线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

探测技术论文8篇

时间:2023-03-20 16:16:12

探测技术论文

探测技术论文篇1

关键词:GPS;农村公路;测量;误差

随着科学技术的不断发展,测量技术从传统的经纬仪+水准仪到全站仪+水准仪,再到GPS测量技术,经历了一个不断更新的过程。GPS全球定位系统(GlobalPositioningSystem)是美国研制并在1994年投入使用的垒球卫星导航与定位系统。近年来,GPS系统因具有全球性、全天侯、连续性、实时性导航定位和定时功能,能为各类用户提供精密的三维坐标、速度和时间等优点,其技术的应用已遍及我国国民经济的各个领域,特别是在公路测量的应用上已经较为普遍。GPS系统在应有方面主要分为单点导航定位与相对测地定位,而对于常规测量而言,相对测地定位是主要的应用方式。在此,本文将重点谈谈GPS测量技术在农村公路的应用。

1GPS测量技术的工作原理

相对测地定位是利用L1和L2载波相位观测值实现高精度测量,其原理是采用载波相位测量局域差分法:在接收机之间求一次差,在接收机和卫星观测历元之间求二次差,通过两次差分计算解算出待定基线的长度;求解整周模糊度是其关键技术,根据算法模型,设计了静态、快速静态以及RTK等作业模式。而RTK技术代表着GPS相对测地定位应用的主流。

2GPS测量的特点

GPS系统是目前在导航定位领域应用最为广泛的系统,其可为各类用户连续提供动态目标的三维位置、三维速度及时间信息。GPS测量主要特点如下:

2.1功能多、用途广

GPS系统不仅可以用于测量、导航,还可用于测速、测时。测速的精度可达0.1m/s,测时的速度可达几十毫微秒。其应用领域不断扩大。

2.2定位精度高

一般双频GPS接收机基线解精度为5mm+1ppm,而红外仪标称精度为5mm+5ppm,GPS测量精度与红外仪相当,但随距离的增长,GPS测量优越性愈加突出。大量试验证明,在小于50km的基线上,其相对定位精度可达12×10-6,而在100km~500km的基线上可达10-6~10-7。

2.3实时定位

利用全球定位系统进行导航,即可实时确定运动目标的三维位置和速度,可实时保障运动载体沿预定航线运行,亦可选择最佳路线。特别是对军事上动态目标的导航,具有十分重要的意义。

2.4观测时间短

采用GPS布设控制网时每个测站上的观测时间一般在30min~40min左右,采用快速静态定位方法,观测时间更短。例如,使用Timble4800GPS接收机的RTK法可在5s以内求得测点坐标。

2.5测站之间无需通视

这是GPS技术区别于常规测量的最大优点。常规测量技术需要保持良好的通视条件,又要保障测量控制网的良好图形结构。而GPS测量只要求测站15°以上的空间视野开阔,与卫星保持通视即可。其这一优点,使得在布设长大线路施工控制网时,可省去大量的传算点、过渡点的测量,大大减少测量作业时间和费用,同时也使选点布网变得非常灵活。

2.6操作简便

GPS测量的自动化程度很高。目前,GPS接收机已趋小型化和自动化,在观测中测量员只需打开GPS接收机、量取天线高、采集环境的气象数据、监视仪器的工作状态,而其他工作,如卫星的捕获、跟踪观测和记录等均由仪器自动完成,然后利用数据处理软件对数据进行处理,即求得测点三维坐标。观测结束时,仅需关闭电源,收好接机,便完成野外数据采集任务。

2.7可提供全球统一的三维地心坐标

经典大地测量将平面和高程采用不同方法分别施测。在GPS测量中,在精确测定观测站平面位置的同时,可以精确测量观测站的大地高程。其这一特点,不仅为研究大地水准面的形状和确定地面点的高程开辟了新途径,同时也为其在航空物探、航空摄影测量及精密导航中的应用,提供了重要的高程数据。

2.8全天候作业

GPS卫星较多,且分布均匀,保证了全球地面被连续覆盖,使得在地球上任何地点、任何时候进行项观测工作,通常情况下,除雷雨天气不宜观测外,一般不受天气状况的影响。

3GPS测量技术在农村公路中的应用

3.1农村公路调查内容

农村公路调查对象主要是县乡道路以及复合标准的村道,另外,还要对每个建制村道路的通达情况作相关的调查。在外业数据采集中主要采集的数据有各条道路的长度、路基路面宽、路面类型、所经过的村委以及村小学等标志性建筑的地理坐标、各起终点的坐标、名称以及各分段点的信息等。

3.2GPS外业数据采集流程

3.2.1准备工作

GPS在农村公路测量中应用时,可采用“边采集、边录入”的现场数据采集模式,一般情况下,一个测量小组由1人负责GPS接收机的开关以及掌上电脑的录入工作、1人负责相关数据和出现特殊情况时的记录工作、一名乡镇向导和一名司机共4人组成。

在采集工作出发之前,应先做好采集计划,如安排好采集行程;提前准备好已有的周边路线图作为采集底图,并打印一份供采集时参考;对需要采集的路线以及附属设施提前准备好相关已有的资料(如路线编号,起点名称,起点路基宽度及路面宽度,道路等级,路面性质,穿越了几个乡镇、建制村,沿线共有几座桥梁、大概在什么位置等),做到心中有数,提高采集效率。

在采集前,应先将GPS接收机与掌上电脑正确连接,然后通过蓝牙连接将GPS接收到的信号反映在掌上电脑上,并确保GPS连接和信息输出正常。

3.2.2主要操作

GPS外业采集功能主要是实现公路路线、桥梁、隧道、渡口、乡镇、建制村等图形和属性一体化采集,具体包括采集新路线、路线分段、停止采集路线、继续采集路线、点采集(如桥梁、隧道、渡口、乡镇、建制村等位置和属性信息)等功能。在进行外业采集之前,在GPS采集子系统中主要操作有:

(1)打开GPS:GPS接收机与计算机连接正常并输出有效的GPS数据后,通过“打开GPS”功能,建立与GPS接收机的通信连接。

(2)关闭GPS:在e-Road系统中断开与GPS接收机的通信连接,只有在打开了GPS后才能关闭。

(3)查看GPS状态:当打开GPS后,可查看GPS当前的状态,是否正常接收卫星信号,以及GPS输出的数据是否有效等信息。

(4)采集新路线:开始采集一条路线,记录该条路线的线形、线位和调查指标信息,如果GPS已经打开并且定位后,就可以进行路线的采集。

(5)路线分段:当路线的调查指标发生变化且符合路线分段原则时,需要添加一个路段,在采集路线的过程中,在路线分界点叫司机停下,并点击计算机平面上点击“分段”按钮,并输入分段原因:路面情况发生改变。同时还要输入分段点的相关信息。当然在其他路况发生改变时也要分段,比如路面宽度发生了明显改变,有分叉路的情况等。系统就会自动对路线进行分段。

