线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

勾股定理证明方法8篇

时间:2022-09-10 06:46:14

勾股定理证明方法

勾股定理证明方法篇1

关键词:高三化学实验;高效复习

中图分类号:G632 文献标识码:B 文章编号:1002-7661(2015)04-206-01

何谓勾股定理?勾股定理又叫毕氏定理,即直角三角形两直角边的平方和等于斜边的平方。据考证,人类对这条定理的认识已经超过了4000年。据史料记载,世上有300多个对此定理的证明。勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了20多种精彩的证法。这是数学中任何定理都无法比拟的。

本文中仅介绍勾股定理的证明方法中最为精彩的两种证明方法,据说分别来源于中国和希腊。

1、中国方法:画两个边长为 的正方形,如图,其中 为直角边, 为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以 为边,右图剩下以 为边的正方形。 于是得 。

这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。

2、希腊方法:直接在直角三角形三边上画正方形。 如图,在 中, , , , 。容易得到, ,作 ,

故 ,所以 ,

即正方形 的面积与矩形 的面积相等。

同理可证得,正方形 的面积与矩形 的面积相等。

所以 ,即 。至于三角形面积是同底等高的矩形面积之半,则可用割补法得到。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。这就是希腊古代数学家欧几里得在其《几何原本》中的证法。

以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等;⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。这是完全可以接受的朴素观念,任何人都能理解。

勾股定理证明方法篇2

在同学们整个中学的学习生活和实际生活中,我们都会遇到有关直角三角形的计算和测量,那就是勾股定理的运用。我们老师不仅要教会同学们学会数学科学文化知识,更重要的是要让我同学们在日常生活中去灵活运用以及有关它存在的各种数学模型中。还要能感受我们今天的学习都是古代数学家们经过大量的实践与证明的得到的东西,探索数学知识从无到有的文化。勾股定理的发现与证明都是十分精彩的,在历史长河中,勾股定理是全世界人的伟大发现。

今天我们教科书上的多种证明,在此一一列举出来,可能对同学们学习数学以及培养数学兴趣有所帮助。并在今后的学习中铺平道路,对勾股定理有趣的文化有一个更加深刻的认识。

一、勾股世界

我国是最早了解勾股定理的国家之一,在我国最古老的数学经典著作《周髀算经》上记载着这样一段历史:西周开国之初(约公元前一千多年)有一个叫商高的数学家对周公(周武王的弟弟,封在鲁国当诸候)说:把一根直尺折成直角,两端连结起来构成一个直角三角形.它的短直角边称为勾,长直角边称为股,斜边称为弦。发现如勾为3,股为4,那么弦必为5。这就是勾股定理,又称商高定理。

在西方公元前六世纪到公元前五世纪希腊数学家毕达哥拉斯也发现这一定理,并给出了证明,但他的证明也已失传。后来欧几里得写《几何原本》时,给出一个证明留传至今(后文我们再补充,丰富同学们的视野)。因而西方称这一定理为毕达哥拉斯定理。这一定理在数学上有广泛的应用,而且工程技术,测量中也有许多应用。它在人类文明史上有重要的地位。

而在中国的有一位古代数学家赵爽在继商高之后证明了勾股定理。他这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系(与我们今天教科书上一些证明方法的大致类似)。既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且有所发展。稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。

二、勾股定理的多种证明方法(以教科书编排为序):

第一种证明:教科书P3,通过直接数出正方形A、B、C的小方格数,将不足一格的方格算半个。结果来看它们之间的关系。小方格数即为面积。由此方法可以得出正方形A、B的面积与正方形C的面积相等。

第二种证明:教科书P8,如图所示:

分析:正方形EFGH的面积=正方形ABCD-周围四个小三角形的面积。

计算:正方形ABCD边长为a+b,则面积为(a+b)2,小三角形的面积为,代入分析里面的公式得:(a+b)2 -4?a2+b2而正方形EFGH的面积也可表示为:c2,所以:a2+b2=c2

第三种证明:教科书P8,如图所示:

分析:正方形ABCD=正方形EFGH+小正方形EFGH周围的四个小三角形的面积。

计算:正方形EFGH的边长为b-a,则面积为(b-a)2,小三角形的面积为,代入分析里面的公式得:(b-a)2 +4祝ǎ?a2+b2,而正方形ABCD的面积也可表示为:c2,所以:a2+b2=c2

这里验证勾股定理的方法,据载最早是由三国时期数学家赵爽在为《周髀算经》作注时给出的。我国历史上将图中弦上的正方形称为弦图。这也是2002年世界数学家大会(ICM-2002)在北京召开的会标。如右图所示中央图案正是经过艺术处理的“弦图”,它既标志着中国古代的数学成就,又像一只转动的风车,欢迎来自世界各地的数学家们!

