线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

生物模仿技术8篇

时间:2024-01-09 11:14:54

生物模仿技术

生物模仿技术篇1

关键词:仿生理论;供应链;绩效评价

一、 引言

近些年来,随着仿生算法的出现及迅速发展,仿生算法在解决数学建模、预测等问题中受到越来越多的欢迎。通过模拟生物构造和机理等,已经演化出包括神经网络、遗传算法、粒子群优化算法等具有全局优化能力的诸多仿生理论。将这些理论引入到供应链绩效评价研究中,能够为供应链绩效评价带来一种全新的视角。

二、 仿生学

1. 仿生学理论发展历史。早在人类文明开始时期,人类就开始了创造发明。根据锯齿草发明了锯齿,研究鸟的身体结构设计了扑翼机,模仿蝙蝠的视听行为原理发明了雷达,根据苍蝇的楫翅和复眼,制造了“振动陀螺仪”、“蝇眼透镜”等。随着科学技术的进步和人类对各种事物机理的研究,尤其是20世纪40年代电子计算机的问世,更是给人类科学技术宝库增添了可贵的财富,从而涌现了各种各样通过模仿而发明的伟大创造。人类仿生行为虽然早有雏型,但是直到20世纪50年代,才开始自觉把生物机理及结构的模仿思想应用到发明创造和设计思想上。1940年出现的调节理论,以及1947年出现的控制论促进了仿生学诞生。1948年,Wiener在其著作《控制论》中探讨了动物的通讯机控制关系,并把这种关系引述到机器中的通讯控制关系,为仿生学奠定了理论基础。1960年,由美国空军航空局组织的第一次仿生学会议顺利召开。会议围绕“分析生物系统所得到的概念能够用到人工制造的信息加工系统的设计上去吗?”展开讨论。这标志着仿生学作为一门独立学科的诞生。随着生产的需要和科学技术的发展, Steele为新兴的科学命名为“Bionics”,意思是一种研究生命系统功能的科学。1963年我国将“Bionics”译为“仿生学”,仿生即模仿生物系统的功能和行为,来建造技术系统或者发现一种方法。

2. 仿生学定义及其发展趋势。李言俊等(2005)认为仿生学就是以生物为研究对象,研究生物系统的结构性质、能量转换和信息过程,并将所获得的知识用来改善现有的或创造崭新的机械、仪器、建筑结构和工艺过程的科学,是生物科学与工程技术相结合的一门综合边缘学科。王兴元(2010)将仿生学定义为:仿生学是研究以模仿生物系统的方式,或以具有生物系统特征的方式,或以类似于生物系统工作的方式进行技术研发或产品设计的科学技术。本文认为,仿生学是研究生物系统的结构、特质、功能、能量转换与信息控制等各种优异特征,并把它们应用到技术系统,改善已有的技术工程设备,并创造出新的工艺过程、建筑构型、自动化装置等技术系统的综合性科学。

仿生学属于一种新兴的交叉性综合边缘性学科。目前国内外对其研究已经非常广泛,并取得重要进展。Steele(1958)把仿生学定义为“模仿生物原理来建造技术系统,或者使人造技术系统具有或类似于生物特征的科学”。林良明(1989)认为,仿生学是研究生命的结构、能量转换和信息流动的过程,并利用电子、机械技术对这些过程进行模拟,从而改善现有的和创造出崭新的现代技术装置。Peter(2001)对仿生学进化设计进行了研究,并应用进化算法在环境约束条件下,对仿生模型实施了进化设计。Lipson等人(2000)利用RP技术对仿生算法设计进行了研究。

仿生理论是指基于模拟实物或机理分离出来的理论,通过演变与改良形成的在有限条件下适用的一种数学研究方法。仿生理论包括神经网络理论,进化算法,群集智能算法,免疫算法和其他算法等。目前还没有对仿生算法进行定义。由于智能与仿生概念的重合,导致仿生算法的概念比较模糊。有学者认为智能和仿生算法的概念没有实质区别,并使用智能仿生算法的概念。对仿生理论算法的研究,可以分为三个方向:第一个方向为以单个理论为例的实际应用,使用一种理论并根据实际情况需要进行改良。神经网络和遗传算法的研究已经趋于成熟并在实际的各领域中发挥作用。王玮等(2001)建立了一种基于粗糙集理论的神经网络模型,来解决传统神经网络的多维度输入和多维度输出不稳定的问题。第二个方向是混合仿生理论的研究,综合多种仿生理论算法,发挥各种仿生算法的优点解决问题。胡庆等(2010)针对BP神经网络库存预测方法中存在局部最小问题和GA算法寻优中的盲目性,用GA-BP的算法解决电信供应链的库存控制,对影响供应链绩效的库存进行了有效预测。第三个方向为即为新兴的仿生理论研究。

生物模仿技术篇2

关键词:计算机仿真;三维模型;排水施工;应用

中图分类号:G623文献标识码: A

前言

排水工程是我国经济和社会发展过程中的一个重要的项目,不仅关系到我国的经济发展,还关系到百姓的生活,是一项利国利民的工程项目。排水工程施工过程十分复杂,为了保证施工质量,应该要与时代接轨,引入更多先进的技术和手段。传统的排水施工过程中,进行方案的设计,主要是依靠人工的设计方式,出错率较高,效率比较低,随着计算机技术的发展以及普及,计算机仿真技术的应用越来越广泛,计算机仿真技术与排水工程领域之间的结合,推进排水工程建设的进度,也提高了施工的效率以及质量。随着计算机仿真技术的不断完善,在排水工程中的应用也会越来越普遍。

一、计算机仿真技术的特点以及优势分析

随着互联网以及计算机技术的不断发展,各种先进的科学技术在我们的生产生活过程中的应用变得越来越广泛,计算机仿真技术就是其中的一个重要方面。计算机仿真技术是借助于计算机技术及硬件设备,实现一种人可以通过一定感知方式所感受到的虚拟环境,它集成了计算机图形技术、仿真技术、人工智能技术、传感技术、显示技术、网络并行处理等技术的最新发展成果,由计算机图形构成三维数字模型,提供给人们通过计算机对复杂数据进行可视化操作与交互的一种全新方式。这种技术在应用过程中最大的一个特点就是能够实现用户与虚拟环境之间的一种交互,人类传统的认知方式主要是通过亲身接触大自然来实现的,计算机仿真技术的应用,扩大了人们对自然环境的认知的范围。

计算机仿真技术具有十分明显的优势特征,第一,利用计算机仿真技术可以快速地对多种施工方案进行比较和分析,计算机仿真技术在排水工程施工中的应用,一个最重要的方面就是能够快速地对各种方案进行比较分析,从而选出最合适的一个设计方案进行施工。在仿真阶段,基于仿真的结果,可以进行相应的探讨,从而决定出哪些因素对施工过程有较大的影响,哪些施工阶段的影响最大,从而采取政策的预防措施。第二,计算机仿真技术的成本较低。与传统的真实的原型实验不同的是,计算机仿真技术是利用软件的开发以及应用实现的一种模拟实验方式,其中需要支出的费用主要是计算机硬件以及软件的费用,相对于真实的模型实验而言,成本比较低。第三,计算机仿真技术的可靠性比较高,计算机仿真技术的效率主要取决于系统模型以及软件的正确性,在系统模型以及软件编制是正确无误的前提下,排水工程施工过程中的计算机仿真技术的应用,会对各种约束条件进行分析和考虑,与传统的人工操作过程中的可靠性进行比较而言,可靠性和稳定性更高。第四,计算机仿真技术的实用性更强。计算机仿真技术在很多方面都可以应用,只要是可以通过数学进行描述的模型,都可以利用计算机仿真技术进行仿真,比如在排水工程施工过程中的应用,可以对各个过程进行预测,对成本进行预测等,提高排水工程施工管理过程中的效率。

二、计算机仿真模拟技术在排水工程施工过程中的应用

(一)计算机仿真模拟技术的实现步骤

计算机仿真模拟技术是以数学理论为基础的,就计算机本身而言,是不能对施工过程中的问题进行分析和处理,需要建立一个能够反映出事物的本质特征的模型,在排水工程施工过程中的应用,主要分为四个步骤。

1、建立相应的模型

在建模的过程中,应该要对排水工程的实际问题进行分析,将施工过程中应该要注意的各种问题、限制条件、约束内容等进行考虑,然后利用数学、力学等理论将谁理工本工程施工过程中的数字模型描绘出来,利用计算机软件技术,将各种预定的数据输入到系统中去,对于各种数据应该要保证建模的精确性。此外,还可以通过人工干预的手段在建立的模型中进行数据的修改,保证各种数据的完整性。各种数据应该要涉及到施工阶段的总体场地布置情况、施工进度、材料用量等情况。

2、输入模型

输入模型指的是将建立起来的模型输入到计算机系统中进行处理的一种方式,计算机仿真模拟的模型就是最终体现出来的模型内容,这个步骤是计算机模拟仿真过程中的一个十分重要的步骤和环节,模型就是把建立的模型通过计算机进行系统的处理,这种形式所体现的模型内容也就是计算机仿真模拟模型,同时也是进行计算机进行仿真模拟计算的关键环节。