(6)停止采集路线:在调查中还要标出各村村委以及村小学的地理坐标,在测量时只需在路线迄点处停止采集当前正在采集的路线,生成最后一个路段的讫点位置信息,并输入相关信息即可。

(7)继续采集路线:在路线采集的暂停位置继续采集路线的线形,如果在地图中存在没有采集完的路线,可以通过“继续采集路线”的功能,继续采集未采集完的路线。

(8)点采集:实现公路沿线附属设施点(如桥梁、隧道、渡口等)以及乡镇、建制村、村小学等点的地理位置和属性信息一体化采集。

通过上述功能操作,基本可以实现GPS+PC操作完美结合,在采集过程中,若因操作或人为走错路线等原因还可以进行对象属性编辑,现场及时修改或删除所采集数据信息。

3.2.3采集完毕

当天采集完毕后,首先要做好数据备份工作,建立以天为备份数据文件,同时备份到移动存储器中,以防计算机出现重大故障而使数据文件损坏,并及时将采集的数据进行必要的内业处理,防止因间隔时间过长,记录不准确,导致内业无法编辑等状况。

3.2.4经验总结

(1)GPS接收器本身时钟也存在误差和噪声,这些都影响定位的精确度。当出现比较明显的漂移时,测量人员应该叫司机先停下来,等指示箭头回归原点时再开始进行测量。

(2)当正在进行路线采集时,如果较长时间在某个地方停顿或需要离开正在采集的路线去采集其他路线、沿线乡镇、建制村时,应先使用“停止采集路线”功能暂停正在采集的路线,再采集其他路线、沿线乡镇、建制村等,然后回到暂停的位置处使用“继续采集路线”功能按原采集方向继续采集被停止采集的路线。

(3)在采集过程中,应时刻关注GPS的信号,如果连续出现“GPS无法定位”的提示时,应立即停止采集路线,以免丢失相关数据,甚至出现把数据导入PC机后出现乱码的情况。且测量人员应立即检查GPS的电池是否没电或是GPS与计算机是否已断开连接等,待设备都已完好后,为确保数据的有效性,测量人员应进行返工。

(4)采集过程中,GPS接收机和计算机不能离得太远(一般是10m以上),以避免计算机无法接收GPS传过来的信号以致数据丢失。

(5)采集过程中,如测量人员下车去测标识物后,司机不能将车开动,以免出现当测量人员回来后重新测量时原点发生了改变,从而出现相应的误差的情况。

(6)采集过程中,车速不能太快,一般控制在40km/h~60km/h,尽量靠着路的中间行驶,尽量避免紧急刹车。

综上所述,由于GPS设备功能齐全,携带方便,易于掌握,能够彻底改变以往公路调查陈旧的工作模式,从根本上提高公路测量效率,减轻职工劳动强度。尽管GPS测量技术仍存在一些问题,但只要运用得当,其自身的缺陷仍可以克服。GPS技术的普遍应用必将促进交通工作向着精确、高效、现代化的方向发展,是今后交通工作中必不可少的工具,如广泛使用一定会取得巨大的经济和社会效益。可以说,GPS在公路领域的应用前景是无限的。

参考文献

探测技术论文篇2

关键词扫描;探测;;拓扑图;自动化管理

1引言

随着网络技术的飞速发展,网络的安全风险系数不断提高,需要在不影响网络性能的情况下对网络进行监听和探测,从计算机网络系统的各个终端主机、应用系统以及若干关键点收集信息,并分析这些信息,发现漏洞、缺陷以及潜在的威胁,从而提供对网络的实时保护,提高信息安全基础结构的完整性。

2探测技术介绍

2.1常用简单的扫描技术

扫描是一种基于Internet的远程检测网络或主机的技术,通过扫描发现检测主机TCP/IP端口的分配情况、开放的服务已经存在的安全漏洞等信息。主要使用的技术有Ping扫描、端口扫描以及漏洞扫描等。

Ping扫描是通过发送ICMP包到目标主机,检测是否有返回应答来判断主机是否处于活动状态。这种方法具有使用简单、方便的优点,但是由于ICMP包是不可靠的、非面向连接的协议,所以这种扫描方法也容易出错,也可能被边界路由器或防火墙阻塞。

端口扫描技术就是通过向目标主机的TCP/IP服务端口发送探测数据包,并记录目标主机的响应。通过分析响应来判断服务端口是打开还是关闭,就可以得知端口提供的服务或信息。端口扫描也可以通过捕获本地主机或服务器的流入流出IP数据包来监视本地主机的运行情况,它仅能对接收到的数据进行分析,帮助我们发现目标主机的某些内在的弱点,发现系统的安全漏洞,了解系统目前向外界提供了哪些服务,从而为系统管理网络提供了一种手段。端口扫描主要有TCP全连接、SYN(半连接)扫描等方式。

图1Sniffer探测信息矩阵图示

漏洞扫描技术主要通过以下两种方法来检查目标主机是否存在漏洞:在端口扫描后得知目标主机开启的端口以及端口上的网络服务,将这些相关信息与网络漏洞扫描系统提供的漏洞库进行匹配,查看是否有满足匹配条件的漏洞存在;通过模拟黑客的攻击手法,对目标主机系统进行攻击性的安全漏洞扫描,如测试弱势口令等。若模拟攻击成功,则表明目标主机系统存在安全漏洞。

2.2利用探测工具

网络探测工具非常多,种类非常繁杂,功能也不尽相同,这里只以网络侦听工具Sniffer和X-scan扫描器为例进行阐述。

Sniffer是一种通过网络侦听获取所有的网络信息(包括数据包信息,网络流量信息、网络状态信息、网络管理信息等),具有实时检测网络活动、产生可视化的即时报警和通报信息、基于网络特定终端,会话或任何网络部分的详细利用情况收集和错误统计、保存基线分析的历史数据和错误信息等功能。Sniffer还可以根据抓获的数据包信息动态绘制各主机直接的通信关系图示。

X-scan采用多线程方式对指定IP地址段(或单机)进行安全漏洞检测,支持插件功能,提供了图形界面和命令行两种操作方式,扫描内容包括:远程服务类型、操作系统类型及版本,各种弱口令漏洞、后门、应用服务漏洞、网络设备漏洞、拒绝服务漏洞等二十几个大类。对于多数已知漏洞都给出了相应的漏洞描述、解决方案及详细描述链接。扫描结束后生成检测报告。