第四种证明:教科书P11,是美国总统Garfield(伽菲尔德总统)于1876年给出的一种验证勾股定理的办法。整个事情经过是这样的:在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是,伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。

于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。

如图所示:

分析:四边形ABED是直角梯形,可通过求梯形的面积减掉两个小三角形的面积而得出ACB的面积。

计算:由梯形面积公式得梯形面积为[(a+b)祝a+b)]?,ADC与BEC的面积和为:ab,所以ACB的面积=梯形的面积-ADC与BEC的面积和,代入以上数据进行化简得:,由图中可知ACB的面积也可以表示为。因此 = ,最后得出: a2+b2=c2

第五种证明:教科书P13,是历史上有名的“青朱出入图”如图所示。刘徽在他的《九章算术注》中给出了注解,大意是:ABC直角三角形,以勾为边的正方形为朱方,以股为边的正方形为青方,以盈补虚,将朱、青二方并成弦方。依其面积关系有 2+b2=c2。“青朱出入图不用运算,单靠移动几块图形就直观地证出了勾股定理,真是“无字证明”!

第六种证明:教科书P15-16,

意大利文艺复兴时代的著名画家达・芬奇对勾股定理也曾进行了研究。他的验证勾股定理的方法可以从下面的实验中得到体现。

(1)在一张长方形的纸板上画两个边长分别为a、b正方形,并连接BC、FE(如图①示)。

(2)沿ABCDEFA剪下,得到两个大小相同的纸板Ⅰ,Ⅱ,如图②所示。

(3)将纸板Ⅱ翻转后与Ⅰ拼成如图③所示的图形。

(4)比较图①,图③中两个多边形ABCEEF和A’B’C’D’E’F’的面积,发现两个的面积是一样的。就能得出勾股定理的存在。

本种证明补充说明一下:同样两个纸板翻了下,就能证明,很明显,原图中剪掉的两个小三角形面积都在,翻一下只不过将剪掉的两个小正方形合并为一个正方形了,从而得出勾股定理的存在。

第七种证明:教科书P16,也是“无字证明”如图所示,过较大正方形的中心,作两条互垂直的线,将其分成4份,然后,将这四个部分围在四周,小正方形填在中间,恰好得到大正方形。

第八种证明(书本上没有列出):

欧几里德对直角三角形三边关系上有着独特的方法进行了论证,证明过程如图所示:

证明:在RtABC中,∠BAC=90埃AB、AC、BC为边向外有三个正方形:正方形ABDE,正方形ACGF,正方形BCHJ。连接DC、AJ。过A点作ANJH,垂足为N,交BC于M。先通过SAS,可得ABJ≌DBC, 因此它们的面积相等。而正方形ABDE的面积=2DBC的面积,长方形BMNJ的面积=2ABJ的面积。因此,正方形ABDE的面积=长方形BMNJ的面积。同理可得正方形ACGF的面积 = 长方形CMNH的面积。从而:BC2=AB2+AC2,即:a2+b2=c2。

勾股定理证明方法篇3

作者简介:周化海(1965-),男,贵州水城人,理学硕士学位,中学高级教师,研究方向学校管理和教育教学研究;

黄绍书(1966-),男,贵州黔西人,理学学士学位,中学高级教师,研究方向学校管理和教育教学研究.

勾股定理的物理方法?C明还可以借助一厚度均匀的RtABC木板静止漂浮在水面上的模型给出.

在教学中注重交叉学科知识的相互渗透,全方位培养学生素质,提高他们综合应用各学科知识处理实际问题的能力是极为有效的.

勾股定理证明方法篇4

在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。

在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500).

实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库.

