线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

高一数学解题公式8篇

时间:2023-11-03 11:04:10

高一数学解题公式

高一数学解题公式篇1

【关键词】高中数学;导数公式;应用研究;函数的思想

在高中对数学导数公式的应用非常广泛,由于在高中理科中,数理化有着相互融合相互渗透的效果,所以在对高中数学导数公式中也可以对物理、化学进行一定的应用,在对高中数学导数公式进行应用中,要求学生们能够有着充分的解题思路,对高中数学导数公式进行一定的推导,能够使得在对问题的解答中将复杂的问题进行一步步的简单化,不仅能够增加学生们在解题中形成的信心,而且还能够促进学生们对高中数学的学习。

一高中数学导数公式在解题中的应用

(一)利用高中数学导数公式对函数切线的求解

1.在导数的几何意义中,曲线在某点的导数值就是曲线在该点的切线斜率,在对函数的应用中,要特别注意函数在某点处可导,曲线就在该点存在切线,但是曲线在该点有曲线,未必就有可导性。

2.例子:函数f(x)在点a处导数的意义,它就是曲线y=f(x)在点坐标P(a,b)处的切线的斜率,在对函数切线进行求解时,假设曲线y=f(x)在点P(a,b)处切线的斜率就是f'(a),则相应的切线方程就是y-b=f'(a)(x-a)。

(二)利用高中数学导数公式对函数的极值的求解

1.在高中数学利用导数对函数值的求解中,能够显现出导数对函数极值求解的应用。

2.例子:求f(x)=x3-12x的极值

解:把函数的定义域为R,f'(x)=3x2-12=3(x+2)(x-2),设f'(x)=0,得到x=±2,当,x>2或x

(三)利用高中数学导数公式对函数的单调性进行判断

1.在数学坐标系中,对函数的单调性进行判断,可以根据切线上的斜率来判断,当切线的斜率大于零时,就可以准确的判断出单调的递增,当斜率为正时,判断出函数的单调为递增的,当斜率为负时,判断出函数的单调为递减的。通过利用导数对函数的单调性分析中,也可以对函数单调区间问题进行解决。

2.例子:一次函数y=kx-k在R上单调递增,它的图像过第几象限?

解:从一次函数中可以简单的看出函数必过坐标(1,0),所以说函数过第一和第四象限,又因为一次函数是单调递增的,所以k>0,可以分析出函数过第三象限,所以说它的图像过第一,第三,第四象限。

例子:求函数f(x)=x3-3x+1的单调区间

解:当f(x)=x3-3x+1,可以得出f'(x)=3x2-3,当3x2-3=0,即x=±1时,f(x)有极值=3和-1,因为x=2,f(2)=3;x=1,f(1)=-1;x=0,f(0)=1;x=-1,f(-1)=3;x=-2,f(-2)=-1。所以说,函数在(负无穷,-1]单调递增,在[-1,1]单调递减,在[1,正无穷)单调递增。

二、高中数学导数应用的价值

在对高中数学导数公式的利用中,要始终坚持函数的思想,能够更方便的去解决问题,由于在高中理科的学习中,都会用到导数的应用,在一些重要的概念中都会用导数来进行表示,在物理的学习中,对远动物体的瞬时速度和加速度都可以用导数来表示。导数公式的应用,是有函数推导出来的过程,运用导数公式推导的过程,也是巩固数学的过程,在对函数进行求解时,要明确的掌握和运用导数的公式,在导数的运用中不仅是在学习中对函数的求解,而且还能在生活中运用,在实际生活中遇到求效率最高,利润最大的问题,这些问题在高中数学导数中可以看做是函数的最大值,把这些问题转换为高中数学函数的问题,进而对变为求函数的最大值的问题,在对高中数学导数公式进行应用,不仅要掌握了解公式导数的概念和方法,而且还会把数学导数与其它的知识进行结合,能够在解决问题中找到合适的办法。

三、对高中数学导数公式应用后的反思

近年来,在高考中,高中数学的导数公式的地位越来越重,它已经成为解决数学问题中必不可少的一种工具,在教学中,要让学生们充分的了解数学的导数公式,要重视课堂的教学,教师们要了解学生们在应用导数公式中出现的各种问题,老师们要针对这些问题,对学生们再一次的进行讲解,能够使得学生们在解决问题中更熟练的应用导数公式,在教学中,要从导数的定义进行讲解,能进一步的增强学生们对导数学习的兴趣,能让学生们了解到不论是在学习中还是在生活中,对导数的应用是非常重要的。

结语:

