线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

燃料电池技术论文8篇

时间:2023-03-21 17:06:53

燃料电池技术论文

燃料电池技术论文篇1

关键词:质子交换膜燃料电池;双极板;电极;催化剂

1质子交换膜燃料电池的结构及原理

按照电解质的不同可将燃料电池分为磷酸燃料电池、碱性燃料电池、固体氧化物燃料电池、熔融碳酸盐燃料电池及质子交换膜燃料电池(PEMFC)等五类。PEMFC单电池由质子交换膜、气体扩散电极、双极板等构成,图1是其结构与工作原理示意图。

PEMFC的基本工作过程如下:

(1)氢气通过双极板上的导气通道到达电池的阳极,氢分子在催化剂的作用下解离形成氢离子和电子;

(2)氢离子以水合质子H+(xH2O)的形式通过电解质膜到达阴极,电子在阳极侧积累;

(3)氧气通过双极板到达阴极后,氧分子在催化剂的作用下变成氧离子,阴、阳极间形成一个电势差;

(4)阳极和阴极通过外电路连接起来,在阳极积聚的电子就会通过外电路到达阴极,形成电流,对负载做功。同时,在阴极侧反应生成水;

(5)只要持续不断地提供反应气体,PEMFC就可以连续工作,对外提供电能。

2质子交换膜燃料电池的特点

(1)高效率。PEMFC以电化学方式进行能量转换,不存在燃烧过程,不受卡诺循环限制,其理论热效率可达85-90%,目前的实际效率大约是内燃机的两倍。传统动力源为了提高效率必须将负荷限制在很小范围内,而PEMFC几乎在全部负荷范围内均有很高效率。

(2)模块化。PEMFC在结构上具有模块化的特点,可根据不同动力需求组合安装,采用“搭积木”式的设计方法简化了不同规模电堆的设计制造过程。

(3)高可靠性。由于PEMFC电堆采用模块化的设计方法,结构简单,易于维护。一旦某个单电池发生故障,可自动采取适当屏蔽措施,只会使系统输出功率略有下降,而不会导致整个动力系统的瘫痪。

(4)燃料多样性。PEMFC动力系统既可以纯氢为燃料,也可以重整气为燃料。氢气的来源可以是电解水的产物,也可以是对汽油、柴油、二甲醚等化石类燃料重整的产物。氢气的存储方式可以是高压气罐、液氢、金属氢化物等。

(5)环境友好。当采用纯氢为燃料时,PEMFC的唯一产物是水,可以做到零排放。以重整气为燃料时,相对于内燃机而言,排放也极大降低。此外,PEMFC噪声水平也很低,各结构部件均可回收利用。3研究现状

3.1关键部件

电解质膜、双极板、催化剂及气体扩散电极是质子交换膜燃料电池的四大关键部件。

电解质膜是PEMFC的核心部件,它直接影响燃料电池的性能与寿命。1962年美国杜邦公司研制成功全氟磺酸型质子交换膜,1966年开始用于燃料电池,其商业型号为Nafion,至今仍广泛使用。但由于Nafion膜成本较高,各国科学家正在研究部分氟化或非氟质子交换膜。

双极板在PEMFC中起着支撑、集流、分割氧化剂与还原剂并引导气体在电池内电极表面流动的作用,目前广泛采用的是以石墨为材料,在其上加工出引导气体流动的流场,基本流场形式有蛇形、平行、交指及网格状等。

铂基催化剂是目前性能最好的电极催化剂,为提高利用率,铂以纳米级颗粒形式高分散地担载到导电、抗腐蚀的担体上,目前广泛采用的担体为乙炔炭黑,比表面积约为250m2/g,平均粒径为30nm。

PEMFC的气体扩散电极由两层构成,一层为起支撑作用的扩散层,另一层为电化学反应进行的场所催化层。扩散层一般选用炭材如石墨化炭纸或炭布制备,应具备高孔隙率和适宜的孔分布,不产生腐蚀或降解。根据制备工艺和厚度不同,催化层分为厚层憎水、薄层亲水及超薄三种类型。

3.2测控系统

PEMFC的工作性能受多种因素(温度、压力等)的影响,为确保PEMFC正常运行,提高其可靠性和有效性,就必须监测各个影响因素。即运用有效的措施来连续监测PEMFC运行的关键或重要状态,并对收集到的信息进行必要的分析和处理,以便做到故障预测和及时诊断,为PEMFC管理系统提供依据。目前,进行PEMFC测试系统相关方面研究的公司和机构众多,但仍没有制定出有关PEMFC测试的国际标准和相应的标准测试设备,不过已有实用的测试系统投入使用。加拿大Hydrogenics公司的燃料电池测试站(FCATS)、美国Arbin公司的集成燃料电池测试系统(FCTS)是其中的突出代表。