3、计算机仿真模拟

将模型放置到计算机模块中,从而可以实现对排水工程方案的模拟分析,是排水工程施工过程中的一个十分重要的步骤,这个环节是将排水施工过程中的各种数据进行分析的一个过程,通过对各种数据进行模拟,得到相应的模拟结果,从而为施工过程中的各种问题的预测奠定基础,确保施工过程中的精确度。

(二)计算机仿真系统的设计

计算机仿真系统首先需要建立排水工程的虚拟环境,这是进行仿真的第一步,比如地形、施工场地、电站建筑物、挡水地下建筑物等,都需要进行模拟,同时还要对各种排水工程的设备进行模拟,当前的排水工程模拟过程中,三维仿真技术的应用,对于排水工程施工过程中的各种运行状况进行动态监控,有助于进行智能化以及可视化管理。

计算机仿真系统的设计过程中,需要建立相应的三维模型。建立三维模型,主要是以排水工程为研究的对象,利用对应的模拟软件以及实时驱动软件,将各种数据进行转换,形成逼真的三维模型。三维几何模型是整个工程虚拟场景中的一个基础,模型的建立包括三维地形的建模以及建筑物的建模,比如在排水工程施工过程中会遇到很多挡水地下建筑物、管道等,模型建立的过程中应该要对各种建模任务进行划分,建立一个比较完整的仿真系统,还需要对各种植物、桥梁、公路、码头等场景进行描述,利用仿真实验,对各种参数进行设计和优化。计算机仿真技术的虚拟建模软件会根据二维平面文件,建筑物的立面图、剖面图建立三维模型,然后建立与模型相关的数据库,将数据与数据的各种属性进行有机结合,促进三维模型的完善。

结语

随着计算机和互联网的普及,各种信息技术在我们的生产生活中应用越来越广泛,计算机模拟仿真技术就是一种比较常见的计算机技术,对排水工程施工具有十分重要的意义。在模拟过程中,通过模型的建立、仿真以及仿真结果的分析,有助于对排水工程的施工进行高效管理,从而实现节约成本、提高施工效率的目的。

参考文献

[1] 程鹏军,李海燕.计算机仿真模拟技术在水利工程中的应用[J].东北排水水电,2010(09)

[2] 齐兆春,马刚琳.计算机三维仿真技术在水利工程中的应用[J].吉林排水,2007(01)

生物模仿技术篇3

摘要:

通过详细介绍仿生学在石油工程领域的发展现状,提出了石油工程仿生学的概念,指出了建立石油工程仿生学的必要性,概括了石油工程仿生学的特点和研究方法,并梳理了其发展趋势。目前,仿生学在钻井、管道、井筒等领域取得了实质性进展。未来石油工程仿生学研究应遵循科学的研究方法,按生物原型阶段、数学模型阶段和工程实现阶段循序渐进地加深研究成果,尽可能避免模仿的复杂性;同时加强在模仿中的创造与创新。石油工程仿生学发展应以生产中的技术需求为根本出发点,以改善现有的或创造崭新的技术系统为目的,有层次、分阶段地开展应用研究,在功能材料、表面性能、信息获取与处理、工程实现等方面为关键技术问题的突破提供创新性解决方案和技术手段,经知识积累、成果转化和工业化应用3个阶段,逐渐形成涵盖勘探、开发、工程的仿生技术体系。

关键词:

仿生学;石油工程仿生学;仿生技术体系;材料仿生;表面仿生;信息仿生;工程仿生

为了适应环境、延续生命,自然界中的生物经过亿万年的进化和优胜劣汰,造就了近乎完美的结构、形态和功能。五彩缤纷的自然界一直是人类产生各种技术思想和发明创造灵感的不竭源泉,从千百年前模仿蜘蛛织网发明渔网,到近代模仿鸟类飞翔发明飞机,再到21世纪模仿鲨鱼皮结构发明鲨鱼皮泳衣,人类一直在向大自然学习,利用仿生原理和思想推动技术进步,对仿生学的使用也从无意识向有意识转变。仿生学是研究生物系统的结构、性状、原理、行为以及相互作用,从而为工程技术提供新的设计思想、工作原理和系统构成的技术科学[1]。自仿生学诞生到20世纪末,科研工作者经过几十年的探索,逐步加深了对仿生学的认识和理解,初步掌握了仿生学研究方法,完成了基础知识的积累。进入21世纪,仿生学的思维和方法迅速渗透到各个学科和行业,研究成果大量涌现,根据发表科学论文数量推断,这一阶段的成果占了总数量的近90%。在这一时期,仿生学在石油工程中也出现了应用案例,不仅利用仿生学理论解决了钻井、管道防护等技术难题,并且对石油工业的技术创新理念和思维也产生了日益重要的影响。本文介绍了仿生学在石油工程领域的一些重要研究成果,在对仿生学在石油工程领域发展历程深入分析的基础上,提出了建立石油工程仿生学的必要性,并概括了石油工程仿生学的研究特点和方法,梳理了其发展方向。

1仿生学在石油工程领域的应用现状

仿生学的本质是模拟生命系统,其学科结合和行业结合的特点促进了优秀的仿生研究成果从科学研究走向生产实践,最终投入实际应用。仿生学和石油工程的交叉在钻井、管道、井筒、油藏等领域也产生了一些研究成果。

1.1钻井领域

1.1.1仿生钻井液井壁稳定问题一直是困扰国内外钻井的难题,水平井比直井的井壁失稳问题更加突出[2]。中国石油大学(北京)根据海洋生物贻贝足丝蛋白的超强黏附能力,研制了仿生强固壁钻井液体系[3]。该技术在聚合物主链上接枝类似贻贝足丝蛋白中的一种关键基团,合成类似贻贝蛋白质的水溶性聚合物。仿生钻井液体系在岩石表面自发固化形成致密且具有黏附性的“仿生壳”,起到维持井壁稳定的作用。试验井现场钻井试验表明,该仿生钻井液体系在抑制钻屑分散、稳定井壁、携屑等方面效果显著[4]。此外,模仿细菌结构开发了含仿生绒囊的钻井液[5],在钻井过程中无需固相即可暂堵漏失储层。目前,仿生绒囊钻井液已在煤层气欠平衡钻井、空气钻井、防漏堵漏、快速钻进等方面发挥了作用。

1.1.2仿生PDC钻头机械钻速与使用寿命是衡量钻头性能的两个重要指标[6],聚晶金刚石复合片(PDC)钻头因其出色的切削岩石速度和较长的使用寿命已成为最常用的破岩工具之一。然而,常规PDC钻头依然存在金刚石与硬质合金结合力不足、防黏效果不明显、磨损较快等缺点,为此,吉林大学开展了仿生钻头研究工作,研发的仿生钻头已从最初的单一功能仿生,发展到目前的耦合仿生,钻头性能也由单一的减黏脱附发展到减阻、耐磨、切削效率等指标的综合提升[7-9]。仿生耦合PDC钻头借鉴了竹子中纤维素和木质素的分布方式,牙齿中有机/无机2种不同材料的梯度复合形式,树木的年轮排布,贝壳表面的非光滑形态,以及蝼蛄前足的快速挖掘特点等多种生物特性,并将其进行耦合设计,如图1所示。现场试验表明,仿生耦合PDC钻头比常规PDC钻头钻进速度提高1.5倍,缩短了施工周期,降低了钻井成本。

1.2管道防护

1.2.1仿生水草海底防冲刷技术海底管道是海上石油输送上岸的主要方式[10],然而,海底复杂流场所引起的海底冲刷造成了管道悬空,给海洋采油安全和海洋环保带来重大风险。由于常规水下抛石、砂包堆垒、混凝土沉排垫等方法效果不理想,中国石油大学(华东)和中国石油化工股份有限公司胜利油田分公司提出了一种模拟海草黏滞阻尼作用的仿生水草海底防冲刷技术[11,12],原理如图2所示。当海底水流经过仿生水草时,其流速降低,减小了对海床的冲刷;同时,仿生水草促进海流携沙的沉降淤积,逐渐形成被仿生水草加强的海底沙洲,达到了埋管目的。现场试验表明,防冲刷仿生水草施工1年后泥沙淤积厚度达20~50cm,防护效果良好。该技术在海管悬空治理中得到了大范围推广应用。

1.2.2仿生血小板管道修复技术英国Brinker公司模仿血小板在伤口处凝结的原理,开发了一种管道修复技术[13]。在管道流体中加入Platelets微粒,当其流至裂缝处时,流体压力迫使其进入裂缝,达到阻止泄漏的目的,如图3所示。该技术已应用在BP公司Foinaven油田的注水管道和阿帕奇公司在Forties油田超期服役的原油集输管道上,为管道安全运行发挥了重要作用。