图2X-scan检测报告图示现在网上还有其他各类有特色的扫描器,种类繁多,如nMAP、SATAN、iris等,在此不一一介绍。

2.3路由交换设备的探测与管理

通过SNMP协议MIB库,可以获取网络中的交换机的交换表和路由器的路由表,实现流量统计,速率统计等功能,绘制出网络拓扑结构图。通过MIB库定义的接口,还可以远程控制和修改路由器、交换机的配置信息。

2.4获取应用系统的运行信息

通过收集网络中的防火墙、防病毒软件以及其他应用系统的运行日志,发现非法入侵或越权访问信息,程序运行报警信息等,及时掌握网络和系统的安全特性,在遇到攻击或威胁时可以进一步采取措施,避免造成损失,并有效防止损失的扩大化。

2.5部署的探测技术

在网络中设立一台服务器,安装服务程序,在网络中需要探测的计算机上安装客户端程序,并制定一些特定的协议,服务器端定期查询客户端的状态和日志信息,或者按照服务器端制定的策略,客户端定期将自己的状态、日志、或应用程序运行信息发送给服务器,服务器端对这些信息进行过滤、分析、整理和审计,以获取反映客户端微机的运行状态。如果服务器端在制定的策略时间范围内没有接收到该客户端的信息,则可以判断该客户端处于离线状态,或者网络线路出现故障。

3探测技术的应用

应用一:掌握和了解系统运行情况

通过探测技术,获取计算机的在线状态,可以及时发现网络中离线或出现故障的计算机,或者发现哪些计算机没有运行本该运行的程序和应用,还可以通过这些探测信息及时发现计算机系统存在的漏洞以及计算机系统运行存在的风险,如:入侵检测系统。

图3Cisco交换机的流量和数量统计图示

应用二:实时反映网络拓扑结构

探测的结果还可以用来实时反映网络的连接结构,为实时绘制网络的拓扑结构图,实时反映网络的运行状态等提供了依据。如:HPOpenView网络节点管理器,鼠标放在某个节点上将显示该节点的详细信息,示例图示如下:

图4HPOpenView绘制网络拓扑图示

应用三:实现网络的自动化管理

通过探测收集到网络的运行信息,为网络的安全管理依据和手段,这样就可以在制定相应的策略指导下实现个应用系统之间的联动,如给防火墙设置新的安全规格,发现病毒后对杀毒软件的病毒库进行及时更新等,建立起一套统一、安全、高效的安全检测、监控、管理体系,实现网络的互连、互控、互动和集中统一防御,从而达到了自动化管理的目标。

为了提供自动化管理效率和准确性,可以在管理员的干预下建立一个专家数据库,对系统的联动提供指导和依据。

4结束语

一般来说,在线探测技术是网络管理的基础,探测结果是实施下一步安全管理、系统联动等管理手段的依据,所以保证检测结果的正确性非常必要,因此需要对探测收集到的信息需要进行验证,以达到去伪存真的目标,提高管理的准确性和效率。

参考资料

[1]王曦杨健编著.《网络安全技术与实务》,电子工业出版社,2006

[2]余承行主编,刘亲华等副主编.《信息安全技术》科学出版社,2005

[3]李石磊.网络安全扫描技术原理及建议,东软教育在线网站

探测技术论文篇3

(1)物探技术的创新

随着各项技术的进步与发展,石油地质勘探过程中,各种勘探技术不断创新,地震勘探技术在设备制造、数据处理、数据解释及数据采集等方面取得了很大的进步与发展,为了在提升勘探效率的同时,有效降低勘探成本,三维可视化技术、经验技术、地震油藏描述等先进技术不断涌现,未来的发展过程中,更多的先进技术将应用于石油地质勘探工作中,如:永久性地震传感器排列系统的应用,有利于对石油勘探实施电子化的管理,同时可以对地震油藏开展实时的生产监测;随着地震成像技术的广泛应用,有利于对整个钻井过程实施可视化的监控,以便于为石油地质勘探的评估者提供更加准确、全面的决策依据,对于决策精准度的提升具有非常重要的作用。

(2)测井技术的创新

近年来,随钻技术、套管技术、快速平台技术、核磁共振技术等测井技术的创新,对于测井工作效率及质量的提升具有非常重要的作用,在这几种创新性的技术中,最为常用的就是核磁共振测井技术,在实际的石油测井过程中,应用该技术具有非常高的测井速度与测量精度,正因为其具有这些优点,使得其在实际的石油地质勘探工作中具有非常广泛的应用;另一种常用技术是快速平台测井技术,其最显著的优点是:在缩短测井时间的同时,有效降低测井工作中的故障率,能够为实际的测井工作节省大量的时间;而随钻测井技术的最主要的优点是可靠性强、成本小、尺寸小,并且能够对其进行随意组合,并且其逐渐朝着阵列化的方向发展,这对于测量数据可靠性的提升具有非常重要的作用。

(3)钻井技术的创新

钻井技术的创新对于石油开采工作具有非常重要的意义,不仅会直接影响到石油开采效率,对于石油开采成本也具有直接的影响,目前创新型的石油钻井技术也比较多,如:特殊工艺钻井技术、三维钻井技术、可视化钻井技术、超深井钻井技术、深井钻井技术、多分支井钻井技术等,其中应用最为广泛的是多分支钻井技术,其最突出的优点主要表现在油气藏的建设及开发过程中,这些新技术的应用,不仅能够有效的提升钻井效率,对于钻井成本的减少也具有非常重要的作用,对于我国石油产业的健康发展具有非常重要的作用。

二结语

探测技术论文篇4

关键词:地球物理勘探技术 油气勘探开发 运用分析

地球物理探测技术在石油勘探领域一直占据着举足轻重的地位,它为石油勘探业油源的勘探与开发提供了准确的指导,节省了石油勘探业的成本,对石油勘探业的发展起着至为关键的作用,因此,研究地球物理探测技术在石油勘探开发中的运用分析便具有了非常重大的实际意义。因此,下面本文将首先对地球物理探测技术的发展现状进行一个详细的分析,并在此基础上论述油气开发中的主要物理探测技术,以期能够促进现代地球物理探测技术的发展,促进现代石油勘探业的稳定、健康发展。

一、地球物理探测技术的发展现状

伴随着计算机技术与电子信息技术的显著发展,地球物理探测技术的发展已经步入了一个更加辉煌发展的时代。地球物理探测技术在油气开发中占有举足轻重的地位,它为油田开发商提供科学、可靠的地震资料,在油田开发中的储层圈定、油藏描述以及油藏检测提供了非常关键的勘探资料。现今的地球物理探测技术主要分为两类:勘探地球物理技术和油藏地球物理技术,后者获得了更为显著的发展,推动了地球物理探测技术的现代化发展。下面来具体分析一下这两种物理勘探技术。