4质子交换膜燃料电池的应用

质子交换膜燃料电池是目前各种燃料电池中实用程度较高的一类。其优越性不仅限于能量转换效率高、工作温度低,还体现在其可在较大的电流密度下工作,适宜于较频繁启动的场合。因此世界各大汽车生产厂商一致看好其在汽车工业中的应用前景,PEMFC已成为现今燃料电池汽车动力的主要发展方向。目前,通用、丰田等世界上知名的汽车公司,都在积极开发以PEMFC系统为动力源的PEMFC电动车,曾先后推出各种类型的样车,并进行PEMFC电动车队的示范运行。PEMFC电动车以其优异的性能和环境污染很少等突出特点引起了人们的普遍关注,甚至被认为将是21世纪内燃机汽车最为有力的竞争者。

此外,在航空航天特别是无人飞行器领域,以及家庭电源、分散电站、移动电子设备电源、水下机器人及潜艇不依赖空气推进电源等方面也有广泛应用前景。

5质子交换膜燃料电池的发展趋势

在关键部件方面,围绕电解质膜、催化剂及双极板的研究方兴未艾。全氟型磺酸膜价格昂贵,开发非全氟的廉价质子交换膜是今后的研究方向。近年来,新型质子交换膜的的研究热点是开发能够在100℃以上使用的高温电解质膜。在催化剂方面,研制高性能抗CO中毒电极催化剂是最紧迫的任务,此外,还要寻找非贵金属氮化物或碳化物作为现有铂催化剂的替代。目前广泛使用的石墨板具有较好的耐腐蚀能力和较高的热导率,但成本较高,加工难度大,强度、电导率和可回收性均不如金属板。金属板目前急需解决的问题是表面处理,以提高其耐腐蚀能力。复合材料双极板则结合了纯石墨板和金属板的优点,具有耐腐蚀、体积小、质量轻、强度大及工艺性良好等特点,是未来发展的趋势。

在电堆方面,今后的研究重点将是使电堆中的电池单元的性能接近于单电池的性能,这就需要对电堆的结构进行优化,保证电堆中每一片电池单元的整个活性面积处于一致的操作环境,并优化水、热管理,改善电流密度分布的均匀性。

参考文献

燃料电池技术论文篇2

作者: 辽宁电力科学研究院孔宪文 桂敏言(辽宁省电力有限公司 冯玉全) 【论文摘要】本文概述了燃料电池的工作特点和原理,介绍了发电系统的组成、国内外的研究现状,对我国应用燃料电池发电的资源条件进行了评估,展望了这一技术在电力系统的应用前景、将对电力系统产生的重要影响,它将使传统的电力系统产生重大的变革,它会使电力系统更加安全、经济。最后提出了发展燃料电池发电的具体建议。1.引言 能源是经济发展的基础,没有能源工业的发展就没有现代文明。人类为了更有效地利用能源一直在进行着不懈的努力。历史上利用能源的方式有过多次革命性的变革,从原始的蒸汽机到汽轮机、高压汽轮机、内燃机、燃气轮机,每一次能源利用方式的变革都极大地推进了现代文明的发展。 随着现代文明的发展,人们逐渐认识到传统的能源利用方式有两大弊病。一是储存于燃料中的化学能必需首先转变成热能后才能被转变成机械能或电能,受卡诺循环及现代材料的限制,在机端所获得的效率只有33~35%,一半以上的能量白白地损失掉了;二是传统的能源利用方式给今天人类的生活环境造成了巨量的废水、废气、废渣、废热和噪声的污染。对于发电行业来说,虽然采用的技术在不断地升级,如开发出了超高压、超临界、超超临界机组,开发出了流化床燃烧和整体气化联合循环发电技术,但这种努力的结果是:机组规模巨大、超高压远距离输电、投资上升,到用户的综合能源效率仍然只有35%左右,大规模的污染仍然没有得到根本解决。多年来人们一直在努力寻找既有较高的能源利用效率又不污染环境的能源利用方式。这就是燃料电池发电技术。 1839年英国的Grove发明了燃料电池,并用这种以铂黑为电极催化剂的简单的氢氧燃料电池点亮了伦敦讲演厅的照明灯。1889年Mood和Langer首先采用了燃料电池这一名称,并获得200mA/m2电流密度。由于发电机和电极过程动力学的研究未能跟上,燃料电池的研究直到20世纪50年代才有了实质性的进展,英国剑桥大学的Bacon用高压氢氧制成了具有实用功率水平的燃料电池。60年代,这种电池成功地应用于阿波罗(Appollo)登月飞船。从60年代开始,氢氧燃料电池广泛应用于宇航领域,同时,兆瓦级的磷酸燃料电池也研制成功。从80年代开始,各种小功率电池在宇航、军事、交通等各个领域中得到应用。 燃料电池是一种将储存在燃料和氧化剂中的化学能,直接转化为电能的装置。当源源不断地从外部向燃料电池供给燃料和氧化剂时,它可以连续发电。依据电解质的不同,燃料电池分为碱性燃料电池(AFC)、磷酸型燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)及质子交换膜燃料电池(PEMFC)等。燃料电池不受卡诺循环限制,能量转换效率高,洁净、无污染、噪声低,模块结构、积木性强、比功率高,既可以集中供电,也适合分散供电。 大型电站,火力发电由于机组的规模足够大才能获得令人满意的效率,但装有巨型机组的发电厂又受各种条件的限制不能贴进用户,因此只好集中发电由电网输送给用户。但是机组大了其发电的灵活性又不能适应户户的需要,电网随用户的用电负荷变化有时呈现为高峰,有时则呈现为低谷。为了适应用电负荷的变化只好备用一部分机组或修建抽水蓄能电站来应急,这在总体上都是以牺牲电网的效益为代价的。传统的火力发电站的燃烧能量大约有近70%要消耗在锅炉和汽轮发电机这些庞大的设备上,燃烧时还会排放大量的有害物质。而使用燃料电池发电,是将燃料的化学能直接转换为电能,不需要进行燃烧,没有转动部件,理论上能量转换率为100%,装置无论大小实际发电效率可达40%~60%,可以