综上所述,在高中数学中对导数公式的应用是非常重要的,在利用导数进行解决函数的问题中,要始终贯穿函数的思想,可以对函数的单调性,函数的区间,函数的切线,函数的极值进行问题上的解决,在新课标改革的背景下,要培养学生们正确的掌握导数公式的应用,对于导数在解决问题中有着积极的作用,能够为以后导数公式的学习打下了坚实的基础。

【参考文献】

[1]王利,邓鹏.加强高中与大学导数公式知识的衔接[J].教学学习与研究,2012(17)

[2]王彩霞.浅谈三角函数的几种解法[J].中学教学(上),2012(08)

[3]程守权.高效数学课堂的设计意图展现―案例分析“应用导数研究函数的最值”[J].高中数理化,2012(02)

[4]农仕科.关于高中数学导数公式的应用研究[J].教学参谋(解法探究),2014(02)

高一数学解题公式篇2

关键词:高中数学;一题多变;学生

在高中数学教学中,很多数学教师习惯于采用“题海战术”帮助学生掌握数学知识,提高学生的数学分析能力和解题能力,但是如果始终采用这种方法,会使很多学生产生单调枯燥的感觉,从而使其对数学学习失去兴趣. “一题多变”可以让学生通过不同的思路找到多种解题的方法,既可以帮助学生实现数学知识的灵活运用,又可以减轻学生解题的负担,使学生乐于学习、善于学习. 笔者在从事高中数学教学的过程中一直注重“一题多变”教学手段的合理运用,在本文中对实施的具体细节进行阐述,以期对高中数学的教学质量和学生的数学能力的全面发展的提供一点积极的效应. 具体如下:

[?] 注重在公式推导中“一题多变”,帮助学生掌握数学基础公式

高中数学中的公式有很多,掌握公式及其应用不但可以简化学生的解题思路与过程,而且对学生理解教学内容有很大帮助. 但是很多高中数学教师和学生只注重公式的应用,而忽视了对公式的推导,认为推导只是帮助学生记忆公式,其重要性不能与应用相提并论;认为在课堂教学中推导公式只是浪费时间,并没有太大的作用,从而使得学生对公式的理解有限,在解题中灵活应用公式更是无从谈起. 所以在高中数学教学中应注重公式推导中的“一题多变”,为学生熟练应用公式解题打下坚实的基础.

例如:高中数学教师在推导三角函数中二倍角公式时,可以从两角和与差公式进行推导,也可以采用向量知识进行推导,尤其是在推导余弦函数二倍角公式时,可以将其与三角函数的基本关系式相互结合起来,从而推导出余弦函数二倍角公式的三种形式. 这样变换不同的思路与推导方式,既可以帮助学生将数学知识串联起来形成有机整体, 又可以让学生清楚了解公式的来龙去脉,在加深对公式推导过程理解的基础上做到灵活应用.

[?] 注重知识讲解时“一题多变”,加深学生对知识的理解与掌握

高中数学教学内容中涉及很多的概念、定理与公理,而掌握和理解这些教学内容对学好高中数学至关重要. 如果高中数学教师在课堂教学中只是简单地照本宣科,那么学生对抽象、深奥的数学知识的理解则会较为片面,无法在应用时做到游刃有余,所以高中数学教师在知识讲解时可以采用“一题多变”的方式,从而达到教学相长的目的. 高中数学教师在讲解抛物线中焦点弦的问题时,就可以通过“一题多变”的方式让学生理解与掌握此知识点.

例1 已知过抛物线y2=2px焦点的一条直线与其相交,设两交点A,B的纵坐标分别为y1,y2,求证:y1・y2=-p2.

变式1:求证:过抛物线焦点弦两端点的切线和抛物线的准线三线共点.

变式2:求证:过抛物线焦点弦两端点的切线相互垂直.

点评:例题的证明并不难,但是其结论对于学生理解和应用焦点弦却非常重要,在学生明白焦点弦的定义及其结论后,数学教师可以采用“一题多变”的方式,加深学生对焦点弦的理解;而学生在例题及变式的证明过程中可以掌握焦点弦的知识,并将其延伸到椭圆与双曲线中,从而有助于构建起完整的圆锥曲线知识体系.

[?] 注重例题讲解中“一题多变”,引导学生学会融会贯通

虽然学生是教学活动的主体,但是教师的指导作用至关重要,尤其是在高中数学例题讲解中,教师通过“一题多变”的讲解方式,既可以让学生摆脱繁重的课业之苦,又可以培养学生的发散思维与应变能力,让学生从例题讲解中掌握解题的技巧与规律,对知识做到融会贯通.高中数学教师在讲解函数最值时,可以通过“一题多变”的例题讲解,以循序渐进的方式逐渐加大例题难度,从而使学生对数学知识的综合应用做到得心应手.