证明方法:

先拿四个一样的直角三角形。拼入一个(a+b)的正方形中,中央米色正方形的面积:c2

。图(1)再改变三角形的位置就会看到两个米色的正方形,面积是(a2,b2)。图(2)四个三角形面积不变,所以结论是:a2

+b2=c2

ONTface=Verdana>勾股定理的历史:

商高是公元前十一世纪的中国人.当时中国的朝代是西周,是奴隶社会时期.在中国古代大约是战国时期

西汉的数学著作《周髀算经》中记录着商高同周公的一段对话.商高说:"…故折矩,勾广三,股修四

,经隅五."商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径

隅(就是弦)则为5.以后人们就简单地把这个事实说成"勾三股四弦五".这就是著名的勾股定理.

关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也.""此数"指的是"勾

三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的.

赵爽:

•东汉末至三国时代吴国人

•为《周髀算经》作注,并著有《勾股圆方图说》.

赵爽的这个证明可谓别具匠心,极富创新意识.他用几何图形的截,割,拼,补来证明代数式之间的恒

等关系,既具严密性,又具直观性,为中国古代以形证数,形数统一,代数和几何紧密结合,互不可分的

独特风格树立了一个典范.以后的数学家大多继承了这一风格并且代有发展.例如稍后一点的刘徽在证明

勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已.

中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是其中

体现出来的"形数统一"的思想方法,更具有科学创新的重大意义.事实上,"形数统一"的思想方法正

是数学发展的一个极其重要的条件.正如当代中国数学家吴文俊所说:"在中国的传统数学中,数量关系

与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思

想与方法在几百年停顿后的重现与继续."

中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:

周公问:"我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段<

BR>一段丈量,那么怎样才能得到关于天地得到数据呢?"

商高回答说:"数的产生来源于对方和圆这些形体的认识.其中有一条原理:当直角三角形''''矩''''

勾股定理证明方法篇5

一 、勾股定理的证明

例1 一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图1,火柴盒的一个侧面ABCD倒下到A B'C'D'的位置,连接CC',设AB=a,BC=b,AC=c,请利用四边形BCC'D'的面积证明勾股定理:a2+b2=c2.

证明: 四边形BCC'D'为直角梯形,

S梯形BCC'D'=(BC+C'D')•BD'=.

RtABC≌RtAB'C',∠BAC=∠B'AC'.

∠CAC'=∠CAB'+∠B'AC'=∠CAB'+∠BAC=90?

S梯形BCC'D'=SABC+SCAC'+SD'AC'

=ab+c2+ab=.

=.a2+b2=c2.

说明:在近几年的中考试题中,考查勾股定理证明的试题有增强的趋势,主要是利用图形面积之间的关系证明勾股定理,一方面增进了同学们对证明勾股定理的数学史的了解,另一方面这类试题对培养同学们的探索精神也大有裨益.

二、勾股定理在计算中的应用

例2 如图2,在ABC中,∠CAB=120B=4,AC=2,ADBC,D是垂足.求AD的长.

解:过C作CEBE交BA的延长线于E,

AC=2,AE=1.

在RtACE中,由勾股定理得:

CE2=AC2-AE2=3,CE=,

在RtBCE中,由勾股定理得:BC2=CE2+BE2=28,

BC=2.SABCA=AB说明:当所给的图形有直角三角形时,我们可想到勾股定理的应用.

三、勾股定理的实际应用

例3如图3, 一架长5米的梯子 ,斜立在一竖直的墙上,这时梯子底端距墙底3米.如果梯子的顶端沿墙下滑1米,梯子的底端在水平方向沿一条直线也将滑动1米吗?用所学知识,论证你的结论.

解:是.证明如下:

在RtACB中,BC=3,AB=5,

根据勾股定理得AC==4米.

DC=4-1=3米.

在RtDCE中,DC=3,DE=5,

根据勾股定理得CE==4米.

BE=CE-CB=1.即梯子底端也滑动了1米.

说明:在用勾股定理解决实际问题时,关键是根据题意画出图形,把实际问题抽象成数学模型,然后运用勾股定理等解决,必要时还要用到方程(组)的方法求解.

四、与勾股定理有关的探索题

例4 图4中的螺旋形由一系列等腰直角三角形组成,其序号依次为①、②、③、④、⑤、…,则第n个等腰直角三角形的斜边长为_____________.

解:观察图形可知①对应斜边长为,②对应斜边长为,③对应的斜边长为,……,第n个对应斜边长为.