勘探地球物理技术的研究对象比较宏观,主要包括地质构造、圈闭、地质岩层、岩层储油特性等等,而油藏地球物理技术的研究对象相对而言是微观的,它主要针对岩石的物理性质、剩余油分布等,它主要用来解决储层特征的问题。地震勘测技术在油气的发现数量和储量上做出了突出的贡献,它主要包括反射地震技术、数字地震技术和三维地震技术。随着计算机技术的发展,又出现了一些新的更加先进的地震勘测技术,例如高分辨率地震技术、油藏描述技术、思维地震监测技术等等,这些技术有效提高了新老油区的开发储量,使得地球物理勘探技术在油气开发中的作用越来越突出。

二、油气开发中的主要物理探测技术

1.重力勘探技术

重力勘探技术是比较重要的地球物理探测技术之一,它的工作原理是通过测定地下岩层的深度与密度从而判断出勘探地的岩层性质与成因,从而为油气的开发提供科学的勘探资料。地下岩层由三部分组成:沉积岩、火成岩、变质岩。重力勘探需要完成三方面的任务。首先,计算出莫霍界面的深度,可以根据莫霍界面的深度值确定勘探地质的性质。其次,可以依据岩层沉积之间的密度差,并结合重力值算出基底的埋深和基底的起伏。最后,是确定岩秋构造,主要指依据盐密度低于周围沉积岩而会产生明显的负异常而判定的。

2.磁法勘探技术

磁法勘探技术同样是重要的辅的地球物理勘探技术之一,它主要是依据岩石与矿石所具有的不同的磁性来探寻磁性矿体、研究地质构造的一种重要方法。不同岩石和矿石会产生不同的磁场,地磁会因这些磁场的存在而变得异常,这些地磁异常可以帮助找到磁性矿体。该方法主要是在油气勘探的初期使用,通过该方法可以确定盆地基底面的大致深度、盆地基岩的性质和时代、大型基地断裂带的分布。

3.高密度空间采样技术。近几年来,随着采集装备的不断完善,出现了先进的超万道数字地震仪和数字检波器,极大的促进了我国高密度空间采样技术的发展。该技术主要的技术线路已经相当成熟,它主要对地震波场进行高密度的空间采样,并如实记录噪声和信号,并完成压制干扰、保护有效波的目的。高密度空间采样技术的主要技术参考数值是空间采样率与纵、横向分辨率。

4.时移地震技术。时移地震技术就是在不同的时间段内对油田进行三维观测。油气储层的油气分布信息包括储层的静态信息和储层的动态信息,时移地震技术的主要任务是检测油气流向和注入流体的推进,研究剩余油的分布,提升油气的采收率。时移地震技术所具体施用的技术有振幅分析法、速度分析法、频谱分析法、三维可视化技术等等。

5.综合解释技术。综合解释技术是一项借助计算机等的各种信息处理手段,详细分析地质资料以对勘探区的地质构造、岩性、储层、含油气性、等等进行科学的预测和分析,从而提高钻井成功率、节省勘探开采的成本、保证足够的可采储量。该技术的分析基础是地震资料,这些地震资料需要包括非地震、钻井、录井、测井、区域地质、岩石的物理性质、油气田开发的资料等等。该技术为油田公司的科学预探、建立井位、油气的勘探与开发提供科学可靠的确定依据。

结束语:

地球物理探测技术作为油气资源探明与开发的最主要技术手段,它以其严谨、有效、科学的地质勘探理论与石油地质学等理论构成了现代油气地质勘探理论体系。地球物理探测技术伴随着计算机计算和电子信息技术的显著发展而使它的勘探有效性稳步提升,从而提高了油井勘探的成功率,为油气公司的开采作业节省了大量的成本。通过上述本文,笔者首先探讨了地球物理探测技术的发展现状,并在此基础上着重分析了油气开发中所用到的几种最主要的物理探测技术,以期能够促进我国油气开发业不断创新地质勘探技术,丰富地球物理勘探的方法,并期待地球物理探测技术能够拓展应用领域,为我国的资源开发、环境与工程的规划建设作出更加积极的贡献,将我国的现代化建设推向一个新的里程。

参考文献:

[1]毛宁波.地震技术在石油勘探开发中的应用及新发展[J].自然杂志,21(6):325~327.

[2] 王西文.面对油气勘探的新领域加快石油地球物理勘探技术进步[J].石油地球物理勘探,2007,42(3):353~361.

探测技术论文篇5

关键词:地球物理探测 城市工程 趋势

引言

地球物理探测技术方法在城市工程建设中的应用,推进了城市工程地球物理探测技术的发展。随着经济建设的发展,城市工程建设已成为地球物理探测技术应用最为活跃的领域之一,特别是在近年来,随着城市化进程加快,促进了城市工程地球物理探测技术的应用与快速发展。多种地球物理探测技术方法取得显著应用成效,一批新技术、新方法得以推广,一批先进的探测仪器设备为探测技术的应用起到明显的推动作用。鉴于目前城市工程地球物理探测技术的现状和应用领域面临的问题及特点,探测技术方法的进步和数据处理方法的改进提高方面,特别是特定环境条件下探测技术的研究与应用将会成为发展趋势,其应用领域也会进一步得到延伸和拓展。

1、城市工程地球物理探测的特点

地球物理探测是利用目的物与周边介质的物理性质差异,运用适当的地球物理原理和相应的仪器设备,通过分析研究观测到的物理场,探查地质界线、地质构造及其他目的物或目标的勘探方法,或者是测定地质体或地下人工埋设物的物理性质或工程特性的测试方法。基于地质条件变化、城市活动引起的电场、地震波场、磁场、重力场、地热场、放射性等物理场的变化,电法、地震法、磁法、重力、测温、放射性勘探等各种方法可在实际中应用,在陆地、水域、地下(井中及坑道)等不同条件下取得效果,不仅解决了很多岩土工程问题,也在环境地质问题发挥了作用,其中包括地下水、地质构造、滑坡、埋藏物、物理特性的探测等。城市工程地球物理探测技术主要是为城市规划、城市建设与管理服务并得以应用发展,因为它具有与其他方法相比高效经济、施工灵活、信息丰富和无损探测等优点,但是要取得较好的探测效果,应该正确认识城市工程地球物理探测在城市工程建设中应用所具有的特点或面临的问题,除探测深度小、精度要求高和干扰因素多之外,有时还具有任务急、不能影响正常的城市交通和城市日常生活等特点。

