当大小尺寸为纳米级别时,电子主要表现的却是波动性,此时的电子器件将在完全不同的原理下工作;(2)当器件尺寸减小到纳米级别时,该系统产生的热起伏将会限制电子器件的性能,致使其无法正常运行。

纳米电子技术和电子器件的出现及发展有望打破这种困局,同时也为微电子技术的发展提供了新的思路和转机。本文将阐述纳米电子技术和纳米电子器件的分类及指出在纳米电子领域中所面临的和亟待解决的问题。

1 纳米电子技术与纳米电子器件

纳米电子技术是指在纳米尺寸级别内构建纳米和电子器件,进而完成量子计算机和量子通信系统之间的信息计算及传导与处理的相关技术,纳米电子技术发展的核心是纳米电子器件。纳米电子技术正处于高速发展时期,其最终目标是为了利用最前沿的物理理论和工艺手段,打破原有的大小尺寸及技术极限,依照全新的设计理念制造纳米电子器件,构建电子系统,使得该系统的信息存储和处理能力走上新的台阶,实现革命性的突破。

纳米电子器件指使用纳米级别的加工和制造技术(如光刻工艺、外延、细微加工、自组装生长和分子合成技术等),设计并制备而成的具有纳米级别的尺度和某些特定性能的电子器件。当前人们通过纳米电子材料和纳米光刻技术,已设计出多种纳米电子器件,例如电子共振隧穿器件、金属基、单电子晶体管、半导体、单电子静电计存储器及逻辑电路、金属基单电子晶体管存储器、通过硅纳米晶体制造的存储器、聚合体电子器件、纳米硅微晶薄膜器件和纳米级浮栅存储器等

2 纳米电子器件的分类

国内外对纳米电子器件分类有着不同的看法。根据目前纳米电子技术的发展和对未来发展前景的估测,有一种看法将纳米电子器件从广义分成8类:(1)纳米CMOS混合电路,有纳米CMOS电路及半导体共振隧道效应混合电路,单电子纳米开关电路和纳米CMOS电路,还有碳纳米管电路和纳米CMOS电路,人造原子电路和纳米CMOS电路,DNA电路和纳米CMOS电路;(2)纳米存储器,例如隧道型静态随机存储器、单电子存储器、超高容量纳米存储器和单电子量子存储器等;(3)纳米集成电路,有纳米光电电路及纳米电子集成电路;(4)纳米传感器,例如量子级别的隧道传感器;(5)单分子器件,例如单电子开关、分子线、电化学分子电子器件、单原子点接触器件、量子效应分子电子器件等;(6)单电子器件,例如电容耦合和电阻耦合单电子晶体管、单电子泵、单电子箱、单电子陷阱、单电子泵和单电子结阵列等等;(7)量子效应器件,例如量子点器件、谐振隧道器件和量子干涉器件等等;(8)纳米级别的CMOS器件,例如异质结MOSFET、双极MOSFET、绝缘层上硅MOSFET、和低温MOSFET等等。以上分类中,纳米传感器、存储器、纳米集成电路、纳米级CMOS器件和纳米CMOS混合型电路等均作为一种完全独立的器件类型。但是否应该将这些纳米级别的CMOS器件、传感器或者纳米集成电路纳入纳米器件的范畴,当前还未有定论。

3 纳米结构制备和加工技术

无论是研究纳米电子技术,还是制作纳米电子器件都是非常复杂的。本文仅对纳米电子器件的制备进行简单的探索,提供一些思路和建议。

3.1 光刻技术

电子束光刻、光学光刻与离子束光刻统称为三束光刻技术,机理是通过曝光掩模、刻线等物理化学工艺将设计的器件图形结构传递到介质或单晶表面上,形成功能图形的加工技术。目前,随着光刻技术线宽的不断缩减,电子束光、刻光学光刻与离子束光刻等技术已在纳米CMOS器件、纳米CMOS混合集成电路、纳米集成电路等加工领域去的较好应用效果,并逐渐在纳米电子器件加工方面获得了应用。

3.2 外延技术

原子层外延、分子束外延金属、有机化学汽相淀积与化学束外延技术统称为外延技术,是一种在基体上生长纳米薄膜的纳米制造技术,可用于纳米集成电路上的硅基半导体材料和纳米半导体结构,均用于器件的加工与制备。