1.3井筒领域

1.3.1仿生泡沫金属防砂技术中国疏松砂岩油藏分布范围广、储量大,开采过程中必须采取防砂措施。根据骨松质的三维立体结构,提出了一种仿生泡沫金属防砂技术[14]。泡沫金属内部为三维孔隙结构[图4(a)],砂体进入孔隙后沉积在其中,但流通孔道不会被堵死,实现了常规平面防砂到三维立体防砂的转变[图4(b)]。基于仿生泡沫金属的复合防砂管[图4(c)],由不同孔隙度的多个泡沫金属防砂层、导流层、保护层等组成,该结构不仅扩大了防砂的粒径范围,还保障了防砂管的渗流能力和结构强度。目前,已发展出防砂粒径0.15mm、0.25mm、0.35mm的系列化仿生泡沫金属防砂工具,在油田应用5口井,对于出砂严重的井,防砂效果显著,大幅延长了检泵周期。

1.3.2仿生非光滑表面膨胀锥技术膨胀管作业过程中,膨胀锥与膨胀管内壁间存在巨大的摩擦阻力。为了降低摩擦阻力,提高膨胀锥的耐磨损性能,以穿山甲为仿生对象,模拟其体表的高强度保护鳞片结构,研发了仿生非光滑表面膨胀锥[15](图5)。仿生膨胀锥变径段采用激光刻蚀、超音速火焰喷涂、离子束沉积等方式进行表面织构蚀刻以及表面硬质涂层涂覆。仿生膨胀锥在中国石油大庆油田进行了4井次的现场试验,结果表明,与传统胀锥相比,仿生膨胀锥降低膨胀压力15%以上,表面无明显磨损痕迹,延长了使用寿命,降低了作业风险。

1.3.3仿生振动波通讯技术自然界中,沙蝎、大象等动物能感受由固体介质即大地所传导的振动波,据此进行信息传递。受此启发,研发了一种仿生振动通讯技术[16],该技术在井口安装大功率振动信号发生器作为波源,油管或套管为传输介质,将振动信号传输到井下,井下工具接收到振动信号并进行解调处理,实现地面和井下无线传输,技术原理和振动信号发生器如图6所示。

1.4油藏领域纳米机器人是仿生信息感知和传递的典型代表。纳米级机器人随着注入流体进入油藏中,记录分析油藏压力、温度以及流体形态,并将这些信息储存在随身内存中,之后纳米级机器人从产出流体中被分选出来,进而提供了在油藏旅途中提取的重要信息。沙特石油公司已经对纳米机器人的尺寸进行了评估,对加瓦尔油田阿拉伯-D油藏中的850块岩心进行了分析,得到了孔隙-喉道尺寸分布图,大多数孔隙喉道尺寸大于5μm。为了避免桥堵,纳米机器人的尺寸应为孔隙喉道的约1/4。目前,纳米颗粒注入试验以及软件模拟等工作已在进行中[17-19]。此外,国内外近年来提出了仿生形状记忆聚合物材料(ShapeMemoryPolymer,简称SMP)[20,21],利用SMP材料能够在转变温度控制下随意变形的特性,设计了结构简单、座封可控的仿生封隔器,座封过程不受井下流体性质影响,胶筒尺寸可定制,并且通过调节SMP的转变温度,可适应不同井下温度,以满足不同井深条件下的完井需求。除了硬件,还出现了“软性”仿生研究成果。例如,中国科学院王守觉院士提出了“仿生模式识别”的概念,将传统模式识别的“区分”事物转变为“认识”事物,使之更接近人类“认识”事物的特性[22]。石油工作者将这一理论应用到了油气管道工况识别中,在样本较少的情况下取得了较高的识别准确率[23]。

2石油工程仿生学发展展望

目前,仿生学虽然已经在石油工程领域取得了一定的研究成果,有些甚至已经在油田现场试验,但仿生学与石油工业的结合依然只是“星星之火”,没有达到燎原之势。为了系统、全面地推动仿生学与石油工程的融合,向自然界寻找推动石油工业进步的灵感和启发,2009年中国石油勘探开发研究院成立了中国第一个石油工程仿生研究部门,开展仿生学在石油工程中的应用研究。

2.1建立石油工程仿生学的必要性经过几年探索,笔者所在的石油工程仿生研究部门开展了仿生泡沫金属防砂、非光滑表面、仿生振动波传输等多项研究,取得了阶段性成果,部分已进入现场应用阶段。总体来说,通过专项研究迅速找到了石油工程和仿生学的结合点,并从最初的研究思路转化为研究成果,成功应用于石油工程现场,解决了油田技术需求。这充分说明了开展石油工程和仿生学的结合研究是合理的、可行的,从长远来看,建立“石油工程仿生学”是非常有必要的。“石油工程仿生学”是借鉴生物系统的结构、原理、功能等特征为石油工程技术难题提供解决方案的应用科学。建立“石油工程仿生学”意味着更加系统地开展仿生学在石油工程领域的应用研究,有利于更有针对性地发掘石油工程的仿生创新源头,有利于更有目的性地开展仿生基础研究,有利于加速仿生学科研成果的应用转化,有利于仿生学思维和方法在石油工程领域的普及与传播,以点带面,促进石油工程与仿生学的全面结合。

2.2石油工程仿生学的研究特点石油仿生学研究可以分为3个阶段:生物原型阶段,数学模型阶段和工程实现阶段。首先研究生物某种功能的实现机制和结构特点;然后研究并简化其结构,抽象出物理模型,进而建立数学模型;最后采用技术手段,制备实物模型,实现对生物系统的工程模拟[24,25]。仿生学作为前沿领域,研究成果大多属探索类,注重理论性和超前性,而石油工程作为应用行业,以现场需求为驱动力,更加注重科研成果的实用性和推广性。因此,在科研实践中,石油工程仿生学应以满足生产中的技术需求为根本出发点,以改善现有的或创造崭新的技术系统为目的,有层次、分阶段地进行单元仿生或多元耦合(协同)仿生[26]研究。同时,石油工程仿生学在模仿生物的特性或功能时,要尽可能避免模仿的复杂性,要在模仿中创造(创新),研究成果与仿生原型并不一定完全相同,以期最快地解决生产实践难题,然后循序渐进地加深研究成果的仿生特性,由研究成果实用化向仿生最优化分阶段推进。根据这一特点,确定了石油工程仿生学研究和应用的2种主要方式:①需求驱动型,在石油工业的科研和生产实践中提出技术问题或功能需求,有针对性寻找并借鉴生物的同类或相似功能,经过可行性研究后开展仿生学三阶段研究工作;②源头驱动型,加强与世界仿生学研究机构之间的交流与合作,密切关注仿生学或生命科学研究的最新成果,找准其与石油工业技术需求的结合点,开展应用研究。笔者研究团队的研究成果充分体现了石油工程仿生学研究特点的适用性,验证了研究方法的合理性与可行性。例如,泡沫金属研发之初采用泡沫镍作为基材,虽然在技术上具有明显优势,但高昂的价格阻碍了推广应用,为此,继续开展研发工作,开发出不锈钢泡沫技术,使其具有了推广应用的条件;仿生非光滑表面膨胀锥技术则是充分借鉴了其他研究机构的成果,优化改进之后应用于膨胀锥,不仅解决了油田生产难题,还促进了仿生研究成果的应用转化;仿生振动波通讯技术则是在原理上借鉴了动物的通讯方式,但在实现过程中通过大幅提高信号发射强度的方式避免了高灵敏度、小信号接收器开发的复杂性,从而在最短时间内实现生产井指令由地面到井下的无线传输。

2.3石油工程仿生学的发展方向

随着石油工程仿生学系统性研究的启动,研究内容体现出了明显的方向性,但研究的深度和广度依然不足。根据石油工业的技术现状、需求和特点,以及仿生学的整体发展水平,未来石油工程仿生学应注重材料仿生、表面仿生、信息仿生和工程仿生4个方面的系统性研究,以点带面,形成涵盖勘探、开发、工程的仿生技术体系。

2.3.1材料仿生材料仿生的目的是仿制天然材料或利用生物学原理设计和制造具有生物功能,甚至是具有真正生物活性的材料。石油工程领域的材料仿生主要分为2类:①在机械、电学、化学、物理等方面具有仿生特性的主体材料,此类材料或在宏观上体现出明显的仿生特征,或通过外场刺激可调控其分子的长度、结构、化学组成、表面形貌等,进而调控材料性能,如轻质高强材料、仿生记忆材料、压电材料、可降解材料等,该类仿生材料主要用来替代石油工业中常用的钢铁、橡胶、陶瓷等,作为其核心功能部件,或作为传感器敏感元件,大幅提升现有材料、工具以及传感器的性能指标;②具有强化、修复、、保护等作用的微观仿生材料,提高现有制剂性能、界面结合效果等,此类仿生材料多以添加剂的方式应用。