第一是探测深度小。城市建设工程涉及的地下地质问题多为浅层。目前,城市工程地球物理探测的深度多为几米到几十米,最深在百米左右。

第二是探测精度要求高。对于城市工程地球物理探测来讲,工程建设单位希望有较高的物探精度,深度与平面位置误差最好达到厘米级。如何努力保证如此高的精度要求成为城市工程地球物理探测工作的重要难点之一。

第三是探测干扰因素多。在繁忙的城市环境条件下,人、车流量大,各种电、磁和震动干扰多,且具有随机性,而且周围建筑物较为密集,消除和避免这些干扰和影响因素,给现场工作和探测资料的处理与解释提出更高要求。

第四是施工场地狭小。由于受周围建筑物、基础设施的影响,很多城市工程地区物理探测工作的场地比较狭小,给探测工作布置造成影响。

此外,任务急是城市工程地球物理探测的另一特点。作为岩土工程勘察、工程测试项目,一般要求在几天或十几天完成,而抢险工程或工程评价的探测任务,有的则要求在一天内或几个小时提出探测结果。

2、城市工程地球物理探测技术发展趋势

城市工程地球物理探测技术应该在进一步了解城市应用的限制条件和影响因素的基础上,加大开发研究新技术、新方法和新仪器的力度,特别是改进探测资料处理与解释技术,推进城市工程地球物理探测技术的应用与发展。

2.1发展趋势

1)技术方法的发展趋势。鉴于城市建设工程涉及地质与检测问题“小、浅、精”的特点,在探测技术方法理论研究与认识上将会进一步提高,多波理论将会得到进一步应用,可利用的物理波场的频谱范围也会越来越宽,电磁波谱可利用的范围由纯直流扩到雷达波,弹性波谱由瑞雷波向超声波频率扩展。新的技术方法将会随应用试验的成功而得到更进一步的推广,陆地声纳法、地震映像法、高密度电阻率法、大地电磁电导率剖面法等探测数据快速连续自动采集技术将会日益活跃。研究城市活动对物理场的影响以推进技术应用将会得到进一步重视。2)仪器设备的发展趋势。复杂的工作环境条件要求防尘、防震、防潮的性能,仪器设备要更适应这种条件,而且要求增强仪器的智能化程度以及捕捉较大动态范围信号的能力,特别是仪器将会由单一化的专用仪器向多功能化发展,这将有利于打破各种不同方法间的界限,促进各种方法相互渗透,促进综合探测方法的应用。2.2努力方向

1)充分认识地球物理条件适应性的重要性。探测任务不同,对应工程地点的地形、地质条件不同,构成地质地球物理探测条件的差异,利用物探技术去揭示和完成相应的任务,关键在于是否具备地球物理条件,这应是摆在首位的问题。这个问题在市场经济条件下尤其要注意,但近几年来,据调查有些部门注重利益驱动多了些,研究所选用技术手段与地质物性条件的适应性相对弱了一些。认识地球物理条件是能否取得较好探测效果的重要基础。2)正确对待探测方法的试验工作。现今形势下,建设工程要求的探测任务往往一来就比较急,工期短、时间紧,且工作难度相对较大。而探测技术无论是新技术还是常规技术,无论是弹性波方法还是重磁电法,均存在一个最佳采集方案,最佳采集装置的设计问题。这些需要在正式工作前予以解决,选择最佳的方案和工作参数对保证探测成果的质量尤为重要。近几年来,一些探测项目的前期试验工作重视不够,对比研究欠少,甚至无法保证原始资料的质量和探测资料的完整与齐全。方法试验同样是探测工作的一部分。3)正确认识地球物理探测的综合性学科特点。地球物理探测技术既涉及其服务的勘察、检测领域,又涉及地质、水文、工程和电子、计算机等学科,探测技术人员应该博学相关专业知识,以弥补原来所学的专业知识相对单一,工程建设中探测任务的复杂以及新技术层出不穷的形势需要。同时,获得可靠的探测结果,也需要依据已有的相关资料,必要时,邀请相关专业的技术人员或工程施工人员予以协助。4)重视培养专业技术人才,完善和实施技术标准,加强技术交流与合作。无论是研究技术方法,还是开发新仪器设备,包括专用资料处理软件开发,都需要专业人才。而标准的实施利于规范技术方法,保证探测成果质量。交流与合作将有助于推进城市工程地球物理探测技术的更深层次研究,有助于新技术、新方法和新仪器的应用推广。

参考文献

[1]王建强.地质灾害勘察地球物理技术手册[M].北京:地质出版社,2003.

[2]王传雷,祁明松,陈超,等.高精度磁测在长江马当要塞沉船探测中的应用[J].地质科技情报,2000,(3):98~102.

探测技术论文篇6

关键词 地球;物理勘探技术;发展;应用研究

中图分类号O59 文献标识码A 文章编号 1674-6708(2013)96-0098-02

地球物理勘探是根据地壳石存在的物理性的差异来对比地质构造进行研究,以及对地下的矿产进行探测的一门技术科学。主要用到的测试仪器就是物探仪器,它的作用就是对于地壳中岩石的物理参数进行测试,它结合了计算机技术、系统科学、材料科学、电子学、物理学等多种学科的技术、方法及相应理论来对地球的各种物理信息进行探测的工具和主要手段。物理探测的仪器应用是非常广泛的,主要适用于建筑工程、水电、交通、煤炭、石油、地质等许多领域,在资源与能源的发掘和探测、预测地质灾害、监测地球的环境污染等的很多方面都发挥了非常重要的作用。

物理勘探的技术在们,满足我国的工程、资源以及环境保护等领域上的需求发挥了其重要的作用,随着经济的不断发展,它的影响力度也是越来越大的,尤其是最近几年来,它的工作围绕着工程、环境、资源三个方面不断展开,所以其在技术方法、仪器装备等很多方面都取得了重要的发展和进步,为社会经济发展做出巨大贡献。下面就在这项技术应用的各项技术指标以及取得的成果进行简单介绍。

1物理探测方法软件和硬件以及探测方法的介绍

1)硬件和软件部分

最近几年来,物理探测方法所用到的设备和仪器主要有如表1所示。用于进行处理解释的软件如表2所示,主要是对于一些电、磁、重处理软件。

2)探测方法的介绍

对于地球进行物理探测主要分为超浅层、浅层、中深层、深层四种类型,这四种类型分别用到的探测方法主要是:一,在超浅层上的主要分为,地质雷达技术和浅层地震技术两个方面。在浅层上的,主要分为,高密度的电阻率和高频的电磁成像两种方法。在中深层上的,主要分为,可控源的电磁测探和高精度的重力测量两种方法。在深层上的,主要分为高精度的磁力测量和天然大地电磁测探以及深层的地震三种方法。