例2 函数y=-x2+4x-2的最大值是_______.

变式1:已知函数y=-x2+4x-2,则其在区间[0,3]上的最大值为_______,最小值为_______.

变式2:已知函数f(x)=-x2+4x-2,其定义域为[t,t+1],求函数f(x)在定义域内的最值.

变式3:已知x2≤1,且a-2≥0,求函数f(x)=x2+ax+3的最值.

变式4:已知函数f(x)=-x(x-a),求x∈[-1,a]上的最大值.

分析:(1)例题非常简单,没有定义区间的要求,只需要将其化为顶点式,即可以求出其最大值;(2)变式1在例题的基础上,增加了定义区间这一条件,分析定义区间与对称轴的关系既可以求出其最值;(3)变式2将变式1中明确的定义区间以参数代替,这样在例题讲解时,数学教师需要分析对称轴与参数之间的位置关系,并依据位置关系确定其在定义区间的最值,在此过程中引入了分类讨论的思想,帮助学生在分析问题时更为条理化;(4)变式3给出了定义区间,但是对称轴中含有参数,仍然需要讨论定义区间与对称轴之间的关系,与变式2稍有区别的是变式2是围绕定义区间进行分类讨论,而变式3是围绕对称轴进行分类讨论,两者虽然形式上有所区别,但是其思路本质却相同;(5)变式4中对称轴与定义区间均含有参数,所以分类讨论相对更为复杂,但是解题的思路却与变式2和变式3相同.

在例题和变式中,从开始的实数范围内的最值求解,到指定区间最值求解,再到对称轴或者定义区间存在参数的最值求解,最后到对称轴和定义区间都存在参数的最值求解,其难度逐渐加大,但是其最值求解的思路基本相同,教师通过逐层递进的方式进行讲解,既可以帮助学生掌握解题方法和技巧,又可以培养学生的分析思考能力.

[?] 注重习题练习时“一题多变”,提高学生学以致用的能力

虽然“一题多变”可以减少学生的作业量,但是对典型例题的练习仍然必不可少.这样既有利于学生通过练习巩固数学知识和解题技巧,培养学生的创新思维,又不会让学生产生枯燥之感,从而提高学生学以致用的能力,使学生即使在遇到新题时也不会轻言放弃,而敢于大胆进行尝试.高中学生在学习数列时,很多学生虽然记住了很多与数列有关的公式,但是在实际解题的时候仍然不知道应该怎么应用,其原因即为练习较少,片面地认为记住公式就可以顺利解题,结果却不尽如人意. 因此,高中数学教师需要以“一题多变”的方式布置练习题,提高学生学以致用的能力.

例3 在数列{an}中,已知a1=1且an+1=2an+1,求数列{an}的通项公式.

变式1:在数列{an}中,已知a1=1且an+1=2an+n,求数列{an}的通项公式.

变式2:在数列{an}中,已知a1=1且an+1=2an+2n+1,求数列{an}的通项公式.

变式3:在数列{an}中,已知a1=1且an+1=2an+3n+1,求数列{an}的通项公式.

高一数学解题公式篇3

关键词:高中数学 数列试题 解题方法 技巧

学生们在高中的数学学习过程中如果能够充分掌握高中数学数列试题的解题方法和技巧,这对于在大学期间学习数学会有很大的帮助。在最近几年的数学高考中,数列知识点的考查已经成为高考出题人比较看重的一项考点,甚至有一部分拔高题也都和数列有着直接的关系。可是在高中数学的学习阶段,很多的学生对于高中数学数列试题的解题方法和技巧还非常欠缺,对有一些问题和内容并没有得到充分的理解和吸收,往往在解题过程中,出现这样那样的问题。所以,探索和研究不同类型数列的解题方法和技巧,能够帮助学生更好地学好高中的数学。

一、高中数学数列试题教学中的解题思路与技巧

1.对数列概念的考查

在高中数列试题中,有一些试题可以直接通过带入已学的通项公式或求和公式,就可以得到答案,面对这一种类型的试题,没有什么技巧而言,我们只需熟练掌握相关的数列公式即可。

例如:在各项都为正数的等比数列{b}中,首项b1=3,b1+b2+b3=21,那么b3+b4+b5等于多少?