3.3 分子自组装合成技术

自组装是依靠分子间非共价键力自发将无序状态结合成稳定的聚集体的过程,可以发生在不同的尺度上。自从80年代有人提出分子器件的概念至今,人们已从当年的LB技术发展到了如今的分子自组装技术,同时从双液态隔膜技术发展到了SBLM技术,现已在加工具有特定功能的分子聚集体、分子组装有序分子薄膜等方面取得了丰硕的成果。目前,国际上已开始研究超分子自组装合成技术。

3.4 SPM技术

自从1982年第一台扫描隧道显微镜(STM)诞生,以及后来各种扫描探针显微镜发明以来,人类对微观纳米世界的认识翻开了新的一页。现今的扫描探针显微镜(SPM)的横向分辨率可达0.1nm,纵向分辨率可达0.01nm,不仅可以进行观测高分辨率的三维成像,还可对材料表面结构的不同性质进行研究。因此,这已不仅是一种简单的微观测量和分析的工具,更是一种非常重要的微观操纵与加工工具。

3.5 特种超微细加工技术

还有另外一些特殊的超微细加工技术,可用于制备和加工纳米电子器件:包括纳米碳管构建FET;通过机械控制裂隙连接电极技术制备Au原子线;以介孔材料、纳米碳管、DNA分子为模板,电火花加工、制备量子线、电化学加工及超精密复合加工、电解射流加工等技术等。

4 展望

纳米技术目前的发展现状是非常可观的,具有一定的社会意义。其作为一项具有应用性、高性能和巨大潜力的科技成果,在一定程度上对人们的生活起到重要的作用。纳米电子技术是以许多现代自然科学技术为基础的科学,研究涉及混沌物理、量子力学、基础化学、分子生物学等现代科学和计算机技术、核分析技术、扫描隧道显微镜技术和微电子等多种现代技术,并与机械学、生物学、认知科学等学科相互融合,这种融合发展必然会引发各行业各领域的科学技术发展,对于人类而言,不仅可以改善生存环境,提高生活水平,并且还将从根本上造福全人类。

参考文献:

[1] 王敏,简述纳米电子器件与纳米电子技术研究分析,中国科技投资,2013(36):P221.

[2] 肖蓉,纳米技术在电子器件上的应用与发展,建筑遗产,2013(7).

电力电子器件论文篇4

【关键词】混杂系统控制;最优控制;电力电子

0引言

由于电力电子变换器本质的高阶非线性,闭环控制问题多年来未能得到较好的解决。线性、非线性和智能控制理论在电力电子中先后得到应用,由于模型存在误差或者控制理论本身的不完备,这些解决方案都未能达到最佳。近年来随着半导体技术的发展,高精度的高速微处理器的出现和普及,使现代控制及智能控制方法的实时计算或近似估算成为可能。在设计高性能的电力电子系统时,先进控制理论的应用是很有实用价值的。本文对混杂系统控制理论的发展现状做了总结,对电力电子变换器的混杂系统建模及混杂系统控制理论在电力电子学的应用进行了总结和展望,指出切换系统最优控制的应用是一个比较新颖的研究方向。

1混杂系统控制的研究现状

混杂系统是一类包含相互作用的连续动态过程和离散动态过程的动态系统,混杂系统控制理论是继线性系统、非线性系统控制理论之后发展起来的系统控制理论。经典及现代控制理论研究的数学模型可以视为混杂系统的一个特例,而将传统控制的理论体系推广到混杂系统控制理论还有大量的理论研究要做。混杂系统的模型有很多种,如层次结构模型、自动机模型,混合逻辑动态模型,切换模型等,其中应用最广泛的是自动机模型。混杂系统的控制方法与现代控制理论类似,也包括自适应控制、学习控制、容错控制、镇定控制、最优控制和鲁棒控制等,这里仅对三种研究较为深入的控制方法加以说明。(l)镇定控制:是指在给定平衡点下,调整控制策略,使系统由不稳定转换为稳定的控制策略。类似传统控制中用输出或状态反馈令开环不稳定系统闭环稳定。(2)最优控制:就是在约束条件下,满足初值和终值条件,并使系统的给定性能指标达到最优的控制策略。(3)鲁棒控制:实际的混杂系统通常存在各种不确定性,鲁棒控制器按标准状态设计,也能够分析并克服这些不可预见的干扰因素,令闭环系统具有一定的鲁棒性。