五、勾股定理逆定理的应用

例5 已知a,b,c为ABC的三边,且满足a2c2-b2c2=a4-b4,试判断ABC的形状.

解: a2c2-b2c2=a4-b4 ,

c2( a2-b2)=( a2+b2) (a2-b2).

(1)当a2-b2≠0时,化简后得c2=a2+b2 ,

ABC是直角三角形.

(2)当a2-b2=0时,a=b, ABC是等腰三角形.

说明:本题结合因式分解的知识,综合考查了提公因式法、公式法分解因式以及勾股定理的逆定理,同时还考查了等式的性质2:在等式两边不能同时除以一个可能为0的数,这往往是我们最容易忽视的地方,应引起大家的注意.

六、与勾股定理有关的创新题

例6 在直线l上依次摆放着七个正方形(如图5所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=________.

分析:根据已知条件可知AC=EC,∠ABC=∠CDE=90CB+∠ECD=90伞CD+∠CED=90浴CB=∠CED,这样可得ABC≌CDE,所以BC=ED,

在RtABC中,由勾股定理,得AC2=AB2+BC2=AB2+DE2,

由S1=AB2,S2=DE2,AC2=1,所以S1+S2=1.

勾股定理证明方法篇6

关键词:勾股定理;勾股定理的逆定理;基本使用方法;数学思想和方法;复习方案

中图分类号:G633.6 文献标志码:A?摇 文章编号:1674-9324(2013)39-0250-02

在直角三角形中,知道两边求第三边,这是勾股定理的基本使用方式;如果一个三角形有两边的平方和等于第三边的平方,那么这个三角形就是直角三角形,这是勾股定理的逆定理的基本使用方法。从知识角度看,这两者就是《勾股定理》全章的主要内容。但勾股定理应用极及广泛,在不同情景中,体现出不同的数学思想和方法,这才是勾股定理应用的精髓,因此,我设计了突出数学方法和思想的复习方案。首先,设计如下的导学案,发给学生自主学习。

一、学习目标

1.回顾勾股定理、勾股定理逆定理的内容及证明。

2.总结应用勾股定理解决问题的数学思想与方法。

二、勾股定理的应用

(一)勾股定理的内容

1.如图,ABC中,如果 ,那么 。

2.下面这枚邮票上的图案,也反映了勾股定理的内容:分别以直角三角形三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,则 。如果分别以直角三角形三边为边向外作三个半圆、等边三角形或等腰直角三角形,还有同样的结果吗?请选择一种加以证明。

(设计意图:不仅复习定理基本内容,更应明白它的拓展和变式)

(二)勾股定理的证明

古人用“弦图”证明了勾股定理,体现了我国古代数学家的智慧。以下三个图形都是由边长分别为a、b、c的直角三角形拼成的,请你选择其中一个,用数学符号语言给出勾股定理的一个证明。

(设计意图:至少掌握一种证明方式,体会数形结合思想)

(三)应用勾股定理解决问题

1.已知:直角三角形的两边长分别是3和4,则第三边长为 .

2.三角形ABC中,AB=10,AC=17,BC边上的高线AD=8,则BC= (请画图).

(设计意图:学生易错点,渗透分情况讨论思想)

3.折叠矩形ABCD的一边AD,点D落在BC边上的点F处,已知AB=8cm,BC=10cm,则CF= cm,EC= cm.

(设计意图:勾股定理结合方程思想)

4.以下两题选做一题:

(1)如图,ABC中,∠A=45°,∠B=30°,BC=8,求AC的边长。

(2)如图,在四边形ABCD中,∠B=∠D=90°, ∠C=60°,AD=1,BC=2。求AB、CD。

(设计意图:体会构造思想,自己构造直角三角形)

5.如图是一个长方体盒子,AF=4厘米,CD=3厘米,BC=12厘米,

(1)一根长13.5厘米的细棍能否完全放入盒内?

(2)如果一只蚂蚁在盒子的表面,要从B点爬到A点,其最短行程是多少?请画图计算说明。

(设计意图:渗透(空间)转化(为平面)的思想,方法:展开)

(四)勾股定理的逆定理

如图,ABC中,如果 ,

那么 。这个定理是怎么证明的?