解析:(1)本道试题主要是对正项数列的概念以及等比数列的通项公式和求和公式知识点的考查,考查学生对数列基础知识和基本运算的掌握能力。

(2)本试题要求学生要熟练掌握老师在课堂上所教的通项公式和求和公式。

(3)首先让我们来求公比,很明显q不等1,那么我们可以根据我们所学过的等比数列前项和公式,列出关于公比的方程,即3(1-q3)/(1-q)=21。

对于这个方程,我们首先要选择其运算的方式,要求学生平时的练习过程中,要让学生能够熟练地将高次方程转化为低次方程进行运算。

2.对数列性质的考察

有些数列的试题中,经常会变换一些说法来考查学生对数列的基本性质的理解和掌握能力。

例如:己知等差数列{xn},其中xl+x7=27,求x2+x3+x5+x6等于多少?

解析:我们在课堂上学习过这样的公式:等差数列和等比数列中m+n=p+q,我们可以充分利用这一特性来解此题,即:

xl+x7= x2+x6= x3+x5=27,

因此,x2+x3+x5+x6=(x2+x6)+(x3+x5)=27+27=54

这种类型的数列试题要求教师在课堂教学中,对数列的性质竟详细讲解,仔细推导。使得学生能够真正的理解数列性质的来源。

3.对求通项公式的考察

①利用等差、等比数列的通项公式,求通项公式

②利用关系an={S1,n=1;Sn-Sn-1,n≥2}求通项公式

③利用叠加、叠乘法求通项公式

④利用数学归纳法求通项公式

⑤利用构造法求通项公式.

4.求前n项和的一些方法

在最近几年的数学高考试题中,数列通项公式和数列求和这两个知识点是每年必考的,因此,在高中数学数列的课堂教学中,教师要对数列求和通项公式这方面的知识点进行细致重点的讲解。数列求和的主要解题方法有错位相减法、分组求和法与合并求和法,下面对三种数列求和的解题方法进行详细说明。

(1)错位相减法

错位相减法主要应用于等比数列的求和中,在最近几年的高考试题当中,以此方法来求解数列求和的试题经常会有所体现。这一类型的试题解题方法主要是运用于诸如{等差数列・等比数列}数列前n项和的求和中。

例如:已知{xn}是等差数列,其前n项和是Sn,{yn}是等比数列,且x1=y1=2, x4+y4=27, S4-y4=10,求(1)求数列{xn}与{yn}的通项公式;(2)Tn= xny1+xn-1y2+…+x1yn,n∈N*证明Tn+12=-2xn+10yn,n∈N*

解析:(1)xn=3n-1,yn=2n;

(2)Tn= 2xn+22xn-1+23xn-2+…+2nx1,

2Tn= 22xn+23xn-1+…+2nx2+2n+1x1

计算得,Tn=-2(3n-1)+3×22+3×23+…+3×2n+2n+1=12(1-2n+1)/(1-2+2n+2-6n+2)=10×2n-6n-10

-2an+10bn-12=-2(3n-1)+10×2n-12=10×2n-6n-10

所以,Tn+12=-2xn+10yn,n∈N*

错位相减法主要应用于形如an=bncn,即等差数列・等比数列,这样的数列求和试题运算中,解此类题的技巧是:首先分别列出等差数列和等比数列的前n的和,即Sn,然后再分别将Sn的两侧同时乘以等比数列的公比q,得出qSn;最后错一位,再将两边的式子进行相减就可以了。

(2)分组法求和

在高中数列的试题当中,往往会遇到一部分没有规律的数列试题,它们初看上去既不属于等差数列也不属于等比数列,但是如果将此类型的数列进行拆分,就可以得到我们所了解的等差数列和等比数列,遇到此类型的数列试题,我们就可以通过分组法求和的方法进行解题,首先将数列进行拆分,通过得到的等差数列和等比数列进行运算,最后将其结合在一起得出试题的答案。

(3)合并法求和

在高考数列的试题中,往往会遇到一些非常特殊的题型,它们初看上去没有规律可循,但是通过合并和拆分,就可以找出它们的特殊性质。这就要求我们教师平时要锻炼学生对数列的合并能力,通过合并找出规律,最终成功地解决这类特殊数列的求和问题。

二、结束语

数列知识是各种数学知识的连接点,在数学考试中,往往是基于数列知识为基础,对学生的综合数学知识进行考查。在高中数列学习过程中,首先要做好数列基本概念和基本性质的掌握,否则任何解题技巧都无济于事。

参考文献:

高一数学解题公式篇4

【关键词】高中数学 数列 解题技巧与方法

【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2016)35-0100-02

一、数列在高中数学教学中的重要地位

数列式高中数学教学中必不可少的教学章节,在高中数学教材的编写中将数列单独拿出来作为一个独立的章节进行教学,此外,数列还与高中数学中其他的内容存在着密切的联系,如函数、不等式等,并且在高考中数列也常与其他数学内容联合组成一道大题出现在试卷中,这充分证明了数列在数学学习中的重要性。因此,在平时的数学学习中也要注重对于数列知识的把握,掌握数列解题方法与解题技巧,提高数列解题的质量与效率,有效提高数学的学习成绩。

二、高中数列学习的解题方法与解题技巧研究

(一)利用盗谢本概念求解数列

对于数列基本概念的掌握是学生学好数列知识的基础,由于在初中阶段学生并未接触过数列知识,因此,在初学数列知识时许多学生会觉得数列的学习很困难,然而对于一些数列的入门问题的解答可以通过套用相关的数列公式以及概念知识点来加以作答。但随着数列学习的深入,数列问题的难度逐渐加大,这就要求学生要主动学习和掌握相关的数列解题技巧以及解题方法。同时,在数列的学习中不能忽视这些简单问题的作答,因为困难的题目往往是由简单的题目变形而来,掌握好、解决好这类简单的题目对于学生今后的数列学习也是大有裨益。

例1:等差数列{an},前n项和Sn(n是正整数),若已知a4=4,S10=55,则求S4。

求解:在对该题进行解答时要注重灵活套用等差数列的通项公式,将题目中已有的变量代入公式求解。首先,要先将首项即a1以及公差d求出,再将已有的变量套入公式,最后求出an或Sn,即:将已知变量带入该式:

an=a1+(n-1)d,Sn={n(a1+a2)}/2

可以得出问题的答案:

a1=1,d=1,最后得出S4=10,通过这种基本简单的数列题型我们可以看出,在数列的解题中对于概念掌握以及运用对于学生有效解题至关重要。

(二)利用数学性质求解数列

在数列学习中学生对于数列性质的掌握能够帮助他们准确、有效的解决数列问题,这就要求学生在进行数列学习时深入了解其特性,并将其性质应用到数学解题过程中去。

例2:等比数列{an},n是正整数,a2a5=32,求解a1a6+a3a4。

求解:在本题中我们可以根据有关等比数列的一个重要的性质,即:m+n=p+q.如果成立,则aman=apaq,由此,我们可以等比数列这种性质很直观的得到数列问题的答案:a1a6+a3a4=64.因此,我们可以看到,在这类数学问题的解决中,只有在具备一定的数列性质的基础上才能对问题的答案进行求解。

(三)数列中关于通项公式的解题技巧

在数学的数列学习中我们可以发现,数列问题常常呈现出一种多样化的表现形式,这就使得许多学生在求解数列时无从下手,为此,学生急需掌握一定的数列求解技巧帮助其有效的解决数列难题。这些技巧包括直接利用等比等差数列的通项公式求解问题;其次,可以通过一定的叠成变换换算成新的等比等差公式再进行相关计算;再次,就是将归纳法求出的数学公式再次带入求解的通项公式求解;最后,是通过证明的方法来解答相关的数列问题,即构造相关的通项公式,通过证明其符合题目条件来解答数列问题。

(四)数列中关于前n项和的解题技巧

1.错位相减

在等比数列的求和中错位相减法是最常用到的一种方法。

例3:数列{an},n是正整数,a1=1,an+1=2Sn,要求求出数列{an}的通项公式an以及前n项和Sn。

求解:在该题目的求解中我们可以令n=2,3,4…,可以求得a2=2,a3=6,a4=18,a5=54…通过这个式子我们可以看出数列{an}在n>1时an=2×3n-2,n=1时,an=1,则Sn=1+2×30+2×31+…+2×3n-3,3Tn=3+2×31+2×32+…+(n-2)2×3n-1+(n-1)2×3n-2 +2×3n-1.由此,可以得出数列的前n项和Sn=■=3n-1(n>1);当n=1时,前n项和为1.在题目中并未指出{an}是等比数列,因此,等比数列的求和公式就不能在此数列求解时加以应用,但是,我们可以在公式中发现n>1时,{an}是等比数列,而且可以看出公比为3,这也就是在错位相减中我们取3Sn的原因,同时,这也是这道题目解题的关键点所在。

2.分组求和

在数列求解时,我们会经常遇到一道数列题目既不是等差数列也不是等比数列,在遇到这类题目时,如果只是单纯运用通项公式根本无法求解,因此就要对题目进行适当的拆分,换算成我们熟悉的等差等比数列在进行求解。

3.合并求和

合并求和与分组求和相同的一点就是所要求解的数列题目既不是等差数列也不是等比数列,但在进行一定的变换,即拆分、合并后就能够找到数列题目内含的规律。但在此类题目的拆分、组合中对于学生的数学能力要求较高,如果不具备一定的数列基本知识概念以及一定的拆分技巧就不能保证求解出数列问题的最终答案。

参考文献:

[1]刘剑鹏.高中数学中数列的解题技巧探析[J].数理化解题研究,2016.