燃料电池技术论文篇3

作者: 许世森(国家电力公司热工研究院) 【论文摘要】本文介绍了燃料电池发电技术的特点和应用形式,论证了在我国电力系统发展燃料电池发电技术的必要性。概述了国外燃料电池的发展计划和市场预测,总结了国外发展燃料电池的经验。通过技术比较,提出了在我国电力系统发展燃料电池发电的技术路线。 燃料电池发电是将燃料的化学能直接转换为电能的过程,其发电效率不受卡诺循环的限制,发电效率可达到50%一70%,被誉为二十一世纪重要的发电新技术之一。目前,国际上磷酸型燃料电池已进入商业化,其它几种燃料电池预计在2005年一2010年200KW一将全面进入商业此。对于这种蓬勃发展的发电新技术,国家电力公司应该采取怎样态度?要不要发展?怎样发展?这些问题亟待解决。 l 燃料电池发电的技术特点和应用形式 1.1 技术特点 燃料电池发电是在一定条件下使燃料(主要是H2)和氧化剂(空气中的02)发电化学反应,将化学能直接转换为电能和热能的过程。与常规电池的不同:只要有燃料和氧化剂供给,就会有持续不断的电力输出。与常规的火力发电不同,它不受卡诺循环的限制,能量转换效率高。与常规发电相比燃料电池具有以下优点:(1)理论发电效率高,发展潜力大。燃料电池本体的发电效率可达到50%一60%,组成的联合循环发电系统在(10-50)MW规模即可达到70%以上的发电效率。(2)污染物和温室气体排放量少。与传统的火电机组相比,C02排出量可减少40%一60%。Nox(<2ppm)和SOx(<1ppm)排放量很少。 (3)小型高效,可提高供电可靠性。燃料电池的发电效率受负荷和容量的影响较小。(4)低噪音。在距发电设备3英尺(1.044米)处噪音小于60dB(A)。(5)电力质量高。电流谐波和电压谐波均满足IEEE519标准。(6)变负荷率高。变负荷率可达到(8%一lO%)/min,负荷变化的范围大(20%一120%)。(7)燃料电池可使用的燃料有氢气、甲醇、煤气、沼气、天然气、轻油、柴油等。(8)模块化结构,扩容和增容容易,建厂时间短。(9)占地面积小,占地面积小于lm2/KW。 (10)自动化程度高,可实现无人操作。 总之,燃料电池是一种高效、洁净的发电方式,既适合于作分布式电源,又可在将来组成大容量中心发电站,是2l世纪重要的发电方式。制约燃料电池走向大规模商业化的主要因素是:高价格和寿命问题。 2.1 燃料电池的应用形式 (1)现场热电联供,常用的容量为200KW一1MW。 (2)分布式电源,容量比现场用燃料电池大,约(2-20)MW。 (3)基本负荷的发电站(中心发电站),容量为(100-300MW)。 (4)燃料电池还可用于100W-100KW多种可移动电源、便携式电源、航空电源、应急电源和计算机电源等。2 为什么要在我国电力系统发展燃料电池发电技术? 2.1 采用燃料电池发电是提高化石燃料发电效率的重要途径之一 以高温燃料电池组成的联合循环发电系统,可使发电效率达到60%-75%(LHV),这一目标将在2005年左右实现。预计到2010年,发电效率可超过72%。煤气化燃料电池联合循环(IGFC)的发电效率可达到62%以上。以燃料电池组成的热电联产机组的总热效率可达到85%以上。燃料电池本体的发电效率基本不随容量的变化而变化,这使得燃料电池既可用作小容量分散电源,又可用于集中发电应用范围广泛。