2.3.2表面仿生自然界许多生物体的表面结构是非光滑的,无论是陆地、海洋或是天空中的生物,其表面的不同形貌往往都是为适应不同的生活环境经过长期进化而来的,而表面仿生是在仿生对象表面实现类似生物的表面结构,从而表现出更好的表面性能。未来,石油领域的表面仿生多是对机械部件表面进行处理,重点应集中在仿生非光滑表面和仿生浸润性两个方面。加强对不同生物功能表面结构的研究和模仿,将仿生非光滑功能表面应用到大量处于恶劣环境中的设备、管线、平台中,提高运动组件的减阻、耐磨、脱附等性能,以及非动组件的防腐、防垢等特性,延长装备寿命,提高作业效率,降低安全风险;对材料表面进行仿生浸润性处理,使其具有自清洁、亲油、疏油、亲水、疏水等不同浸润性特征组合,从而衍生出新的功能特性。目前正在利用表面仿生技术对前文提到的仿生泡沫金属进行处理,利用低温等离子体表面处理技术,在泡沫金属表面涂覆一层厚度为30~40nm的聚全氟烷基硅氧烷薄膜,使其具有新的表面浸润性特征,根据需要实现疏水、亲水、疏油、亲油等不同特性组合,在工矿、石化、冶金、机械、环保等领域具有广泛的应用前景[27]。

2.3.3信息仿生信息仿生主要是对生物信息获取、大数据处理以及生物间信息沟通、协同等特性的模拟与实现。石油工程领域的信息仿生主要可分为2类:①借鉴生物在信息感知和传递方面的特性,研制新型传感或信息传递装置,提高信号采集的精度、广度及适用范围,此类信息仿生技术可用于油田生产数据的精确采集,以及信息的高效传递,从而提高油田生产状态的实时监测与控制水平;②在信息处理方面借鉴生物的大数据处理机理和方法,提高大数据处理能力和智能化水平,建立决策机制,并将其应用在地震解释、油藏认识、开发方案制定以及油田综合管理等方面,促进油田勘探开发高效运行。

2.3.4工程仿生目前,工程仿生是对生物某种功能的模仿,注重仿生功能的实现,不强调机理相似:①对生物功能的模仿和实现,此类仿生多是受某种生物功能启发,注重结构相似或生物功能的工程实现,体现生物功能的智能性,并能够满足生产实践需求。目前,石油工程领域的控制方式正在由传统的机械方式向自动化和智能化方向转变,在这一转变过程中引入工程仿生,不仅能够优化功能结构和控制方式,还能够促进功能拓展,提高作业效率和便捷化程度。②材料仿生、表面仿生、信息仿生等方面的工程实践方法。现有的诸多仿生学研究成果还局限在实验室环境,在其向工业应用转化的过程中,一方面要解决成果本身的适用性问题,另一方面需要具备切实可行的工程实践手段。

2.4发展展望石油工程与仿生学的结合依然处于初级阶段,大多数研究成果为“形似”仿生。随着生命科学研究水平的提高以及技术手段的完备,生命科学从生物结构、功能、特性等研究,逐渐深入到生命活动规律、发育规律、生命本质、生物之间和生物与环境之间的相互关系等研究。生命科学的发展加深了对生命本质的认识,不仅能够拓宽石油工程仿生研究的广度,更加深了研究深度;反之,石油工程仿生学的发展也使得人们在具体的科研实践中深化了对生物本身及其活动的理解,进一步促进生命科学研究,并将研究成果有形化[28]。此外,电子、材料、控制等学科的技术进步也将促使石油工程仿生研究成果越来越“神似”。石油工程仿生学未来发展大概可以分为3个阶段,即知识积累、成果转化和工业化应用(图7)。2020年前,为知识积累阶段,任何一个学科领域的发展,都需要长期的知识积累,其中既包括仿生学基础理论知识的积累与储备,也包括石油工程仿生学研究人才和研究方法的积累,这一阶段要不断加深对仿生学本质的认识与理解,探索并逐渐形成石油工业与仿生学的结合模式;2020年到2025年为成果转化阶段,对实验室研究成果进行简化和鲁棒研究,使之在性能或功能上能够满足现场应用的要求,形成基本完备的工程实现技术和手段;2025年后,部分研究成果在生产、成本、效率、能耗、作业工艺等方面能够满足大规模工业化应用的要求。2008年提出的仿生井概念是未来石油工程仿生发展的集中体现[17],代表了未来石油工程仿生研究成果的高度融合。未来的油井会像植物一样“生长”,像植物寻找土壤中湿润的地方一样寻找油气,一旦钻好垂直井(种植井)后,井将会“按自己的方式生长”。一个智能的分支会延伸到一块含油区域,一旦该区域水淹后,就将这个分支“砍掉”,并在另一个含油区域“长出”另一个分支,如此反复。

3结语

生物模仿技术篇4

一、系统仿真理论

1.系统仿真

系统仿真是迅速发展起来的一门新兴学科,随着系统仿真的理论和应用技术研究的深入以及计算机技术的发展,应用数字计算机对实际系统或假想的系统进行仿真的技术越来越受到人们的重视[1]。现在人们普遍接收的系统仿真的定义是:以相似性原理、系统技术、信息技术及应用领域有关专业技术为基础,以计算机、仿真器和各种专用物理效应设备为工具,利用系统模型对真实地或假想的系统进行动态研究的一门多学科的综合性技术。仿真技术是研究复杂问题的一种有效的方法。由于仿真技术在应用上的安全性和经济性,仿真技术的应用取得了广泛的范围。首先应用于军事领域,仿真技术在武器系统研制,战术互联网仿真等方面都取得了良好的效果;其次,在航空、航天、航海、核电站等方面也利用仿真技术减小了项目的风险,并在安全防御方面起到了实际系统不可比拟的作用;另外,仿真技术已逐步发展到应用于社会、经济、交通、生态系统等各个领域,成为高科技产品从论证、设计、生产试验、训练到更新等整个阶段不可缺少的技术手段,为研究和解决复杂系统问题提供了有效的工具。

2.物流系统仿真

随着中国加入WTO,中国经济的发展更是进一步的加快了步伐。加之近几年电子商务的飞速发展,使得中国的物流业也迅速的成长起来。现代自动化物流系统是集光、机、电技术为一体的复杂的系统,能够实现物流传输、识别、拣选、分拣、堆码、仓储、检索和发售等各个环节的全程自动化作业。可以看到,物流系统是一个多因素、多目标的复杂系统。正是由于物流系统的复杂性,运用系统仿真的方法对其进行建模仿真的分析研究,以此来确定物流系统中物料运输、存储动态过程的各种统计,了解设备的处理能力是否能满足实际需要,运输设备的利用率是否合理,运输线路是否通畅;以及物流配送中心的地理位置选择是否恰当,物流配送中心的建设容量设计是否适当等问题。由于现代生产物流系统具有突出的离散性、随机性的特点,因此人们希望通过对现代物流系统的计算机辅助设计及仿真的研究,将凭经验的猜测从物流系统设计中去除,能使物流合理化进而提高企业生产效率。

物流仿真技术是借助计算机技术、网络技术和数学手段,采用虚拟现实方法,对物流系统进行实际模仿的一项应用技术,它需要借助计算机仿真技术对现实物流系统进行系统建模与求解算法分析,通过仿真实验得到各种动态活动及其过程的瞬间仿效记录,进而研究物流系统的性能和输出效果。物流仿真是指评估对象系统(配送中心、仓库存储系统、拣货系统、运输系统等)的整体能力的一种评价方法。在系统仿真中,仿真的三项基本要素是:系统、模型和计算机。将三要素联系起来的三项基本活动是系统建模、仿真建模和仿真试验。应用于物流仿真中,系统建模就是要根据物流仿真的目的,系统试验知识和试验资料来确定系统数学模型的框架、结构和参数。模型的繁简程度应与仿真目的相匹配,确保模型的有效性和仿真的经济性。其次将数学模型转变成仿真模型,建立仿真试验框架,之后利用仿真软件将仿真模型输入计算机,设定试验条件,根据仿真目的在模型上进行试验。最后将试验结果进行分析、整理及文档化,根据分析的结果修正数学模型、仿真模型、仿真程序,以进行新的试验。

2.eM_plant物流仿真软件

eM-Plant是以色列Tecnomatix公司出品的eMPower软件工具,又称为 SiMPLE++,是用C++实现的关于生产、物流和工程的高级面向对象仿真软件,是一个面向对象、图形化、集成的建模仿真工具,系统结构和实施都满足面向对象的要求。eM-Plant(SIMPLE++)物流仿真及规划软件用于项目规划、物流仿真和优化制造厂、生产系统和工艺过程。软件能给出开发项目规划中所有层次的解决方案,许多世界级的制造商和物流系统开发商都在使用eM-Plant(SIMPLE++)做全局规划,用它来评估不同的方案以作出科学的生产、经营决策。软件的面向对象的技术使得可以生成结构合理的层次模型,模型对系统外部和内部的供应链、生产资源和所有与生产和经营过程相关的环节上都给予了充分的考虑。

总结eM-Plant工具的特点具有如下几点:

可对高度复杂的生产系统和控制策略进行仿真分析;

标准的和专用的应用目标库为典型的方案进行迅速而高效的建模;

使用图形和图表分析产量、资源和瓶颈;

综合分析工具,包括自动瓶颈分析器、Sankey图和Gantt图;

三维可视化和动画;

使用遗传算法(genetic algorithms)对系统参数进行自动优化;