高一数学解题公式篇5

关键词:递推数列;构造法;主体部分拆分法

2014年高考尘埃落定,许多理科考生,数学教师均对新课标高考数学(理科)卷二中的数列解答题议论纷纷,学生都在抱怨,教师高呼超纲超标,笔者仔细观察,发现此题颇值得深入探讨. 笔者就这个问题,从课标、教材以及其他省份的历年高考相关试题进行渊源分析与解法探索,现将我们的思考和读者一起分享.

(2014・新课标高考数学(理科)卷二解答题第17题和教育部考试中心提供的参考答案如下:

[?] 对本题第(Ⅰ)问的思考

首先对照《普通高中数学课程标准》(以下简称《标准》)来思考,《标准》中对等差、等比数列的通项公式和前n项和公式的要求是“掌握”,此题中的第一问的要求是通过构造辅助的等比数列来求通项公式,而且题目中给出辅助数列,要求先证明它是等比数列,再求通项公式,实际上已经降低了构造法的难度. 所以,第(Ⅰ)问不存在“超标” 的说法. 其次,再从教材的角度来看,第(Ⅰ)问的题目原型是普通高中数学课程标准教科书人教A版教材必修5第69页数列复习参考题组第6题:“已知数列{an}中,a1=5,a2=2,an=2an-1+3an-2(n≥3),求这个数列的通项公式”.此题的解答就是通过两边添加项构造辅助的等比数列来解决问题:

由an=2an-1+3an-2,得an+an-1=3an-1+3an-2=3(an-1+an-2),移项得an-3an-1=-(an-1-3an-2),所以{an-3an-1}是等比数列. 由这个辅助数列为突破口就可以解答该题.

本题更远的教材原题背景是来自1995年以前使用的大纲教材――人教版高中数学代数下册的复习参考题:“已知an+1=b,

c・an+d,求数列的前4项及其通项公式.”

对于问题(Ⅰ),其解题起点在于对递推关系式an=3an-1+1的观察,与an=3an-1相比,多了一个常数项1,而an=3an-1是典型的等比数列,可以猜想系数3可能与公比有关,因而确定问题的转化方向――构造以公比为3的等比数列.

数学归纳法的证明过程在此不再赘述.

对于递推数列的通项公式不易求解时,可考虑用赋值法求出数列的前几项,用合情推理猜想出通项公式,再用数学归纳法进行证明,此解法思路成功的关键在于归纳猜想时,要灵活运用“猜结果”与“猜结构”的策略.

以上三种方法比较,显然参考答案提供的构造法思路更简单,解法更简洁.当然后两种方法均有其特点,也指明了在数列的递推公式教学中,教师应关注的几个方向.

[?] 对2014高考新课标卷二17题的第(Ⅱ)问的思考

这是典型的放缩法证明不等式.在此,避开放缩法是否超出课程标准考试大纲不谈,我们只从数学方法的角度来看. 笔者在高考评卷过程中发现考卷中能用参考答案这种方法做出正确解答的并不多见,笔者认真分析了国家考试中心提供的参考答案,感觉该解答与中学生的解题习惯不甚吻合.

放缩法的关键,一是放缩的方向,二是如何把握放缩的“度”的问题. 那从这个参考答案上来看,学生如何确定放缩的方向?如何才能得到3k-1≥2×3k-1?这个思路与学生的认知水平及思维习惯相差甚远. 基于此,笔者提出以下的解法,并将结论做相应的推广.

评注:对于上述解法,应关注其解题思路,剖析解题心理状态.首先观察目标结论:++…+=++…+

上述解题思路当中有两个关键点,第一:向等比数列转化,第二,运用“主体部分拆分法”,拆出主体部分等比数列后,对其剩余部分实施放缩.

受此触动,笔者尝试将上述结论适当推广.

既然可以放大,能否考虑缩小呢?

前两问考查了赋值法,以及运用前n项和公式求数列的通项公式的方法,其中第(Ⅱ)问考点仍旧是构造法,在此不再赘述.