2在地球物理勘探中一些新算法、新理论的应用

1)进行几何分形的理论,分形理论是对自然界中现象和物体之间存在的不同尺度的相似性进行揭示,也揭示出了整体和局部的相似性,所以在面上和空间上的信息可以通过点上的信息进行预测。这种方法主要是针对于自然界中不规则的、不稳定的、比较常见的现象所进行的研究。分形维数又可以被称作分数维,主要是描述复杂程度;

2)小波的理论体系,小波理论的分析主要根据傅立叶理论分析,从而逐渐发展起来的一个新的理论分支,这种理论分支主要适和处理信号中差分方程数值解、数据压缩、成像、子波算法,以及一些把分辨率和信噪比提高的数据处理方法;

3)神经网络计算理论,这种计算方式是对人脑思维的模拟,可以通过样本资料的分析研究和学习,判断未经处理的资料,根据样本资料来处理和计算,从而得出重要参量;

4)混沌的理论体系,这种理论的应用主要是在非线性系统的描述上,它与分形的理论联系很密切,他们之间也存在着分层次的基干尺度,在不同尺度之间也存在着标度律和相似性,同时,非均匀性以及差异性假设也存在;

5)地理的信息系统理论这是一种计算机系统,主要的应用方式就是通过计算机硬件和软件的支持,对空间的数据进行输出、查询、管理、存储和采集,在地球物理勘探技术中应用地理信息系统的原理,能够将数据快速地输出、查询、分析,也是未来重要的发展方向。

3地球物理勘探技术的具体应用

1)对能源进行物理勘探

主要是对于困难的地区的天然气和石油的勘探,对于整块盆地进行综合的勘探,对于能源进行替补地震勘探以及前期的普查。在对上述的石油勘探工作的具体实施时,运用到了大地电磁和高精度重力等一些测探技术,对各个油气区进行区块评价和构造详查,将油气的储藏地点直接找出来,从而使石油的疑难问题得到解决。

2)对金属矿物进行物理探测

在对金属矿物进行探测的时候,主要运用到的方法就是电法和磁法。

图1就是对某一金属矿产用电法进行勘探的剖面图,这种勘探方法主要是根据土体和岩的导电性差异来进行研究的,研究的内容就是人工稳定的电流场的作用以及在此基础下的电流传导的分布规律。

2)对工程进行物理探测

这类方法在现代经济飞速发展以及工程建设逐渐兴盛中,需求量也是越来越大的,所用到的领域也越宽。主要运用到的工程项目就是水利工程、管道、铁路等一些建筑的检测。主要运用的探测方法一般有浅层地震、电法、探地雷达等。

举个例子,对公路进行探地雷达检测,见图2,图中显示的就是多通道的雷达检测系统对某一个高速公路路面进行勘测的雷达图。

主要使用的是600MHz/1600MHz的异频天线阵。从图上可以清晰地看出,这个公路段的地基毁坏程度是比较严重的,有强烈的起伏、破碎区、含水区,需要紧急处理。

4地球物理勘探技术的发展趋势

随着计算机技术以及电子技术的不断发展,物理探测技术也日趋成熟,其发展趋势主要表现在以下几个方面。

首先,由于计算机的技术不断发展,物理的探测技术也在逐步向多功能化的、轻便化的和自动化的以及数字化的方向发展,当前的数模的变换技术,数据的采集技术。

当前,很多的发达国家也面临着能源枯竭的现状,浅层的资源已经勘探殆尽。一些地址勘探人员现在已经向海洋,沼泽以及沙漠的方向前进。

而且,在一些重大的工程建设上,例如矿山,核、水电站等,需要进一步地查明危害比较大的,规模比较小的裂隙、洞穴分布以及其他一些比较关键的地质构造的分布。

这些任务的完成就需要运用到新的仪器、新的方法和新的技术,让一些沙漠和沼泽地区勘探的工作也可以顺利进行。

第二,总线的技术得到进一步地发展,逐步成为了一些插卡式的、模块化的物探仪器关键技术,这些技术在运用上可以使多参数、多功能自动测量工作得以顺利实现,使模块式的物理探测仪器系统的组成结构更加紧凑。指出了新一代的物理探测技术的发展方向。

第三,一些功能比较强的应用型软件以及计算机的辅助测试集成化技术的运用,使测试技术以及测量仪器都得到更高层次的发展。这种测量系统可以使用户的各种需要都能方便实现,而且功能也很强,这就反映出了软件和硬件发展同步的趋势。

第四,将误差修复、信号处理、数据处理的功能增强,高速度单片数字的信号处理器可以使信号处理能力得到进一步增强,让一些高档仪器功能的扩展以及更新换代不单依靠增强硬件的功能和制造工艺的精细。

第五,运用新技术显著增强了物理探测仪器的功能,例如,超导重力仪,超导磁力仪等都是运用了超导新技术,这样就使设备的稳定性、精确度、灵敏度都得到提高。

另外,3s技术的应用就使数据处理和人工测量定位变得更加简便;层析成像技术的运用,就使地震勘探的解释精度和分辨率得到了进一步提高;运用探地雷达,就使机场和公路的跑道质量,隧道的衬砌质量以及混凝土构件质量,桥墩、桥基的质量以及钢筋的分布的检测手段更加可靠。

5结论

现在,物理勘探技术的发展更加的模块化、智能化、数字化,同时探测的精度也是越来越高,地球物理的探测技术的未来的发展趋势就是与计算机技术、自动化技术等相结合。

地球物理探测技术也逐渐发展成为地学的一门主要学科,其对地球进行空间数据采集技术也逐渐运用到各个行业。

参考文献

[1]宋文杰,刘玉华,肖贵学.地球物理勘探技术的发展和应用[J].工程建设与设计,2010(1).

[2]张春贺,乔德武,李世臻,张颖,杨辉,胡来东,尚应军,徐雷良,柴继堂,谭捍东,刘劲松.复杂地区油气地理物理勘探技术集成[J].地球物理学报,2011(2).

[3]王炳章,,陈伟.油气地震勘探技术发展趋势和发展水平[J].中外能源,2011(5).

[4]罗福龙.地震数据采集系统综述和展望[J].中国石油勘探,2010(4).

[5]姚逢昌,徐基祥.引导地球物理科技创新服务油气勘探开发工程-2005年《石油地球物理勘探》评述[J].石油地球物理勘探,2009(5).

[6]胡水根,张平松,严家平.综合地球物理勘探技术保障煤矿深部资源的科学开采[J].煤矿开采,2011(6).

[7]魏银同.地球物理勘探技术在油气勘探开发中的应用[J].产业与科技论坛,2011(10).