支持多界面和集成能力(ODBC、SQL、ORACLE、ERP、CAD etc.)的开放系统结构。

具体的主要体现在以下几个方面:

(1)使用标准的和专用的应用目标库建立系统仿真模型

使用应用目标库(Application Object Libraries))的组件,eM-Plant可以为生产设备、生产线及生产过程建立结构层次清晰的仿真模型。用户可以从预定义好的资源、订单目录、操作计划、控制规则中进行选择。通过向库中加入自己的对象(object)来扩展系统库,用户可以获取被实践证实的工程经验来用于进一步的仿真研究。

(2)仿真系统优化

使用eM-Plant仿真工具可以优化产量、缓解瓶颈、减少再加工零件。eM-Plant能够定义各种物料流的规则并检查这些规则对生产线性能的影响。从系统库中挑选出来的控制规则(control rules)可以被进一步的细化以便应用于更复杂的控制模型。用户使用eM-Plant试验管理器(Experiment Manager)可以定义试验,设置仿真运行的次数和时间,也可以在一次仿真中执行多次试验。用户可以结合数据文件,例如Excel格式的文件来配置仿真试验。

使用eM-Plant可以自动为复杂的生产线找到并评估优化的解决方案。在考虑到诸如产量、在制品、资源利用率、交货日期等多方面的限制条件时,可采用遗传算法(genetic algorithms)来优化系统参数。通过仿真手段来进一步评估这些解决方案,按照生产线的平衡和各种不同批量,交互地找到优化的解决方案。

(3)分析仿真结果

使用eM-Plant分析工具可以轻松的解释仿真结果。统计分析、图、表可以显示缓存区、设备、劳动力(personnel)的利用率。用户可以创建广泛的统计数据和图表来支持对生产线工作负荷、设备故障、空闲与维修时间、专用的关键性能等参数的动态分析;由eM-Plant可以生成生产计划的Gantt图并能被交互地修改。随着数据库应用的增加,eM-Plant还提供了与SQL、ODBC、RPC、DDE的接口,能够读入CAD图形进行仿真;eM-Plant具有图形化和交互化的建模能力,同时,它通过内置的编程语言“SimTALK”进行过程的定义、参数的输入和控制策略的调整,也能够建立完整的仿真模型。

三、结束语

物流也已经成为现在社会不可或缺的一个行业。仿真方法的应用应当会主要集中在对真实的复杂物流系统的建模研究和总体优化上。eM-Plant软件几乎考虑到了实际工程领域中的各个方面,完全可以仿真出实际模型,所得出的分析结果对现实有直接的指导意义,非常适合于运用在物流系统的仿真上。

参考文献:

[1]康凤举 杨惠珍 高立娥等:现代仿真技术与应用[M],北京:国防工业出版社,2006.1

[2]宋建新 徐 菱 宋远卓:现代生产物流系统仿真研究[J],物流科技,2007年第3期

[3]陈子侠:龚剑虹:物流仿真软件的应用现状与发展[J],浙江工商大学学报,2007年第4期(总第85期)

[4]省略/

生物模仿技术篇5

关键词:

半物理仿真; 多领域建模; Modelica模型; 仿真系统设计; MWorks

中图分类号: TP271.4文献标志码: B

0引言

半物理仿真(HardwareinLoop Simulation, HILS)是将被研究系统的一部分实物设备与计算机相连,其余实物部分(或假想部分)以数学模型的形式转换为运行于计算机的计算模型,从而进行实时物理仿真与数字仿真的联合仿真.与纯物理(实物)仿真和数字仿真相比,HILS比物理仿真投资少效率高,并且能系统揭示被研究对象的本质特性,又比数字仿真更接近实际,其兼有数字仿真的柔性和物理仿真的精确性,是较理想的试验研究手段,在航空航天、船舶和汽车等领域得到广泛应用.

通常,HILS系统主要由仿真模型、仿真目标机和硬件实物等构成.仿真模型的构建是HILS的首要任务,当前其开发方式可分为2类:直接建模方式和联合建模方式.前者的数字模型多是基于LabVIEW或MATLAB/SIMULINK建立;后者是先用建模软件(如Modelica/Dymola)建立数学模型,然后再转换成MATLAB/SIMULINK能运行的模型,从而实现HILS计算.MATLAB/SIMULINK和LabVIEW仅适用于单一领域建模,且建模过程复杂,模型结构混乱.Dymola与MATLAB/SIMULINK进行联合建模时,模型间的转换过程操作复杂,还需要具备特定的转换接口,并且由于不同软件模型的表达方式不同,在转换过程中可能会影响准确性,以致影响仿真精度,甚至有的模型很难转换为主软件要求的形式.为克服上述HILS建模存在的问题,采用多领域物理统一建模仿真软件(如运用仿真环境MWorks软件),直接生成目标机可识别的代码程序成为解决该问题的有效方法.

1.1HILS系统性能分析

为开发具有实用价值的试验研究平台,所设计的HILS系统应满足以下几个主要方面的仿真性能要求.

1)仿真系统重现性要求.在实验室环境中,能再现不同参数条件下的实际工况响应.

2)仿真系统实时性要求.仿真系统既要能对数学模型进行实时运算,同时要能在良好接口技术的支持下在仿真计算机与实物部分之间进行实时数据交换、同步控制等操作.

3)人机交互要求.要求仿真系统应具有友好的人机交互界面,能在允许的范围内能设置系统参数,对仿真结果实时显示和记录,对仿真试验历史数据进行存储或再现等操作.

1.2HILS系统组成结构设计

HILS系统由实物设备和数学模型组成.通过分析原系统的结构和工作原理,结合HILS系统的性能需求分析,将原系统进行合理划分,保留部分实物接入仿真系统,将剩余实物部分建立数学模型进行分析研究,从而规划HILS系统的总体组成结构.

一般情况,HILS系统结构应由以下几部分组成:1)仿真计算机系统(数字仿真软件),用于建立系统数学模型并进行仿真分析,能实现由系统HILS模型生成(或转化为)指定目标机的代码程序;2)仿真目标机,用于运行实时操作系统,并实时仿真计算目标机模型代码,是HILS系统的核心;3)综合管理系统,用于HILS过程的统一管理,在该管理系统中进行代码自动下载、仿真运行控制、变量监控、实时参数调整、仿真数据存储和结果回放等操作;4)实物设备(传感器、执行机构等).系统基本结构示意见图1.

1.3HILS系统软硬件设计

根据所规划的HILS系统结构,分别设计仿真系统的硬件和软件架构,完成软件系统的开发和硬件系统的搭建.

HILS系统的软件主要有实时操作系统和数字仿真软件.实时操作系统(如VxWorks)是一种用于对仿真过程进行统一控制和管理的计算机底层实时系统,要求在规定的时间内对任务或事件做出及时响应.数字仿真软件(如Modelica/MWorks,MATLAB/SIMULINK等)通常包括被仿真系统对象数字模型、仿真算法和系统运行流程等几个部分.

HILS系统的硬件主要有仿真计算机、仿真目标机、接口设备、系统测试设备和数据采集与记录设备等.仿真目标机主要用于计算系统模型、实时采集仿真数据以及与仿真计算机的实时通信等任务,应具有良好的仿真试验实时性、适当的仿真试验精度以及高速的I/O吞吐能力等基本性能.

2HILS系统关键技术

支持Modelica模型的HILS系统的基本框架及其组成部分与普通的HILS系统一致,为实现该系统必须解决建模方法、代码生成技术和实时仿真接口实现技术等3个方面的关键技术.

2.1建模方法

数学模型与仿真目的密切相关,不同的仿真分析目的,对模型精度要求不同,建模侧重点也不同.当前,基于过程式语言软件(如SIMULINK)所建的模型用于系统性能分析精度要求较高的模型,在转换为目标机代码程序时,会加重仿真目标机的运算成本,影响HILS系统的实时性要求,并且对同类型的模型难于进行仿真优化.

HILS主要采用反映被研究对象客观特性和行为的机理建模法,主要有3种形式:连续系统建模、离散事件系统建模和混合系统建模.现有的主流数字仿真软件(如SIMULINK)是离散域或连续域的分散建模,而基于Modelica语言的建模是连续/离散混合建模,可避免模型转换造成的精度丢失.

随着原系统模型日益复杂和多样化,人为将其割裂为不同领域模型后采用单一领域建模软件的建模过程日趋困难.为克服这些问题,基于统一建模语言Modelica的多领域仿真技术得以广泛应用.基于Modelica的建模是在数学方程层面上,以微分代数方程形式对各领域模型在同一软件中进行统一描述,依据原系统的物理拓扑结构进行统一建模仿真,避免在不同建模软件之间进行模型转换的失真问题.另外,Modelica支持非因果建模,即模型的仿真计算不以因果赋值形式来确定方程的求解方向,这极大地提高软件的模块化和模型的可重用性,简化系统建模方式,为HILS系统平台系统揭示被研究对象的整体性能特性提供帮助.