高一数学解题公式篇6

一、三角函数教学困难

1.概念记忆困难

虽然高中生已经初级的掌握了三角函数的基础知识,但是由于三角函数本身的概念和定义还是十分的抽象,公式和定义十分的复杂,高中生对于诱导公式和转换公式的记忆还是比较模糊的,初中三角函数主要考查的就是学生对公式的理解,高中三角函数则主要考查学生们对公式的应用以及变形,进而对学生们的推导能力有着较高的要求。

2.公式推理困难

高中数学三角函数本身的定义和公式非常多,比如正弦定理、和差角公式以及和差化积公式等诸多公式的推理会给学生们学习三角函数带来了一定的困难。目前,我国大部分学生在进行三角函数做题的时候,并不难及时的确定其具体的公式内容,进而导致学生们难以熟练的掌握三角函数,要求学生们能够快速的反应、记忆众多三角函数也是难以实现的,教师必须要采取全新的、高效的公式转换记忆策略。

3.综合运用困难

三角函数知识已经逐渐的渗透到高中整个数学学科内,随着多年来的教学经验表明,大部分学生并不知道如何的应用三角函数,尤其是对于一些比较隐性的函数问题,另外,一部分学生们虽然意识到要用到三角函数,但是却不知道用哪种。高中数学对三角函数的考查十分的综合、全面,要求学生们必须要熟练的掌握各类三角函数的概念以及性质等。三角函数往往会与向量、几何图形等知识点有着十分密切的联系,教师在进行三角函数教学的时候必须要考虑其综合性。

二、高中数学中三角函数的教学策略

1.提高学生们学习兴趣和积极性

由于高中数学三角函数本身知识和公式十分的枯燥、乏味,进而导致学生们对三角函数的学习有着一定的抵触心理,严重的阻碍了高效三角函数教学工作的顺利开展。为了能够有效的调动学生们的学习热情和积极性,必须要将三角函数与实际生活联系起来,三角函数知识作为整个数学的重要组成部分,在我们日常生活中常常遇到,比如钟面时针转动方向以及体操运动等实际生活中比较常见的实例,都含有一定的三角函数知识。教师可以通过意境的引用,才能够吸引学生们的注意力,充分的调动学生们学习三角函数的积极性和工作热情。

2.突出三角函数的运用规律

高中数学三角函数知识在进行解题的时候,往往都会有特定的解法,虽然三角函数的题型千变万化,但是其本质内容是一致的,只不过所给的条件发生了一定的变化,内在本质还是一样的。所以,在进行教学的时候应该为学生们解惑一些解题技巧,培养学生们能够在解题的时候,能够分析出题人的意图,知道采用哪些三角函数的知识进行解题,并不用盲目的乱试,避免学生们学习时间方面的浪费。为了能够更快更好的解题,提高三角函数的学习效率,仅是掌握识题技巧还是不够的,必须要培养学生们能够熟练的运用各种方法进行解题,进而保障学生们形成正确的解题思路。

3.系统的进行归纳总结

三角函数公式千变万化,种类十分的繁多,如果要求学生们一个个记忆不仅不太现实,学生们也不会全部记住。所以,为了能够促使学生们更好、更熟练的掌握,必须要对零散的三角函数知识进行整理和归纳,直接将逻辑性强的三角函数相关知识点展示在学生们的面前。为了能够提高三角函数教学的有效性,可以总结教学口诀,提高学生们掌握三角函数解题的技巧。另外,在进行教学的时候应该时常的将流露出口诀,进而能够在教师外部和学生内部双重作用下熟练的掌握三角函数学习的技巧。

4.比较剖析三角函数的不同

高一数学解题公式篇7

关键词:高考题; 通项公式; 初等数学; 高等数学; 递推式; 解法

数列在中学数学中既具有相对的独立性,又具有较强的综合性,它是初等数学与高等数学的一个重要衔接点,因此历年高考中占有较大比重。在选择、填空题中突出“小、巧、活”的特点;在解答题中,常以一般数列为载体,重点放在数学思想方法的考查,放在对思维能力以及创新意识和实践能力的考查上,其中求通项公式即为历年高考考查的重点之一,下面介绍一些中学数学数列通项公式的一些常见解法。

一、观察、推理法

根据数列前n个项求通项时,所求通项公式通常不是唯一的,常用观察、推理法求解,通过观察 与n之间的关系,用归纳法写出一个通项公式,体现了由特殊到一般的思维规律。

例.求出下列数列的通项公式

1、数列是一种特殊的函数,复习时要善于利用函数的思想来解决;

2、运用方程思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量 ,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代换”来简化运算;

3、分类讨论思想在本章尤为突出,复习时考虑问题需全面,如等比数列的 两种情况等;