2电力电子变换器的混杂系统建模

电力电子变换器中开关器件的存在,使它成为一个典型的开关非线性系统。随着开关的通断,电路处在不同的工作状态;每一个状态中,系统都随时间连续运行。在变换器外部或内部事件的驱动下,系统在各个状态间循环跳转,输出由在几个状态间的切换平均实现。变换器的运行特征与混杂系统完全吻合,因此可以说,电力电子变换器是一类典型的混杂系统。目前在电力电子变换器的混杂系统建模中应用较多的有自动机模型和切换系统模型,按这两种思路得到的变换器数学模型基本是一致的。

3混杂系统控制在电力电子中的应用

在国内,从20世纪末开始,越来越多的学者投入到混杂系统控制理论的研究,并致力于将混杂系统控制理论应用于电力电子变换器,目前取得了一定的成果。文献[3]是国内较早将混杂系统理论引入电力电子变换器研究的论文,对电力电子电路进行了混杂系统建模、故障诊断、事件辨识以及小波故障分析等方面的研究。文献[4]对变换器用自动机模型建模做了有益的探索,利用混杂自动机理论建立了电力电子电路的统一抽象模型,并设计出新型滑模变结构控制器。将混杂系统模型和非线性控制方法结合是有益的尝试。文献[5-6]建立了DC-DC变换器的切换线性系统模型,并引入了切换线性系统投影法的概念,提出最小投影法切换律的控制策略。仿真和实验结果表明最小投影法切换律在DC-DC变换器中具有普遍适用性。为了实现切换控制的鲁棒性,与PI控进行了结合在扰动情况下对平衡点进行修正。最小投影法切换律的本质是切换系统在任意初始状态都能够选择一个指向平衡点的速度矢量场,使系统轨迹不断逼近并最终稳定运行于平衡点。

4切换系统最优控制及其在电力电子中的应用展望

对混杂系统的最优控制问题的研究,取得了一定的成果,特别是基于切换线性系统的最优控制。基于经典的动态规划方法,文献[7]针对切换线性系统的最优控制提出了一种二阶段算法。首先固定切换序列,在此条件下求得切换系统最优控制问题的次优解;然后改变切换序列(改变切换次数和顺序)来求全局最优解。当把电力电子变换器视为周期的切换线性系统,可以用来实现多种目标的最优控制。这种情况下系统不能达到一般意义上的最优,但是其运算较为简单,在一定程度上可以达到设计目标,具有一定的实用价值。文献[8]给出基于范数、基于收敛路径、基于收敛距离、基于收敛方向和基于综合的周期切换线性系统的最优切换律的设计方法,可以尝试推广到更复杂的情形,检验其性能。切换系统控制本身还不成熟,有很多问题在控制理论上未能很好地解决。由于切换线性模型可以精确地描述电力电子变换器,切换线性系统最优控制期望能得到更好的特性。

5结论

作为一门交叉学科,电力电子学的发展与控制理论的应用密切相关。目前混杂控制理论还有较大的发展空间,它在电力电子的应用更是刚刚起步。切换控制是新兴的控制方法,由于它所处理的切换系统模型可以较为精确地刻画电力电子变换器,它在电力电子中的应用具有较好的前景。

作者:王磊 单位:韩山师范学院物电系

【参考文献】

[1]张波.电力电子学亟待解决的若干基础问题探讨[J].电工技术学报,2006,21(3):24-35.

[2]杨宽,"基于混杂系统理论的电力电子电路建模与控制研究[D]"2010.

[3]胡宗波,张波,邓卫华,等.基于切换线性系统理论的DC-DC变换器控制系统的能控性和能达性[J].中国电机工程学报,2004,24(12):165-170.

[4]胡宗波.基于切换线性系统的DC-DC变换器控制基础理论研究[D].广州:华南理工大学,2005.

[5]肖文勋.电力电子变换器切换线性系统模型的稳定性与最小投影法切换律[D].广州:华南理工大学,2008.

[6]Wenxun,X.,Bo,Z.&Dongyuan,Q.Modelingandcontrolruleofthree-phaseBoost-typerectifierasswitchedlinearsystems[C].InternationalConferenceonElectricalMachinesandSystems,17-20Oct.2008,1849-1854.