[8]陈进超.煤层气富集区非地震综合物探技术及试验研究[J].成都理工大学学报,2012(5).

探测技术论文篇7

[关键词]地球物理;勘探技术;应用;发展

中图分类号:X9 文献标识码:A 文章编号:1009-914X(2014)23-0399-01

引言:地球物理勘探是一门科学,地球物理勘探在资源、能源的广泛领域中作出了巨大的贡献,随着经济的发展与科技的进步,地球物理勘探的作用也日益突出,近年来,地球物理勘探工作主要以环境、资源、工程三大市场,运用的技术、方法仪器装备也有所发展,促进了我国经济的发展。

一、一些新算法、新理论在地球物理勘探中的应用

(一)神经网络计算

神经网络计算是一种计算软件,模拟人脑思维,对样本资料进行学习,并研究分析,判断未处理的资料,根据样本资料计算处理得到重要的参量。

(二)小波理论

在傅立叶理论分析基础上,逐渐发展成了一个新的理论分支―小波理论,信号处理中的小波理论主要是对数据压缩、成像、差分方程数值解、子波算法的信号处理,还是一种提高信噪比和分辨率的数据处理方法,对于傅立叶理论分析的一些不足之处,小波理论加以改进,函数的整体性质能够更加合理、方便的进行描述。

(三)分形几何

分形几何是对于自然中一些不规则、不稳定的常见现象进行研究,分形的维数对复杂的程度的描述,分形理论是对自然界一些不规则、不稳定的常见现象与物体的不同尺度相似性的描述,有相似的局部和整体,对面上信息和空间上的信息预测可以依据点上信息进行预测。

(四)混沌理论

混沌理论与分形理论有密不可分的联系,是对非线性动力系统的描述,,基干尺度是具有层次性的, 不仅在不同尺度之间存在相似性和标度律, 而且非均匀性差异性及等假设也存在。

(五)地理信息系统

利用计算机系统中的软硬件采集、储存、管理、查询、输出空间数据,地球物理勘探技术中地理信息系统原理的应用,可以快速的进行分析、查询、输出,是地球勘探技术中一个势不可挡的趋势。

二、地球物理勘探技术的应用

(一)对能源进行地球物理勘探

对石油和天然气的勘探比较困难的地区,主要综合勘探整块盆地,勘探普查能源的前期及石油天然气替补地震,在具体的实施的过程中,石油勘探工作运用测探技术,例如高精度磁力、高精度重力及电磁等技术,详细检查油气区的区块并作出评价, 直接找出油气的储藏地点, 从而解决一些比较难的的石油问题

(二)对金属矿进行地球物理勘探

磁法和电法是在金属矿的勘探中最常见的一种方法,对金属矿物进行探测,就是运用的此种方法,以岩和土体导电性的差异为基础,研究出人工稳定的电流场的作用,在人工稳定电流场作用下,研究地下传导电流分布规律和电流传导的分布规律。

(三)对工程进行地球物理勘探

在现代建设中工程地球物理勘探应用在广泛的领域,主要是建设与检测铁路、管道、公路、水利、建筑等工程,利用电法、深层地震及探地雷达等的探测方法。例如,对某项工程的勘探,利用探地雷达对公路路面进行勘测,使用的异频天线阵是600MHz/1600MHz,可以勘测到公路段的地基损坏十分严重,必须紧急处理破碎区、强烈的起伏、含水区。

三、地球物理勘探的发展前景

计算机技术与电子技术的突飞猛进,也在一定程度上推动了地球物理勘探技术的发展,以下是对地球物理勘探技术的发展方向展望概括的几个方面:

(一)应用计算机技术和数模变换技术的, 地球物理勘探技术的发展也是逐渐多功能化、自动化、数字化、轻便化以及智能化。目前,世界上很多国家的能源还是相对比较枯竭的,勘探浅部矿产资源已经结束,地球物理勘探人员也也已经在向行勘探难度大的沼泽、海洋及沙漠的方向前进,并且在重大工程建设中,比如核电站、矿山、水电站等,对规模小的、危害比较大的的岩溶、洞穴裂隙的分布以及地质构造比较关键的进行查明。要想完成这些任务,就需要使用新的勘探方法、勘探仪器、勘探技术,而且应用数字化及遥控遥测技术,可以顺利进行一些难度大的沙漠和沼泽的勘探工作。

(二)总线技术的逐渐发展,地球物理勘探仪器的关键支撑技术成为积木式、模块化、插卡式。把这些技术运用起来有利于实现多参数、多功能的自动测量,便于紧凑模块式地球物理勘探仪器系统的组成结构,反映了了地球物理勘探技术的主要发展方向。

(三)运用功能性很强的软件以及集成化的计算机辅助测试技术,使测试技术与测量仪器向更高的层次发展,这种测量系统便于用户方便实现需要的内容,功能性也特别强,代表了硬件研制与软件开发的同步发展的一种趋势。

(四)高速度单片数字的信号处理器可以使误差修复信号处理、数据处理能力得到增加, 高

档仪器的更新换代及功能扩展不仅仅增强制造工艺的精细及硬件功能。

(五)物理探测仪器的功能增强,还在于新技术的应用。比如,运用超导磁力仪、超导重力仪的超导新技术,提高设备的精确度、稳定性和灵敏性。

(六)应用3s技术可以便于人工测量定位和数据处理。应用层析成像的技术,有利于进一步提高地震勘探精确度,提升了勘探的分辨率;探地雷达的应用,对机场公路的跑道质量、混凝土构件质量、隧道的衬砌质量、桥基桥墩的质量的检测更加精准可靠。

总结

地球物理勘探技术是一门重要的学科。运用计算机技术、物理学、数学、电子学、系统科学、信息科学等许多学科的综合技术、方法和理论,对地球的各种物理信息进行勘探,直接获取信息,提高了地球物理探测的精度,地球物理勘探技术将与自动化技术和计算机技术相结合起来,成为发展的趋势,未来的球物理勘探技术的迅速发展趋势将势不可挡。

参考文献

[1] 张晗.地球物理勘探技术的发展及应用研究[J].科技传播.2013(08)08-09

[2] 叶阳胤.浅析地球物理勘探技术的发展与应用[D].硅谷.2008

[3] 花蕾;田必林.物理勘探技术的发展及应用分析[J].科技致富向导.2012(10)20-21

探测技术论文篇8

关键词:水利水电工程;地质勘测;新方法;应用

中图分类号: TV 文献标识码: A 文章编号:

工程地质勘测的应用是极为广泛的,几乎在任何的工程项目中都需要事先进行地质勘测,当然水利水利工程也不例外,并且随着科学技术的发展一些新兴的技术方法逐渐进入了我们的视线,给目前的水利水电工程地质勘测带来了极大的便利。