燃料电池技术论文篇4

摘要:电能高效洁净地生产、传输、储存、分配和使用的技术将成为电力技术的重点领域。 论文关键词:电力技术;电源 “电力技术是通向可持续发展的桥梁”,这个论断已经逐渐成为人们的共识。研究表明,为了实现可持续发展,应尽可能把一次能源转换为电能使用,提高电力在终端能源中的比例。因为,在保证相同的能源服务水平的前提下, 使用电力这种优质能源最清洁、方便,易于控制、效率最高。如果能将大量分散燃用的化石燃料都高效洁净地转换为电力使用,人们赖以生存的环境和生活质量就会大大改善。因此,电能高效洁净地生产、传输、储存、分配和使用的技术将成为电力技术的重点领域。以下将对若干电力前沿技术的现状和未来发展前景进行简单评述。 1. 分布式电源 当今的分布式电源主要是指用液体或气体燃料的内燃机(IC)、微型燃气轮机(Microtur_bines)和各种工程用的燃料电池(Fuel Cell)。因其具有良好的环保性能,分布式电源与“小机组”已不是同一概念。 1.1 微型燃气轮机 微型燃气轮机(Micro Turbine),是功率为几千瓦至几十千瓦,转速为96 000 r/min,以天然气、甲烷、汽油、柴油为燃料的超小型燃气轮机,工作温度500 ℃,其发电效率可达30%。目前国外已进入示范阶段。其技术关键是高速轴承、高温材料、部件加工等。可见,电工技术的突破常常取决于材料科学的进步。 1.2 燃料电池 燃料电池是直接把燃料的化学能转换为电能的装置。它是一种很有发展前途的洁净和高效的发电方式,被称为21世纪的分布式电源。 1.2.1 燃料电池的工作原理 燃料电池的工作原理颇似电解水的逆过程。氢基燃料送入燃料电池的阳极(电源的负极)转变为氢离子,空气中的氧气送入燃料电池的阴极(电源的正极),负氧离子通过2极间离子导电的电解质到达阳极与氢离子结合成水,外电路则形成电流。 通常,完整的燃料电池发电系统由电池堆、燃料供给系统、空气供给系统、冷却系统、电力电子换流器、保护与控制及仪表系统组成。其中,电池堆是核心。低温燃料电池还应配备燃料改质器(又称为燃料重整器)。高温燃料电池具有内重整功能,无须配备重整器。磷酸型燃料电池(PAFC)是目前技术成熟、已商业化的燃料电池。现在已能生产大容量加压型11 MW的设备及便携式250 kW等各种设备。第2代燃料电池的溶融碳酸盐电池(MCFC),工作在高温(600~700 ℃)下,重整反应可以在内部进行,可用于规模发电,现在正在进行兆瓦级的验证试验。固体电解质燃料电池(SOFC)被称为第3代燃料电池。由于电解质是氧化锆等固体电解质,未来可用于煤基燃料发电。质子交换膜燃料电池是最有希望的电动车电源。 1.2.2 性能和特点 燃料电池有以下优点:(1)有很高的效率,以氢为燃料的燃料电池,理论发电效率可达100%。熔融碳酸盐燃料电池,实际效率可达58.4%。通过热电联产或联合循环综合利用热能,燃料电池的综合热效率可望达到80%以上。燃料电池发电效率与规模基本无关,小型设备也能得到高效率。处于热备用状态,燃料电池跟随负荷变化的能力非常强,可以在1 s内跟随50%的负荷变化。(3)噪音低;可以实现实际上的零排放;省水。(4)安装周期短,安装位置灵活,可省去新建输配电系统 目前燃料电池大规模应用的障碍是造价高,在经济性上要与常规发电方式竞争尚需时日。