电力电子器件论文篇5

关键词:中职;电子技术;EWB仿真

中图分类号:G712 文献标识码:B 文章编号:1006-5962(2013)07-0059-01

1中职学校电子技术教学的现状

首先,电子专业学习的电子技术基础,是一门理论性和实践性都较强的课程,理论方面不但知识面广,信息量大,基础概念繁多[1],而且在有限的学时内用传统的授课形式去讲授,教学效果不太理想。

其次,由于条件限制,电子专业实验室配备的教学实验设备种类和数量都很有限,仅仅只能满足课本中最基本的教学实验要求。且实验室元器件和仪器损坏、淘汰更新滞后,无形中是影响教学效果的消极因素之一。

再次,大多数中职学生,是以中考失败者的心态进入职业学校的,在理论知识学习方面基础差,积极性不高,他们如果无法顺利接受新知识、及时掌握新内容,就会在学习过程中逐渐丧失兴趣。

影响中职电子技术教学的不利因素可能还有很多,但以上三点现状较为普遍,它们严重影响着电子专业中职生的教育教学。如何改善这些不利教学现状,计算机仿真技术为我们提供了一条理想的途径,其中EWB就是有力的解决工具之一。

2EWB的功能与特点

EWB是一种电子电路计算机仿真软件,它被称为电子设计工作平台或虚拟电子实验室,英文全称为Electronics Workbench,是加拿大Interactive Image Technologies公司于1988年开发的,是目前教育与工业界流行的电路辅助设计软件之一。

EWB主要用于电子技术中模拟和数字电路的仿真,利用这款软件不仅能绘制电路图,还能进行电路功能仿真分析[2],可以方便的从计算机屏幕上观察到各种电路的输入输出信号参数及波形,以所见即所得的方式进行电路设计和获得电路仿真结果,通过它甚至还能进行PCB设计制版。

EWB具有以下突出的特点: 1、采用直观的图形界面创建电路,在计算机屏幕上模仿真实实验室的工作台,选择合适的元器件绘制电路图、电路设计仿真需要的器件均可直接从屏幕上选取;2、软件仪器的控制面板外形和操作方式都与实物相似,可以实时显示测量结果;3、EWB软件带有丰富的电路元件库,提供多种电路分析方法;4、作为实用设计工具,它可以同其它流行的电路分析、设计和制板软件交换数据;5、EWB还是一个优秀的电子技术训练工具,利用它提供的虚拟仪器可以用比实验室中更灵活的方式进行电路实验,仿真电路的实际运行情况,熟悉常用电子仪器测量方法。

我校教学中使用的是EWB9版本,其核心组成部分是Multisim9。如果涉及到PCB制版,还应安装Ultiboard组件。当前EWB最新版本为Multisim11。

3电子技术教学引入EWB虚拟电子实验室的作用

3.1EWB使用方便,直观理解抽象概念。

EWB是个极好的电路设计仿真工具,稍有计算机操作基础的人只需略加学习就可以很熟练地使用该软件,无需动用电烙铁和面包板即可实现电路设计搭建。若想更换电路中的元器件或改变元器件参数,只需点点鼠标即可,它极方便于作为电子技术的辅助教学软件使用。

通过仿真可以直观理解抽象概念,降低知识理解难度。例如,学习共射极三极管放大电路时,对不同的极间偏置电压和不同的输入信号大小,三极管对应有三个工作区,输入输出特性曲线复杂。在理论讲解时,中职学生对于这些特性参数,理解起来有很大的困难。利用EWB仿真,教师就可以边理论边讲解,在进行参数调整的同时,用示波器来演示相应的结果,学生对三极管不同工作区及放大的概念理解就会很直观,并能理解透彻,使抽象的知识点变得形象化。还有模拟电路中的单管放大电路工作点设计,放大电路的负反馈,多级放大电路,差动放大电路,运算放大器的应用,稳压电源设计等很多电路都可以通过仿真来实现[3]。

3.2EWB资源丰富,弥补实验设备不足和更新滞后。

中职学校电子教学中涉及到许多元器件和抽象的电路,无论是元器件的功能讲解,还是仪器仪表的使用,或者电路功能的调试,都需要大量的实验来同步模拟和验证。而大多数中职学校都存在实验设备限制、学生难以理解和缺乏实践操作的普遍问题,而将EWB仿真软件引入中职学校的电子课堂,恰恰解决了这一难题。

EWB软件可以几乎100%地仿真出真实电路的结果,它提供了万用表、示波器、信号发生器和扫频仪等11种虚拟仪器进行电路动作的测量分析工具,元件库包含了世界主流元件提供商的超过17000多种元件,其中囊括了半导体元器件(如二极管、三极管、功率管)、集成电路、数字电路芯片(如74系列、COMS系列)和控制器件(如继电器)等等。同时能方便的对元件各种参数进行编辑修改,创建自己所需的元器件,使元器件的规格、误差和故障等参数完全模拟现实元器件。