1工程地质勘探技术

1.1.山地勘探。

山地勘探是工程勘测中比较重要的一部分,一般都是采用人工或机械进行剥土,主要采用揭示地表浅层地质情况的勘探手段,比如开挖探坑、探井、探槽、平硐等,然后我们便可以直接进行试验,通过取样来观察分析地质现象。由于使用的工具和技术要求相对简单,故在进行地表浅层地质勘察时运用较多,正因如此,山地勘探的缺点是勘探深度有限。

1.2.钻探。

多年来,钻探在工程勘察中发挥了重大作用,得到了广泛应用,为提高劳动生产率、缩短勘察周期、保证勘察成果质量做出了很大的贡献,并处于不断开发与研究新技术、新方法的过程中。

20 世纪 70 年代的金刚石钻进技术在我国工程勘探中的应用,钻探效率成倍增长,岩心采取率普遍达到 90%以上。这彻底改变了钢粒钻进和硬质合金钻进的技术落后状况。因此,金刚石钻头基本取代了钢粒或硬质合金钻头。砂卵石层、软弱夹层、破碎带等特殊层位的钻进取样技术的发展。砂卵石钻进和取样一直是水利水电工程钻探的一大技术难题,在“六五”科技攻关中,加强对深厚砂卵石层钻进和取样技术的研究,近年来,研究成功的 SM 植物胶和 MY-1A 植物胶冲洗液金刚石钻进砂卵石层取样新的技术,较好地解决了砂卵石层中钻进和取样的难题,推广较好,已产生了明显的社会经济效益。金刚石绳索取芯钻进技术。在不提钻的情况下通过用绳索将装有岩芯的内管直接从专用钻杆内提到地面采取岩芯,是一种先进的钻探工艺。实践证明,该工艺大大减少了取芯过程中来回提钻的工作量,较好地解决了在软弱层等特殊地层钻进过程中经常出现的如塌孔、取芯质量低等难题。其它一些钻进工艺的发展。如软弱夹层的钻进技术、套钻技术、大口径钻探技术等,这些技术经多年应用而取得的显著社会经济效益,并逐步已纳入有关的现行规范中。

1.3.工程物探。

地球物理勘探(Geophysical Prospecting)简称物探,它是应用观测仪器测量被勘探区的地球物理场,通过对测量场数据的处理和地质解释来推断和发现地下可能存在的局部地质体、地质构造的位置、埋深、大小及其属性的科学。工程物探方法主要有以位场理论为基础的重力场勘探、磁场勘探、直流电场勘探等,以及以波动理论为基础的地震波勘探、电滋波勘探等。

(1)重、磁位场勘探。相对于地震勘探而言,重、磁位场勘探是最古老的一种物探,其精度和可靠度较差。目前,一些高精度的重力仪、磁力仪的研制和应用,重、磁位场勘探的精度也随着有了很大程度的提高。同时,神经网络技术和磁性矢量层析成像理论的研究和应用,使重、磁位场勘探在上个世纪获得了广泛的发展应用。微伽级重力仪将微重力测量用来勘探洞室和边坡地质体的变动形态并监测其稳定性。

(2)地震勘探。目前,地震勘探在水利水电工程领域发展较快。例如:利用弹性波纵波对三峡等大型水利水电工程的岩体质量做定性评价,取得了显著的工程和经济效益;由中铁西南科学研究院开发研制的负视速度法和水平地震剖面法、由瑞士 Amberg测量技术公司开发的 TSP 长距离超前预报法、由美国 NSA 工程公司开发研制的真正反射层析成像(TRT)超前预报技术等,较好地解决了利用反射波地震勘探进行隧道超前预报的难题。近年来,地震 CT 可利用钻孔、隧道、边坡、山体等多种观测条件进行二维、三维地质成像,促进了地质勘测由定性向定量化的方向发展。

(3)岩体弹性波测试技术。目前该项技术除一般的地震勘探测试以外主要还有以下几种测试:声波测井技术、坝基岩体质量快速检测系统、瞬态面波探测技术。

(4)电磁勘探。主要包括人工场源的连续的电磁波勘探(EM 法)和天然场源的电磁测探(MT 法)。例如:可控源音频大地电磁法、人工与天然两种场源、多场源、二维和三维电阻率成像等技术,在水利水电工程中用来推测深埋长隧洞围岩介质的结构特征、隐伏断层、破碎带及异常区等可能影响工程的各种因素,取得了显著的经济效益。

(5)电法勘探。包括电阻率法、充电法和自然电场法、激发极化法、电磁感应法等多种方法。又可分为稳定电流场理论、交变流法理论两大分支。近年来发展起来的高密度电法勘探,引进了地震勘探的数据采集办法,可实现数据的快速、自动采集,其测量结果可实时处理并显示地电断面或剖面图,从传统的一维勘探发展到二维勘探,此方法属于电阻率法的范畴,在水利水电工程地质勘察中应用较多。目前发展趋势是单源与单点测量,向多源、多点、多线测量发展,从而发展了三维观测技术。

2地质勘测新方法及其在水利水电工程中的应用与展望

在水利水电工程建设当中,会遇到和一般工程建设不同的问题,以此也就要求引用更为先进的地质勘探新方法来弥补其中的不足。本文分别介绍了 3S 技术中全球定位系统(GPS)、遥感(RS)与地理信息系统(GIS)等 4 种新方法,并简单分析了它们的应用及未来发展趋势。3S 技术是指全球定位系统(GPS)、遥感(RS)、地理信息系统(GIS)等三大技术系统的集成与总称。遥感技术是 3S 技术的基础,它提供主要的遥感信息源。GPS 技术用于遥感信息的精确定位,GIS 技术则为遥感信息的获取提供辅助信息和专家思维,并对所提取的各种信息进行管理和分析且具有制图功能。近年来,国内开始在一些特大型、大型水利水电工程地质勘察中采用 3 S 技术。例如,许多大型水利水电工程采用了 3S 技术并取得了丰硕成果。

2.1.GPS 技术在水利工程地质勘测中的应用及展望。

GPS 在水利水电工程地质勘察测量及定位控制的应用越来月广泛,它能较好地解决跨河、跨沟水准在高程控制方面难以传递的问题,以及通视条件较差、观测条件受限、勘察区控制点较少或在山区、林区等区域大大减少作业时间,提高测量精度,进行工程地质勘察。工程地质勘察通过 GPS 确定观测点位的三维坐标。和普通测量手段不同,具有定位精度高、观测时间短、操作简便、可全天候观测等优点,它不要求观测站之间通视,并且可将其采集和储存的观测数据导入计算机进行分析与处理。

推荐范文
推荐期刊