2.2代码生成技术

HILS系统中从仿真模型建立到目标代码的产生,一般会经过2个阶段:首先,由各主流建模仿真软件所附带工具将模型转化为SIMULINK中的SFunction表达形式的C代码;然后,利用SIMULINK的RTW自动生成VxWorks等实时操作系统能识别的快速原型目标代码.因此,只要仿真软件能生成SFunction形式的C代码或直接生成VxWorks等实时操作系统能识别的目标代码,都可以实现HILS系统的代码生成.然而,在将仿真模型转换为MATLAB/SIMULINK能识别的代码过程中,存在软件兼容性问题,在一定程度上影响仿真精度.为克服上述问题,有必要研究在多领域统一建模环境Modelica/MWorks中,由图形化的多领域模型直接生成特定仿真目标机所能执行的代码程序.

基于Modelica模型的代码生成技术主要研究内容包括:由Modelica模型代码转换成方程系统的转换技术和方法;构建通用Modelica模型代码框架的技术分析和研究.具体表现为:首先需要将Modelica陈述式模型转换为可顺序求解的过程式表达形式,即将Modelica模型进行编译处理,包括词法分析、语法分析、语义分析和平坦化处理等;然后进行相容性分析、模型分析和指标约减分析,以确保平坦化的方程为恰约束系统(即方程变量数相等),从而生成过程式方程子集序列.

配合所构建的通用模型代码框架对方程子集序列进行分析,并为方程配置相应的数值求解器,求解器依据实时代码框架,将方程转换为具有系统独立的标准C代码.对于目标机,只需对该C代码进行相应的程序编译,生成与目标机操作系统环境相对应的可执行程序.代码转换流程见图2.

2.3实时仿真接口实现技术

HILS系统需要有良好的实时数据交换和同步控制功能,这对系统的实时仿真接口技术要求很高.

在支持Modelica模型的HILS系统中,设备接口模块集成于建模环境中,并且可与数学模型进行连接交互(逻辑关系见图3).Modelica语言规范对设备接口模块提供与数学模型相同的模型表达规范,用于向数学模型中添加目标机板卡接口的控制程序,以支持模型对硬件的操控,实现物理信号的输入/输出.例如,可以在Modelica/MWorks环境中增加人机交互界面进行参数设置,通过sample和hold等函数将其传递给硬件的驱动程序,从而实现对Modelica中硬件的控制.

总之,对于支持Modelica模型的HILS系统的仿真接口技术,主要关注仿真目标机中被研究对象数学模型与实物设备之间的数据交互,所涉及的具体研究内容如下.

1)设备接口的统一表达机制.由于设备接口种类繁多且可重用性高,所以可采用Modelica语言规范实现设备接口的统一表达机制,从而降低仿真系统的复杂性,实现与多领域数学模型的无缝连接.

2)设备接口实时运行属性的配置技术及其实现方法.为简化HILS建模操作,同时减少对真实硬件板卡知识的依赖,有必要建立设备接口模型的属性配置框架规范,以便更简捷地配置设备的属性.

3)驱动程序代码与实时操作系统驱动接口之间的映射关系.在与设备接口程序绑定的C语言文件中,加入调用驱动程序的API,以实现二者之间的对应关系.

4)设备应用(模型)接口与实时操作系统驱动接口的映射关系.在Modelica/MWorks中,制定通用的设备驱动接口规范建立驱动程序接口库,以实现二者之间的关联.

3支持Modelica模型的HILS系统实现

为检验上述支持Modelica模型的HILS系统及其关键技术,以起落架为研究对象构建HILS系统平台并进行仿真运算.

3.1支持Modelica模型的HILS系统组成结构

依据HILS系统组成结构的一般形式,支持飞机起落架Modelica模型的HILS系统主要由数字仿真系统(Modelica/MWorks)、综合管理系统、仿真目标机和被控实物组成,其组成框架示意见图4.

3.1.1数字仿真系统MWorks

Modelica/MWorks是对被研究实物系统进行系统建模并进行仿真分析的工具.依据HILS技术特性,仿真目标机系统除具有一般建模仿真软件的基本功能,还应增加2项功能:1)添加特定仿真目标机板卡的RTI(RealTime Interface)接口模块;2)由

HILS数字模型直接生成目标机能识别的代码程序,即自动生成目标机代码功能.

3.1.2综合管理系统和仿真目标机

综合管理系统(如SimTarget)主要用于对HILS过程进行统一管理.仿真目标机主要实现运行实时操作系统、运行仿真模型的目标代码程序等功能.

3.2支持Modelica模型的HILS系统模型

支持Modelica模型的起落架HILS系统模型见图5,其中间部分为基于Modelica/MWorks的起落架的液压与机械统一模型,其左端连接控制器的输入信号,右端通过板卡与控制器连接,形成回路.

3.3仿真分析结果曲线

支持Modelica/MWorks模型的起落架HILS系统中,对前起落架转弯和收放等子系统进行HILS验证.部分结果曲线见图6~9.

4结束语

HILS系统兼具数字仿真的灵活性和物理(实物)仿真的精确性,是理想的仿真试验研究工具,在众多研究领域中越来越受到重视.根据HILS系统设计的一般方法,探讨其中的一些关键技术,提出用多领域建模软件Modelica/MWorks直接生成目标机代码的思路,并通过起落架HILS系统实例验证支持Modelica模型的HILS系统的可行性,仿真结果可信.

参考文献:

[1]

唐国明. 无人驾驶汽车半物理仿真系统的设计[D]. 合肥: 中国科学技术大学, 2012.

[2]贾杰. 航天器姿态半物理仿真原理及其试验方法研究[D]. 西安: 西北工业大学, 2006.

[3]DIETMAR W, CLEMENS G. Hardwareintheloop simulation of a hybrid electric vehicle using Modelica/Dymola[C]//Proc 22nd Int Battery, Hybrid Fuel Cell Electr Vehicle Symp Exhibition. Yokohama, 2006: 10541063.

[4]廖瑛, 梁加红. 实时仿真理论与支撑技术[M]. 长沙: 国防科技大学出版社, 2002: 1488.

[5]黄建强, 鞠建波. 半实物仿真技术研究现状及发展趋势[J]. 舰船电子工程, 2011, 31(7): 57.

HUANG Jianqiang, JU Jianbo. Development introduction of hardwareintheloop simulation[J]. Ship Electr Eng, 2011, 31(7): 57.

[6]宋百玲. 柴油机控制系统半物理仿真技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.

[7]王行仁. 建模与仿真技术的发展和应用[J]. 机械制造与自动化, 2010, 39(1): 16.

生物模仿技术篇6

关键词:系统仿真设计

一、系统仿真技术

所谓仿真就是建立系统的模型(数学模型、物理效应模型或数学-物理效应模型),并在模型上进行实验和研究一个存在的或设计中的系统。这里的系统包括技术系统,如土木、机械、电子、水力、声学、热学等,也包括社会、经济、生态、生物和管理系统等非技术系统。仿真技术的实质也就是进行建模、实验。现代仿真技术的发展是与控制工程、系统工程及计算机技术的发展密切相关联的。控制工程和系统工程的发展促进了仿真技术的广泛应用,而计算机出现及计算技术的迅猛发展,则为仿真提供了强有力的手段和工具。因此,计算机仿真在仿真中占有越来越重要的地位。

仿真技术得以发展的主要原因是它带来了重大的社会和经济效益。系统仿真的应用大致可分为:对已有系统进行分析时采用仿真技术;对尚未有的系统进行设计时采用仿真技术;在系统运行时,利用仿真模型作为观测器,给用户提供有关系统过去的、现在的、甚至是未来的信息,以便用户实时作出正确的决策;

在系统运行前,利用仿真模型作为预测器,向用户提供系统运行起来后,可能产生什么现象,以便用户修订计划或决策;利用仿真模型作为训练器,训练系统操纵人员或管理人员。在工程领域仿真技术可以降低系统的研制成本,可以提高系统实验、调试和训练过程的安全。

一般认为,建立模型是仿真的第一步,也是十分重要的一步。传统仿真技术中,一个仿真系统要首先建立起系统的数学模型--一次仿真模型,然后再改写成适合计算机处理的形式-仿真模型。仿真模型可以说是系统二次近似模型。建立起仿真模型后,才能书写相应的程序。

仿真基本上是一种通过实验来求解的技术。通过仿真实验要了解系统中各变量之间的关系,要观察系统模型变量变化的全过程,此外,为了对仿真模型进行深入研究和结果优化,还必须进行多次运行,系统优化等工作,因此,良好的人机交互性是系统仿真的一个重要特性。

二、虚拟现实技术

虚拟现实技术是二十世纪末才兴起的一门崭新的综合性信息技术,是由计算机硬件、软件以及各种传感器构成的三维信息的人工环境--虚拟环境,用户投入这种环境中,就可与之交互作用、相互影响。它融合了数字图像处理、计算机图形学、多媒体技术、传感器技术等多个信息技术分支,从而也大大推进了计算机技术的发展。目前,虚拟现实技术已在建筑、教育培训、医疗、军事模拟、科学和金融可视化等方面获得了应用,渐已成为21世纪广泛应用的一种新技术。