3.3通过仿真实践教学,提高学生学习积极性。

在教学中发现,中职学生大部分是初中的"后进生",他们起点低、对理论知识的接受能力不强,但其计算机操作及实践动手能力却很强。抓住这个特点,可以多开设实验课,把理论学习过程所涉及的电路、仪器以及实验结果,通过电脑仿真的形式让学生在老师的指导下一一仿真验证。仿真还可作为过渡与补充放置在教学环节的中间,即:理论教学-计算机仿真-实验环节[4]。仿真电路应根据课程的教学内容选自教材或参考书中的典型例题及课后习题。

通过EWB仿真教学,在教师讲授理论的同时,可以很方便地进行实时实验仿真,使学生对知识理论牢固掌握。学生可以很好地把刚刚学到的理论知识通过计算机仿真真实再现,有效地增强学生的学习热情调动学习积极性。

4结束语

近年来,我校在电子技术教学中引入了EWB,通过仿真教学不仅形象化了理论教学而且弥补了实验教学的不足,学生在实践动手的同时,直观形象的了解了各种元器件的功能和使用各种仪器,提高了实践学习积极性,激发了学生的创新性思维,培养了学生自己动手解决实问题的能力。

总之,在中职《电子技术》课程教学中应充分利用CAI手段,使理论教学与仿真验证相结合,将抽象的理论知识变成直观的认识,解决教学中面临的实际问题,发挥EWB仿真教学的积极作用来增强教学效果、提高实验效率、提升学生能力,使职业教学取得好的效果。

参考文献

[1]童诗白,华成英.模拟电子技术基础[M].北京:高等教育出版社,2001.

[2]李国丽,应艳杰,盛华等. 电工电子实验教学改革[J].电气电子教学学报,2008,(10):60-61.

电力电子器件论文篇6

关键词:发展趋势技术创新器件开发应用推广

1概述

自本世纪五十年代未第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装置,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。进入70年代晶闸管开始形成由低电压小电流到高电压大电流的系列产品,普通晶闸管不能自关断的半控型器件,被称为第一代电力电子器件。随着电力电子技术理论研究和制造工艺水平的不断提高,电力电子器件在容易和类型等方面得到了很大发展,是电力电子技术的又一次飞跃,先后研制出GTR.GTO,功率MOSFET等自关断全控型第二代电力电子器件。而以绝缘栅双极晶体管(IGBT)为代表的第三代电力电子器件,开始向大容易高频率、响应快、低损耗方向发展。而进入90年代电力电子器件正朝着复台化、标准模块化、智能化、功率集成的方向发展,以此为基础形成一条以电力电子技术理论研究,器件开发研制,应用渗透性,在国际上电力电子技术是竞争最激烈的高新技术领域。论文百事通

2电力电子器发展回顾

整流管是电力电子器件中结构最简单,应用最广泛的一种器件。目前已形成普通型,快恢复型和肖特基型三大系列产品,电力整流管对改善各种电力电子电路的性能,降低电路损耗和提高电流使用效率等方面都具有非常重要的作用。自1958年美国通用电气GE公司研制出第一个工业用普通晶闸管开始,其结构的改进和工艺的改革为新器件开发研制奠定了基础,在以后的十年间开发研制出双向,逆变、逆导、非对称晶闸管,至今晶闸管系列产品仍有较为广泛的市场。

1964年在美国第一次试制成功了0.5kV/0.01kA的可关断的GTO至今,目前以达到9kV/0.25kA/0.8kHz的可关断的GTO至今,目前以达到9kV/2.5kA/0.8kHZ及6kV/6kA/1kHZ的水平,在当前各种自关断器件中GTO容量量最大,但其工作频率最低,但其在大功率电力牵引驱动中有明显的优势,因此它在中压、大客量领域中占有一席之地。70年代研制出GTR系列产品,其额定值已达1.8kV/0.8kA/2kHZ,0.6kV/0.003kA/100kHZ,它具有组成的电路灵活成熟,开关损耗小、开关时间短等特点,在中等容量、中等频率的电路中应用广泛,而作为高性能,大容量的第三代绝缘栅型双极性晶体管IGBT,因其具有电压型控制,输入阻抗大、驱动功率小,开关损耗低及工作频率高等特点,其有着广阔的发展前景。而IGCT是最近发展起来的新型器件,它是在GTO基础上发展起来的器件,称为集成门极换流晶闸管,也有人称之为发射极关断晶闸管,它的瞬时开关频率可达20kHZ,关断时间为1μs,dildt4kA/ms,du/dt10-20kV/ms,交流阻断电压6kV,直流阻断电压3.9kV,开关时间<2ks,导通压降3600A时,2.8V,开关频率>1000Hz。