(设计意图:构造性证明、同一法)

(五)勾股定理逆定理的应用

6.满足下列条件 (填序号)的三角形是直角三角形。

(1)三个角的度数之比为1∶3∶4

(2)三个角的度数之比为1∶3∶2

(3)三边长度之比为1∶■∶2

(4)三边长度之比为■∶■∶2

(4)三边长度为32,42,52,

(6)三边长度为■,■,■

(设计意图:学生易错点;总结判断直角三角形的边、角形式)

7.在正方形ABCD中,F为DC的中点,E为BC上一点,且EC=■BC,求证:AFEF。

(设计意图:通过计算进行证明的思想)

勾股定理证明方法篇7

可以利用勾股定理,即在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达:a²+b²=c²,已知三角形两条直角边的长度,可按公式c²=a²+b²计算斜边。

勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

勾股定理证明方法篇8

关键词:勾股定理 应用 证明 代数

勾股定理指出:直角三角形两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方a2+b2=c2

1、数学史上的勾股定理

1.1勾股定理的来源

勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等於两条直角边边长平方之和。

1.2最早的勾股定理应用

中国最早的一部数学著作――《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边“勾”等于3,另一条直角边“股”等于4的时候,那么它的斜边“弦”就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方和。

1.3在代数研究上取得的成就

例如从勾股定理出发逐渐发展了开平方、开立方;用勾股定理求圆周率。据说4000多年前,中国的大禹曾在治理洪水的过程中利用勾股定理来测量两地的地势差。公元1世纪,我国数学著作《九章算术》中记载了一种求整勾股数组的法则,用代数方法很容易证明这一结论。由此可见,你是否想到过,我们的祖先发现勾股定理,不是一蹴而就,而是经历了漫长的岁月,走过了一个由特殊到一般的过程。

2、勾股定理的一些运用

2.1在数学中的运用

勾股定理是极为重要的定理,其应用十分广泛.同学们在运用这个定理解题时,常出现这样或那样的错误。为帮助同学们掌握好勾股定理,现将平时容易出现的错误加以归类剖析,供参考。

2.1.1错在思维定势

例1一个直角三角形的两条边长分别是5和12,求第三条边的长。

错解:设第三条边的长为a,则由勾股定理,得a=52+122,即a=13,亦即第三条边的长是13。

剖析:由于受勾股定理数组5、12、13的影响,看到题设数据,一些同学便断定第三条边是斜边.实际上,题目并没有说明第三边是斜边还是直角边,故需分类求解。

正解:设第三条边的长为,(1)若第三边是斜边,同上可求得=13;(2)若第三边是直角边,则12必为斜边,由勾股定理,故第三条边的长是13或12.

2.2勾股定理在生活中的用

工程技术人员用的比较多,比如农村房屋的屋顶构造,就可以用勾股定理来计算,设计工程图纸也要用到勾股定理,在求与圆、三角形有关的数据时,多数可以用勾股定理物理上也有广泛应用,例如求几个力,或者物体的合速度,运动方向…古代也是大多应用于工程,例如修建房屋、修井、造车等等

农村盖房,木匠在方地基时就利用了勾股定理。木匠先是量出一个对边相等的四边形,这样就保证这个四边形是平行四边形,为了再使它是矩形,木匠就在临边上分别量出30公分、40公分的两段线段,然后再调整的另外两个断点间的距离使他们的距离成50公分即可。在这个过程中,木匠实际上即用到了平行四边形的判定、矩形的判定,又用到了勾股定理。

2.3宇宙探索

几十年前,有些科学家从天文望远镜中看到火星上有些地区的颜色有些季节性的变化,又看到火星上有运河模样的线条,于是就猜想火星上有高度智慧的生物存在。当时还没有宇宙飞船,怎样和这些智慧生物取得联系呢?有人就想到,中国、希腊、埃及处在地球的不同地区,但是他们都很早并且独立的发现了勾股定理。科学家们由此推想,如果火星上有具有智慧的生物的话,他们也许最早知道勾股定理。火星是否有高度智慧生物?现在已被基本否定,可是人类并没有打消与地球以外生物取得联系的努力,怎样跟他们联系呢?用文字和语言他们都不一定能懂。因此,我国已故著名数学家华罗庚曾建议:让宇宙飞船带着几个数学图形飞到宇宙空间,其中一个就是边长为3:4:5的直角三角形。两千年前发现的勾股定理,现在在探索宇宙奥秘的过程中仍然可以发挥作用。

看来,勾股定理不仅仅是数学问题,不仅仅是反映直角三角形三边关系,她已成为人类文明的象征,她已成为人类智慧的标志!她是人们文化素养中不可或缺的一部分,不懂勾股定理你就不是现代文明人!