虚拟现实是高度发展的计算机技术在各种领域的应用过程中的结晶和反映,它具有以下主要特征:

(1)依托学科的高度综合化;

(2)人的临场化;

(3)系统或环境的大规模集成化;

(4)数据表示的多样化和标准化,数据存储的大容量、数据传输的高速化与数据处理的分布式和并行化。正是这些特征,使操作者沉浸其中,并通过多种媒体对感官的刺激,对所需解决的问题有了清晰和直观的认识,从而,也使模型的建立和验证更加方便。

三、系统仿真技术与虚拟现实技术的结合

传统的系统仿真技术很少研究人的感知模型的仿真,因而无法模拟人对外界环境的感知(听觉、视觉、触觉)随着多媒体技术、计算机动画、传感技术的发展,计算机模拟外界环境对人的感官刺激开始成为可能。事实证明,人类对于图像、声音等感官信息的理解能力远远大于数字和文字等抽象信息的理解能力。将仿真技术与虚拟现实技术相结合,利用虚拟现实技术进行仿真模型的建立和实验的模拟,使仿真的过程和结果可以实现图象化、可视化,使仿真的系统具有了三维、实时交互、属性提取等特征,极大地促进了仿真技术的发展,同时也使虚拟现实技术更加具有生命力。

四、仿真与虚拟现实技术在结构工程中的应用

仿真与虚拟现实技术近年来在机械、电子、水利、社会、经济、生态、生物等各个领域都得到了广泛的应用。

在结构工程中,仿真与虚拟现实技术已经应用于如下几个方面:

1.在工程结构分析中的应用

工程结构在各种荷载作用下的反应,其破坏特征和极限承载力是人们所关心的。当结构形式特殊,荷载及材料特性复杂时,人们往往求助于模型试验来测定其受力性能,但模型试验往往受到场地和设备的限制,只能做小比例模型试验,难以完全反映结构的实际情况。若用仿真与虚拟现实技术,则可以进行足尺寸的试验,还可以很方便地修改参数。此外,有些结构难于进行直接试验,用计算机模拟仿真就更能体现出优越性,如建筑物及构筑物在地震作用下的倒塌分析,桥梁受到汽车高速碰撞的检验试验等只有采用仿真与虚拟现实技术,分析才能大量进行。又如在高速荷载作用下,结构反应很快,人们在真实试验中只能观察到最终结果,而不能观察试验的全过程。如果采用计算机模拟仿真试验,则可观察其破坏的全过程,便于破坏机理的研究。对于长期的徐变过程则可在模拟中加快其变化过程,让人们清楚地看到其过程。在运用传统的有限元法进行结构分析时,结构应力的结果通常采用内力图等力线的形式描绘出来,给人以直观的印象。利用仿真与虚拟现实技术则可以通过颜色的深浅给出三维物体中各点力的大小,用不同颜色表示出不同的等力面;也可以任意变换角度,从任何点去观察。还可以利用VR的交互性能,实时修改各种数据,以便对各种方案及结果进行比较。这样就使工程师的思维更加形象化,概念更易于理解。

2.在岩土工程中的应用

岩土工程处于地下,往往难于直接观察,而仿真与虚拟现实技术则可把内部过程展现出来,有很大实用价值。例如,地下工程开挖经常会塌方冒项。根据地质勘察,我们可以知道断层、裂隙和节理的走向密度,通过小型试验,可以确定岩体本身的力学性能及岩体夹层界面的力学特性、强度条件,并存入计算机中。

在数值模型中,除了有限元方法外,还可采用分离单元。分离单元在平衡状态下的性能与有限元相仿,而当它失去平衡时,则在外力和重力作用下产生运动直到获得新的平衡为止。分析地下工程的围岩结构,边坡稳定等问题时,可以把节理断层划分为许多离散单元。这一过程可以在显示器和大型屏幕上显示出来,最终可以看到塌方的区域及范围,这就为支护设计提供了可靠依据。

3.防灾工程中的应用

长期以来,人类一直与洪水、火灾、地震等自然灾害进行着坚持不懈的斗争。由于自然灾害的原型重复实验几乎是不可能的,因而仿真与虚拟现实技术在这一领域的应用就更有意义。目前已有不少抗灾、防灾的模拟仿真系统制作成功,例如洪水泛滥淹没区的洪水发展过程演示系统。该系统预先存储了泛滥区的地形地貌和地物,有高程数据可确定等高线,只要输入洪水标准(如百年一遇的洪水)及预定河堤决口位置,计算机就可根据水量、流速区域面积及高程数据算出不同时刻的淹没地区,并在显示器和大型屏幕上显示出来。人们从屏幕上可以看到水势从低处向高处逐渐淹没的过程,这样对防洪规划以及遭遇洪水时指导人员疏散是很有作用的。又如在火灾方面,对森林火灾的蔓延,建筑物中火灾的传播均已开发出相应的模拟仿真系统,这对消防工程起到了很好的指导作用。

4.在模拟施工过程中的应用

建筑施工是复杂的大型的动态系统,它通常包括立模、架设钢筋、浇注、振捣、拆模、养护等多道工序,而这些工序中涉及的因素繁多,其间关系复杂,直接影响着混凝土浇筑的进程。模拟施工过程是为了通过仿真手段,去发现实际施工中存在的问题或可能出现的问题,这就需要对实际施工进行仿真。而目前施工过程的模拟只是从几何形体方面模拟施工的过程,即按楼层关系由下而上,每一层按柱、梁、板的几何形状加以着色来实现对施工过程的模拟。现有的模拟只是对进度计划起到了一定作用,并没有对施工过程起到真正的作用。基于以上原因,需对施工过程建立合适的模型,以达到模拟仿真的效果。例如,大型水利枢纽混凝土在运输浇筑系统的模拟仿真模型,是由运输子系统和浇注子系统构成的,模型是按进程交互的仿真策略建立的,按这种条件建立的模型能与仿真程序间保持紧密的对应关系,程序所要模仿的行为比较直观、清晰。程序流程直接与模型结构和系统状态相对应。

另外,仿真与虚拟现实技术在结构工程领域内,还可应用在建筑系统工程管理、建筑信息管理、建筑物及构筑物的空气流场、空气品质分析等方面。

我国是一个发展中国家,有着大量繁重的基本建设任务,特别是在十五计划纲要中,提出进一步加强水利交通、能源等基础设施建设和西部大开发战略。这一大好形势,为结构工程高新技术的信息化和集成化,为结构工程学科及相关学科的发展提供了良好的机遇。仿真与虚拟现实技术作为结构工程高新技术之一,开创了结构工程学科的新纪元,其技术潜力巨大、应用前景十分广阔。

参考文献

(1)汪成为、高文、王行仁.灵境(虚拟现实)技术的理论、实现及其应用.清华大学出版社,1997

(2)陈清来.建筑结构的现代设计设计思想和发展.工程设计CAD及自动化,1996年,(4)

(3)张跃、张丛哲。土木工程中虚拟现实技术的发展与展望,计算机世界,1998,(5)D版:1-3.

(4)袁耀明.从可视化到视算一体化.系统仿真学报,1996(5)

(5)张丛哲、张跃.计算机辅助设计(CAD)中虚拟现实技术.计算机世界,1998,(5)D版:5。

生物模仿技术篇7

关键词:物流;系统仿真; FLEXSIM;

中图分类号:F250 文献标识码:A

一 系统仿真与仿真软件

1.系统仿真技术

系统是相互联系又相互作用的有机组合。系统模型是反映系统内部要素的关系,反映系统某些方面本质特征,以及内部要素与外界环境关系的系统的抽象。建立系统模型,在模型上对系统进行试验研究称为系统仿真。系统仿真又分为连续系统和离散事件系统的仿真。生产物流系统大多是离散事件系统。

系统仿真技术是以相似原理、系统技术、信息技术及其应用领域有关的专业技术为基础,以计算机和各种物理效应设备为工具,利用系统模型对真实或设想系统进行动态实验研究的一门多学科的综合性技术。

2. Flexsim 仿真软件

Flexsim仿真软件是一种可视化的、面向对象的导向性模拟软件。该软件可以帮助客户模拟物流过程,建立仿真模型,从而高效率低成本地寻求优化生产量和降低运行费用的途径。此外,该软件还拥有各种过程数据分析功能、瓶颈和产量分析功能,帮助用户方便地对仿真运行结果进行分析、评价和优化。

Flexsim仿真软件有如下几个特点:基于面向对象技术建模;突出的3D 图形显示功能;建模和调试简单方便;建模的扩展性强;开放性好。基于Flex2sim 以上特点,用此软件可对企业生产物流过程进行仿真。通过模型运行,能动画显示出结果,从而直观地检查模型,查看各部分是否运行正常。利用软件的统计功能,查看实体的统计数据,判断此模型问题所在。下面以某生产物流实验系统为实例,介绍Flexsim 仿真软件在企业生产物流中的应用。