3电力电子器件发展趋势

进入90年代电力电子器件的研究和开发,已进入高频化,标准模块化,集成化和智能时代。从理论分析和实验证明电气产品的体积与重量的缩小与供电频率的平方根成反比,也就说,当我们将50Hz的标准二频大幅的提高之后,使用这样工频的电气设备的体积与重量就能大大缩小,使电气设备制造节约材料,运行时节电就更加明显,设备的系统性能亦大为改善,尤其是对航天工业其意义十分深远的。故电力电子器件的高频化是今后电力电子技术创新的主导方向,而硬件结构的标准模块是器件发展的必然趋势,目前先进的模块,已经包括开关元件和与其反向并联的续流二极管在内及驱动保护电路多个单元,并都以标准化和生产出系列产品,并且可以在一致性与可靠性上达到极高的水平。目前世界上许多大公司已开发出IPM智能化功率模块,如日本三菱、东芝及美国的国际整流器公司已有成熟的产品推出。日本新电元公司的IPM智能化功率模块的主要特点是:新晨

3.1它内部集成了功率芯片,检测电路及驱动电路,使主电路的结构为最简。

3.2其功率芯片采用的是开关速度高,驱动电流小的IGBT,且自带电流传感器,可以高效地检测出过电流和短路电流,给功率芯片以安全的保护。

电力电子器件论文篇7

我国国民经济的不断发展使得我国的电力系统建设获得了长足的进展,尤其是电子技术的引入,促进了我国电力系统的进一步深化,在工业化时代,强电系统已然成了我国电力系统发展中不可替代的一个重要的组成部分,因此本文主要从电子技术在强电系统当中的作用进行深入的分析和探讨。

关键词:

电子技术;强电系统;分析;探讨

0前言

在我国国民经济飞速发展的大环境下,电子技术也有了极大的发展。与此同时,电子技术的发展让大量的新技术运用到了社会的各个领域当中,现如今的社会是高速发展的信息社会,社会中各个领域的发展都离不开信息技术的支持,而随着计算机技术及网络技术的应用,电子技术也应运而生,目前电子技术的应用范围也是极其广泛的,我国最早利用电子系统的时间短是在改革开放之后,那时候人们的生活水平就已经有了很大程度上的提高,而随着物质生活以及文化生活的提高,人们开始对电力能源重视起来,对电力的运行安全问题也是非常的关注,将电子技术应用在强电系统中可以推动我国电力系统的更新,对强电系统的发展也能够起到很好的促进作用。

1电子技术的优势及意义

1.1电子技术的优势

电子技术之所以能够在人类的生产生活中得到广泛的运用,这与它的优势是分不开的,电子技术的优势主要体现在以下几个方面:(1)全控化。由于传统的电器件都是属于半自动形式控制的,半自动控制的电器件一般其换相电路都要比传统的电器件复杂很多,而随着电子技术的引入,自关段器件的电路也得到了进一步的优化,从而更好地运用电子技术实现了全自动控制操作。(2)集成化。所谓的集成化主要是将所有的全控型电子器件利用数量较多的电子单元器件结合在一起,将其放在同一个基片上,这种集成化的处理方式与之前传统的电子器件分立的方式进行比较我们可以非常明显地看出,集成化的处理可以极大地缩短电器件运行的时间,除了这一点以外,高频化的优势也是集成化的一个优点,它可以提高电子器件的工作效率。(3)高效率。高效率化这一优势主要体现在了电子器件及变换技术上,主要是通过电子技术来降低导通的压降,使得最终电器件的效率有了极大的提高,之前在变换器的使用中,多数都是使用硬开关技术,现如今软开关技术的应用,对提高强电系统的运行效率也是起到了非常重要的作用。

1.2电子技术在强电系统中的意义

电子技术在强电系统中的应用可以有效地提高电力能源的应用效率,电子技术还可以提高强电系统运行的安全,能够实现对电力资源的优化配置,降低了电力企业的成本投入,提高了电力企业的经济效益。与此同时电子技术在强电系统中的应用还有效地促进了我国现代化的发展进程,随着高新技术的不断出现,越来越多的产业在投入生产之前都进行了电子技术的处理工作,这样做的目的也是为了进一步的保证电力系统的运行可以在网络技术的监管下进行,保障了电力系统的运行安全。