3、对勾股定理的一些建议

3.1掌握勾股定理,利用拼图法验证勾股定理;

经历用拼图的方法验证勾股定理,培养学生的创新能力和解决实际问题的能力。拼图的过导学生自主探索,合作交流。这种教学理念反映了时代精神,有利于提高学生的思维能力,有效地激发学生的思维积极性。鼓励学生大胆联想,培养学生数形结合的意识。

3.2发展合情推理的能力,体会数形结合的思想;

了解勾股定理的文化背景.思考在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想.教师在进行数学教学活动时,如果只以教材的内容为素材对学生的合情推理能力进行培养,毫无疑问,这样的教学活动能促进学生的合情推理能力的发展,但是,除院校的教育教学活动(以教材内容为素材)以外,还有很多活动也能有效地发展学生的合情推理能力,例如,人们日常生活中经常需要作出判断和推理,许多游戏很多中也隐含着推理的要求,所以,要进一步拓宽发展学生合情推理能力的渠道,使学生感受到生活、活动中有“数学”,有“合情推理”,养成善于观察、猜测、分析、归纳推理的好习惯。

在探究活动中,学会与人合作并能与他人交流思维的过程和探究体会数形结合思想,激发探索热情。回顾、反思、交流.布置课后作业,巩固、发展提高。

3.3能运用勾股定理及其逆定理解决实际问题,提高数学应用能力;

勾股定理及其逆定理是中学数学中几个重要的定理之一,在一个三角形中,两条边的平方和等于另一条边的平方,那么这个三角形就是直角三角形,这就是勾股定理的逆定理。所谓逆定理,就是通过定理的结论来推出条件,也就是如果三角形的三边满足a2+b2=c2那么它一定是直角三角形.这个定理很重要,常常用来判断三角形的形状.它体现了由“形”到“数”和由“数”到“形”的数形结合思想.勾股定理在解决三角形的计算、证明和解决实际问题中得到广泛应用,勾股定理的逆定理常与三角形的内角和、三角形的面积等知识综合在一起进行考查.对于初学勾股定理及其逆定理的学生来说,由于知识、方法不熟练,常常出现一些不必要的错误,失分率较高.下面针对具体失误的原因,配合相关习题进行分析、说明其易错点,希望帮助同学们避免错误,走出误区。

4、小结

总体来说,勾股定理的应用非常广泛,了解勾股定理,掌握勾股定理的内容,初步学会用它进行有关的计算、作图和证明。应用主要包括:

1、勾股定理在几何计算和证明的应用:(1)已知直角三角形任两边求第三边。(2)利用勾股定理作图。(3)利用勾股定理证明。(4)供选用例题。

2、在代数中的应用:勾股定理出发逐渐发展了开平方、开立方;用勾股定理求圆周率和宇宙探索。

3、勾股定理在生活中的应用:工程技术人员用的比较多,比如农村房屋的屋顶构造,就可以用勾股定理来计算,设计工程图纸也要用到勾股定理,在求与圆、三角形有关的数据时,多数可以用勾股定理 物理上也有广泛应用,例如求几个力,或者物体的合速度,运动方向…古代也是大多应用于工程,例如修建房屋、修井、造车、农村盖房,木匠在方地基时就利用了勾股定理。勾股定理的作用:它能把三角形的形的特征(一角为90°)转化为数量关系,即三边满足a2+b2=c2.。利用勾股定理进行有关计算和证明时,要注意利用方程的思想求直角三角形有关线段长;利用添加辅助线的方法构造直角三角形使用勾股定理。

参考文献:

[1]郁祖权.中国古算解题[M].北京.科学出版社,2004.

[2]周髀算经[M].文物出版社.1980年3月,据宋代嘉定六年本影印.

[3]杨通刚.勾股定理源与流[J].中学生理科月刊,1997年Z1期.

[4]张维忠.多元文化下的勾股定理[J].数学教育学报,2004年04期.

[5]朱哲.基于数学史的数学教育现代化研究[D].浙江师范大学,2004年.