二 、仿真模型的建立

本文采用FLEXSIM软件针对某生产物流实验系统建立仿真模型。FLEXSIM采用面向对象技术, 并具有3D 显示功能。该软件提供了原始数据拟合、输入建模、图形化的模型构建, 也提供了与其他工具软件的方便的接口。该生产物流实验系统共由4 个单元组成:①机械手装配搬运单元;②货料自动识别缓冲单元;③堆垛系统单元;④自动化仓库单元。

三 、编写仿真控制程序

1. 模型建立之后, 将各个模块按实际设施位置布置好, 然后将各个模块的输入/输出端口按实际物流过程连接起来, 使之符合实际的物流关系;

2. 设置各个模块的参数。按照实际系统运行速度及货物流量设置对应的各仿真模块的参数, 使之与实际相符;

3. 编写各模块的控制程序。如控制托盘按需求产生的程序、不同颜色缓冲库控制程序和其它颜色的缓冲库程序等等。

四 、仿真模型运行及结果分析

仿真模型的参数及控制程序设置好之后, 即可编译, 然后运行仿真程序, FLEXSIM可以实时显示仿真模型的运行状况, 如果参数和控制程序设置得当, 可以直接在模型运行过程中看出实际工作流程的瓶颈所在, 并可以直接修改相应设备的参数, 使系统的工作更加协调, 使各设备获得更高的利用率。也可根据设计需要, 分别模拟不同参数下系统的运行状况, 分析各主要设备的利用率。如下表2 分别对三种方案进行了模拟, 输出结果为不同状况下各主要设备的利用率。运行结束后, FLEXSIM可以直接将数据输入EXCEL 表, 以便进行分析。

由上表的结果可以看出, 在货物生产源头流量不是很大的情况下, 可以选用处理速度较慢的装配设备, 降低硬件设备的投资, 同时充分提高设备的利用率, 同时传送带速度也可降低, 以节约功耗, 节省运行费用, 同时宜选用速度较低, 价格适当的碓垛机, 使系统整体协调运行, 提高各相关设备的利用率。相反, 当货流量比较大时, 则应选用处理能力更强的设备, 或增加生产线。这样系统运行时才不会出现个别环节阻塞, 其它环节等待的状态。

五 、结束语

物流系统是一个离散的动态系统, 在系统设计阶段, 通过常规的计算、估计往往很难看到整个系统运行的协调性, 以及各设备的处理能力搭配是否得当。尤其是大型系统, 一经付诸实际, 如果设计不当, 会造成巨大的浪费, 或处理能力不足, 给以后的扩展增加难度。本文通过FLEXSIM来进行物流系统建模和仿真, 可以得到设计时和运行中不同要求的数据资料, 为生产的实际运行参数提供了理论依据, 使得实际系统的设计更好地满足设计者的要求。

作者单位:无锡商业职业技术学院

参考文献:

[1]郑成升, 神显豪. 基于FSS 的复杂生产物流系统建模及三维虚拟仿真[J]. 轻工机械, 2005,(1):146-149.

生物模仿技术篇8

【论文摘要将虚拟仿真技术引进教学领域后对传统教学手段产生了强烈冲击。本文针对航空电子装备教学中如何应用虚拟仿真技术给出了应用方法和心得。

1.引言

自 20世纪 9O年代以来,以计算机仿真技术 、多媒体技术和虚拟现实技术为特征的“虚拟仿真实验室”开始在世界各地出现,并逐步渗透到教学领域。作为一种新型的实验教学手段,虚拟仿真教学对传统的教学手段产生了强烈冲击,并引发了教学领域一系列深刻的变化。种种迹象表明,虚拟仿真教学将是今后实验教学改革的一个重要发展方向。本文结合多年来在航空电子装备教学中应用虚拟仿真技术的经验,探索在航空电子装备教学软件中应用虚拟仿真技术的方法和心得。

2.虚拟仿真技术简介

虚拟仿真技术是对虚拟现实技术和系统仿真技术的合称。

2.1虚拟现实技术

虚拟现实技术就是利用三维建模技术,构建一个和现实世界的物体和环境相同或相似的虚拟三维场景,并能响应用户的输进,根据用户的不同动作做出相应的反应。虚拟现实的关键技术主要有动态环境建模技术、实时三维图形 天生技术、立体显示和传感器技术等。虚拟现实技术主要侧重于对真实物体物理特征的仿真,也称为视景仿真,它主要用于产品设计和展示、贸易广告、游戏设计等。

在航空电子装备教学中,大量用 到对装备的外观 、结构 、组成 、连接 、机安装位置的展示 ,传统教学大都采用实物展示 的方法 。近年来随着大量航空电子装备 的更新换代,因受经 费、场地及使用寿命等因素的限制 ,传统教学方法 已远远不能满足要求 ,而采 用虚拟现实技术的展示方法则 以其廉价 、无场地限制和效果 良好得以广泛应用。

目前有大量成熟的软件平台可以进行视景仿 真的开发,主流平台Creator Vega Vega Prime VTree OPENGVS QUEST3D VRTOLLS EON、WEB3D、JAVA3D、GLStudio等。其中,MULTIGEN公司的虚拟现实数据库 OPENFLIGHT已经成为 了产业标准 ,在军事 、航空航天等领域应用都 比较成熟 。在航空 电子装备虚拟仿真软件的开发中我们采用r Vega Prime、GLStudio和 EON作为视景仿 真开发的技术平台 ,解决物理模型的创建、场景显示等新题目。该平台可以达到照片级 的视景仿真效果 .同时采用嵌进 OPENGL技术来解决物理模型 的交互新题目。

2.2系统仿真技术

系统仿真技术是伴随着计算机技术的发展而逐步形成的一门新兴学科 .它通过建立实际系统 的数学模 型 ,利用计算机运算来达到对被仿真系统的分析、探究、设计等目的。系统仿真技术主要侧重于对真实系统的内在机理、运动方式 的仿真,也称为行为仿真。系统仿真技术最初主要用于航空、航天、原子反应堆等价格昂贵、周期长、危险性大实际系统试验难以实现等少数领域,后来逐步发展到电力、石油、化工、冶金、机械等一些主要产业部分,并进一步扩大到社会系统、经济系统、交通运输系统、生态系统等一些非工程系统领域。 在航空电子装备教学中,对装备工作原理的讲解既是重点也是难点。传统教学方法主要通过教员的讲述,配合一些静态的图形帮助学员理解 .教学效果主要依靠于教员的授课水平和技巧 。近年来.我们尝试将系统仿 真技术应用到航空电子装备教学中,根据被仿真装备的工作原理,建立系统的数学模型,并根据装备的不同工作状态,对模型进行动态运行.结合虚拟现实技术实现的逼真场景.较好地模拟实际装备的工作情况。利用该技术开发、研制的教学软件不但可供教员教学使用.也可供学员自学,并达到了较好的教学效果。

目前,有很多成熟的系统仿真开发平台软件.如 Simulink、SystemView等,这些软件以其功能强大和使用方便、易用性受到广大用户欢迎.但价格较为昂贵,且大多未提供对外的仿真数据接口.仿真系统应用的灵活性、扩展性和可变性受到很多限制。当然也可自行开发适用 的仿真开发平台软件。在航空电子装备虚拟仿真软件的开发中我们采用的是自行开发的系统仿真平台软件。

3.虚拟仿真技术在航空电子装备教学中的应用方法和步骤

3.1建立仿真模型

这里所说的仿真模型既包括反映航空电子装备外观、结构的三维物理模型 ,也包括揭示其内在工作机理及行为的数 学模 型。对三维物理模型的建立,主要依据装备本身的物理状态,其原则就是在尽量减小面数的同时进步逼真度。对系统数学模型的建立,则需要视系统的复杂程度进行取舍和优化,本着够用为度的原则 ,以尽量减小运算量。建立数学模型时 ,还应考虑到系统运行时的参数调整。

3.2创建仿真装备的虚拟场景并驱动

对于虚拟场景的驱动,根据使用方式的不同采用了不同的方式假如进行的仅是装备外观、结构的展示,可使用EON进行动作的编辑和驱动;假如需要对装备进行虚拟操纵仿真,则使用 GLStudio软件先进行操纵面板、虚拟仪表的编辑和制作,然后再利用 Vega Prime驱动以实现更复杂的交互操纵。

3.3系统集成

系统集成就是将上述做好的模型、场景按照教学软件所需的形式将其有机的整合在一起,使之成为_个完整的 、规范的教学软件。系统集成可以使用目前常用的软件开发平台如 VB、vc++等。由于上述虚拟现实驱动软件如 EON、GLStudio及Vega Prime等均以ActiveX控件方式提供 了可用 于常用 软件开发平台的运行插件,因此,系统集成变得十分方便。编写程序时,只需考虑软件功能的布置,注重程序间的兼容性即可。

系统集成时,还需要将系统行为仿真的结果通过视景仿真表现出来,即用行为仿真的数据来驱动三维物理模型的动作。由于系统行为仿真采用了专门的运行平台,和视景仿真处于不同的系统进程中.因此这种驱动是通过两进程间的实时通讯来完成的。这里还需要考虑进程间的同步新题目。

推荐期刊
友情链接