2电子技术在强电系统中的应用研究

2.1在发电系统中的应用

电子技术在发电系统中的应用主要是用来调节发电系统中的功率,在结构相对比较简单的静止励磁中,运用晶闸管整流可以提高静止励磁的可靠性,最重要的是所花费的资金成本也会得到降低,而在电力系统中,我们在控制水力和风力发电机的时候,对转子中的励磁电流产生的频率进行调整之后,可以提高水力和风力发电的功率。由于电力系统当中风机水泵所消耗的能量是非常大的,基本上占了整个系统的百分之七十,而且工作的效率还非常的低,针对这一情况,我们的研究人员在系统当中安装了变频调速,很好地解决了这一问题,但是从实际的情况来看,我国可以运用高压大容量的变频器系统还不是很多,所以对电力系统进行较为精准的控制暂时是不现实的。

2.2电子技术在输电环节的广泛应用

在输电环节上,直流输电技术以及高压直流输电都选择了晶闸管变流装置,这一装置可以从根本上解决那些长距离、大容量输电系统的无功损耗问题。直流输电技术不仅稳定性好,其灵活程度也是最高的,其电容量也非常大,即便我国各个省市地区的地形地质特点不同,直流输电技术也能够在不同的地质地貌条件下远程的进行输电作业。在输电环节中,电力能源会在输送的过程当中出现巨大的损耗,打个比方说,如果想要从一个城市输送电能到另一个城市,如果输送的距离较长的话,那么就会有30%~40%的电能在传输的过程当中被损耗掉了,最终输送到的电能可能都不到一半。而自从电子技术的出现就很好地解决了这一问题,不管输送电能的距离有多远,最终输送到的电能都可以保证在90%以上,将电能的输送损耗降到了最低。这也是为什么电子技术在输电环节如此受欢迎的原因之一。

3结语

电子技术在强电系统中的应用,降低了电力能源在传输过程当中出现的损耗,有效地提高了电力能源的利用效率,使得企业的生产效率得到了提高,除此之外,我们还发现,电子技术在强电系统中的应用也是当前信息化社会发展的一个整体趋势,因此在新时代下,我们的研究人员要不断地加强对电子技术的研究,电子技术在强电系统中运用所出现的一些问题也就可以得到及时的解决,也能够进一步的推动我国电力事业的可持续发展。

作者:陈坤 宁宇 刘柏霖 单位:沈阳理工大学自动化与电气学院 沈阳理工大学信息科学与工程学院

参考文献:

[1]姜放,王志强,李国锋.三相线电流平衡化补偿方法[A].2011年通信与信息技术新进展——第八届中国通信学会学术年会论文集[C].2011.

[2]游广增.电力电容器的谐波分析及一种谐波抑制方法[A].2010年云南电力技术论坛论文集(文摘部分)[C].2010.

[3]梁喆,欧阳名三.基于负荷侧无功补偿的静止无功发生器控制方法研究[A].第四届安徽科技论坛安徽省电机工程学会分论坛论文集[C].2006.

电力电子器件论文篇8

我国国民经济的不断发展使得我国的电力系统建设获得了长足的进展,尤其是电子技术的引入,促进了我国电力系统的进一步深化,在工业化时代,强电系统已然成为了我国电力系统发展中不可替代的一个重要的组成部分,因此本文主要从电子技术在强电系统当中的作用进行深入的分析和探讨。

关键词:

电子技术;强电系统;分析;探讨

前言

在我国国名经济飞速发展的大环境下,电子技术也有了极大的发展,与此同时,电子技术的发展让大量的新技术运用到了社会的各个领域当中,现如今的社会是高速发达的信息社会,社会中各个领域的发展都离不开信息技术的支持,而随着计算机技术及网络技术的应用,电子技术也应运而生,目前电子技术的应用范围也是极其广泛的,我国最早利用电子系统的时间短是在改革开放之后,那时候人们的生活水平就已经有了很大程度上的提高,而随着物质生活以及文化生活的提高,人们开始对电力能源重视起来,对电力的运行安全问题也是非常的关注,将电子技术应用在强电系统中可以推动我国电力系统的更新,对强电系统的发展也能够起到很好的促进作用。

1.电子技术的优势及意义

1.1电子技术的优势

电子技术之所以能够在人类的生产生活中得到广泛的运用,这与它的优势是分不开的,电子技术的优势主要体现在以下几个方面:

(1)全控化

由于传统的电器件都是属于半自动形式控制的,半自动控制的电器件一般其换相电路都要比传统的电器件复杂很多,而随着电子技术的引入,自关段器件的电路也得到了进一步的优化,从而更好的运用电子技术实现了全自动控制操作。