4、等价转化是数列的常用解题思想,如 的转化,将一些数列转化成等差(比)数列来解决,复习时,要及时总结归纳。

5、深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本节的关键。

6、理科数列考查分析问题、解决问题能力的综合题,常蕴含着考要的数学思想方法(如:分类讨论思想、函数与方程的思想、化归转化思想、换元法、构造(或建模)法等).难度有逐年上升趋势,复习中应注意加强数列与其它知识的联系与交汇内容的强化。

参考文献

[1]《中学教研:数学版》[].2009年第1期

[2] 杜丽英.《走向高考》[C].2006.4

[3]《数学辅导报人教高考版》[N]. 2009.5

高一数学解题公式篇8

如何针对学生在数列中普遍存在的问题,做好高考最后阶段的复习工作,使我们的复习工作有计划、有针对性、有指导性,使学生对数列问题消除畏惧心理,增加得分率?为此,首先对高考数学中数列的考点进行一下分析。

一、高考数学数列中的考点分析

虽然数列在《教学大纲》中只有12课时,但在高考中,数列内容却占有重要的地位。高考对数列的考试要求是:①理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,能根据数列的递推公式写出数列的前几项或证明其他一些性质。②理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。③理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。

由上述考试要求,我们知道,数列内容的考试试题,应以等差数列和等比数列的相关概念、通项公式、前n项和公式为主线,以数列的其他内容如通项与前n项和公式的关系、递推数列等相关内容为辅助。但从高考新大纲的变化来看,加入了利用递推公式进行数列的相关问题的证明,考察由递归数列派生出来的新的等差或等比数列的相关问题。

二、复习建议

1.加大等差、等比数列通项公式、求和公式的训练力度。

在等差、等比数列的训练中,让学生回到首项和公差(或公比)中去,无疑是非常本色的方法。

例1:如在等差数列{an}中,点(a3+a5+a4+a5+a6)在直线y=2x+1 上,则该数列的首项a1=。

(A)1; (B)-1; (C)2; (D)-2.(答:B)

对于这道试题,采用下标规律而不能自拔者受阻了,回到首项和公差中去的学生(不见得是数学成绩好的学生)轻易解出来了。

例2:各项均为正数的等比数列{an}的前n项和为Sn,且S2 =74,S3 =111,则S5=。(答:185)

对于这道试题,只记住死结论:在等比数列中, Sn,S2n -Sn ,S3n -.S2n 成等比数列的学生不知从何下手,机械地应用公式Sn=的学生在算出q=1(q=-)( 舍去)后,又发现代入上述公式不成立,只有知道讨论使用等比数列的求和公式的学生才能得到正确的答案。

通过以上两个例子,我们认为,对于数列通项公式和求和公式的训练,应尽量让学生能反复使用最原始的公式,并注意使公式成立的环境,让学生训练到求一般等差数列和等比数列的通项公式前项和公式变得轻松自然为止。

2.加强数列问题的运算训练,教会学生必要的运算检验方法。

高考数学中运算问题,历来令我们在高考一线的教师们头痛,而数列的运算,则将学生的运算水平低下暴露得非常具体。

运算训练从哪里入手?这里有几点建议:①进行单一公式运用的反复训练,特别是针对经过前一阶段检测发现学生普遍应用不过关的公式(如等比数列的前n项和公式)进行相应的训练。②对数列问题的通性通法进行反复训练,使方法的牢固掌握和运算能力的提高同步进行。③对同一方法进行变式训练,一直练到学生运算结论准确为止。

3.有计划地对学生进行数列综合问题的综合运算训练,提高学生的综合运算能力。

4.加强数列证明问题(或与之相关的题型)的训练,此类问题也是学生的一个薄弱环节。

例3.在数列{an}中,an+1=3an+2n +4 且a2= 6

(1)求a1; (2)求证数列{an+2n +2}是等比数列,并求an。

怎样证明数列{an}是等比(或等差)数列?证明(或an+1 -an)是一个与n无关的常数即可。这么浅显的道理,怎么会有大量的学生不知从何下手?原因还是我们的训练力度不够。

对于上述问题,可进行如下变式训练:

1.在数列{an}中,a1=2,an+1=2an+2n-2,证明数列{an+2n}是等比数列,并求an。

2. 在数列{an}中,a1=2,an+1=2an+2n+1+3,证明数列{}是等差数列,并求出数列{an}的前n项和。

递归数列的问题,以上述结构出现的试题降低了求数列通项公式的难度,这样的试题往往是经过逆向编制出来的。

推荐期刊