(2)集成化

所谓的集成化主要是将所有的全控型电子器件利用数量较多的电子单元器件结合在一起,将其放在同一个基片上,这种集成化的处理方式与之前传统的电子器件分立的方式进行比较我们可以非常明显的的看出,集成化的处理可以极大的缩短电器件运行的时间,除了这一点以外,高频化的优势也是集成化的一个优点,它可以提高电子器件的工作效率。

(3)高效率

高效率化这一优势主要体现在了电子器件及变换技术上,主要是通过电子技术来降低导通的压降,使得最终电器件的效率有了极大的提高,之前在变换器的使用中,多数都是使用硬开关技术,现如今软开关技术的应用,对提高强电系统的运行效率也是起到了非常重要的作用。

1.2电子技术在强电系统中的意义

电子技术在强电系统中的应用可以有效的提高电力能源的应用效率,电子技术还可以提高强电系统运行的安全,能够实现对电力资源的优化配置,降低了电力企业的成本投入,提高了电力企业的经济效益。与此同时电子技术在强电系统中的应用还有效的促进了我国现代化的发展进程,随着高新技术的不断出现,越来越多的产业在投入生产之前都进行了电子技术的处理工作,这样做的目的也是为了进一步的保证电力系统的运行可以在网络技术的监管下进行,保障了电力系统的运行安全。

2.电子技术在强电系统中的应用研究

(1)在发电系统中的应用

电子技术在发电系统中的应用主要是用来调节发电系统中的功率,在结构相对比较简单的静止励磁中,运用晶闸管整流可以提高静止励磁的可靠性,最重要的是所花费的资金成本也会得到降低,而在电力系统中,我们在控制水力和风力发电机的时候,对转子中的励磁电流产生的频率进行调整之后,可以提高水力和风力发电的功率。由于电力系统当中风机水泵所消耗的能量是非常大的,基本上占了整个系统的百分之七十,而且工作的效率还非常的低,针对这一情况,我们的研究人员在系统当中安装了变频调速,很好的解决了这一问题,但是从实际的情况来看,我国可以运用高压大容量的变频器系统还不是很多,所以对电力系统进行较为精准的控制暂时是不现实的。

(2)电子技术在输电环节的广泛应用

在输电环节上,直流输电技术以及高压直流输电都选择了晶闸管变流装置,这一装置可以从根本上解决那些长距离、大容量输电系统的无功损耗问题。直流输电技术不仅稳定性好,其灵活程度也是最高的,其电容量也非常大,即便我国各个省市地区的地形地质特点不同,直流输电技术也能够在不同的地质地貌条件下远程的进行输电作业。在输电环节中,电力能源会在输送的过程当中出现巨大的损耗,打个比方说,如果想要从一个城市输送电能到另一个城市,如果输送的距离较长的话,那么就会有百分之三十——四十的电能在传输的过程当中被损耗掉了,最终输送到的电能可能都不到一半。而自从电子技术的出现就很好的解决了这一问题,不管输送电能的距离有多远,最终输送到的电能都可以保证在百分之九十以上,将电能的输送损耗降到了最低。这也是为什么电子技术在输电环节如此受欢迎的原因之一。

3.结语

电子技术在强电系统中的应用,降低了电力能源在传输过程当中出现的损耗,有效的提高了电力能源的利用效率,使得企业的生产效率得到了提高,除此之外,我们还发现,电子技术在强电系统中的应用也是当前信息化社会发展的一个整体趋势,因此在新时代下,我们的研究人员要不断的加强对电子技术的研究,电子技术在强电系统中运用所出现的一些问题也就可以得到及时的解决,也能够进一步的推动我国电力事业的可持续发展。

作者:李洪章 白月 于苹 单位:哈尔滨电站设备成套设计研究所有限公司 中国石油天然气管道局天津设计院

参考文献:

[1]姜放,王志强,李国锋.三相线电流平衡化补偿方法[A].2011年通信与信息技术新进展——第八届中国通信学会学术年会论文集[C].2011年

[2]游广增.电力电容器的谐波分析及一种谐波抑制方法[A].2010年云南电力技术论坛论文集(文摘部分)[C].2010年

[3]梁喆,欧阳名三.基于负荷侧无功补偿的静止无功发生器控制方法研究[A].第四届安徽科技论坛安徽省电机工程学会分论坛论文集[C].2006年

推荐期刊