燃料电池技术论文篇5

【论文摘要】:电能高效洁净地生产、传输、储存、分配和使用的技术将成为电力技术的重点领域。 

 

“电力技术是通向可持续发展的桥梁”,这个论断已经逐渐成为人们的共识。研究表明,为了实现可持续发展,应尽可能把一次能源转换为电能使用,提高电力在终端能源中的比例。因为,在保证相同的能源服务水平的前提下, 使用电力这种优质能源最清洁、方便,易于控制、效率最高。如果能将大量分散燃用的化石燃料都高效洁净地转换为电力使用,人们赖以生存的环境和生活质量就会大大改善。因此,电能高效洁净地生产、传输、储存、分配和使用的技术将成为电力技术的重点领域。以下将对若干电力前沿技术的现状和未来发展前景进行简单评述。 

 

1. 分布式电源 

 

当今的分布式电源主要是指用液体或气体燃料的内燃机(ic)、微型燃气轮机(microtur_bines)和各种工程用的燃料电池(fuel cell)。因其具有良好的环保性能,分布式电源与“小机组”已不是同一概念。 

1.1 微型燃气轮机 

微型燃气轮机(micro turbine),是功率为几千瓦至几十千瓦,转速为96 000 r/min,以天然气、甲烷、汽油、柴油为燃料的超小型燃气轮机,工作温度500 ℃,其发电效率可达30%。目前国外已进入示范阶段。其技术关键是高速轴承、高温材料、部件加工等。可见,电工技术的突破常常取决于材料科学的进步。 

1.2 燃料电池 

燃料电池是直接把燃料的化学能转换为电能的装置。它是一种很有发展前途的洁净和高效的发电方式,被称为21世纪的分布式电源。 

1.2.1 燃料电池的工作原理 

燃料电池的工作原理颇似电解水的逆过程。氢基燃料送入燃料电池的阳极(电源的负极)转变为氢离子,空气中的氧气送入燃料电池的阴极(电源的正极),负氧离子通过2极间离子导电的电解质到达阳极与氢离子结合成水,外电路则形成电流。 

通常,完整的燃料电池发电系统由电池堆、燃料供给系统、空气供给系统、冷却系统、电力电子换流器、保护与控制及仪表系统组成。其中,电池堆是核心。低温燃料电池还应配备燃料改质器(又称为燃料重整器)。高温燃料电池具有内重整功能,无须配备重整器。磷酸型燃料电池(pafc)是目前技术成熟、已商业化的燃料电池。现在已能生产大容量加压型11 mw的设备及便携式250 kw等各种设备。第2代燃料电池的溶融碳酸盐电池(mcfc),工作在高温(600~700 ℃)下,重整反应可以在内部进行,可用于规模发电,现在正在进行兆瓦级的验证试验。固体电解质燃料电池(sofc)被称为第3代燃料电池。由于电解质是氧化锆等固体电解质,未来可用于煤基燃料发电。质子交换膜燃料电池是最有希望的电动车电源。 

1.2.2 性能和特点 

燃料电池有以下优点:(1)有很高的效率,以氢为燃料的燃料电池,理论发电效率可达100%。熔融碳酸盐燃料电池,实际效率可达58.4%。通过热电联产或联合循环综合利用热能,燃料电池的综合热效率可望达到80%以上。燃料电池发电效率与规模基本无关,小型设备也能得到高效率。(2)处于热备用状态,燃料电池跟随负荷变化的能力非常强,可以在1 s内跟随50%的负荷变化。(3)噪音低;可以实现实际上的零排放;省水。(4)安装周期短,安装位置灵活,可省去新建输配电系统 

目前燃料电池大规模应用的障碍是造价高,在经济性上要与常规发电方式竞争尚需时日。 

1.2.3 技术关键和研究课题 

燃料电池的技术关键涉及电池性能、寿命、大型化、价格等与商业化有关的项目,主要涉及新的电解质材料和催化剂。熔融碳酸盐电池(mcfc)在高温条件下液体电解质的损失和腐蚀渗漏降低了电池的寿命,使mcfc的大型化及实用化受到限制。需要解决电池构成材料的腐蚀;电极细孔构造变化使电池性能下降等问题。固体氧化物燃料电池(sofc)使用固体电解质且工作温度很高,对构成材料及其加工有特殊要求。为了得到高温下化学性稳定和致密性(不通过气体)的电解质,在氧化锆中加入y2o3生成钇稳定氧化锆。为了降低工作温度,应尽可能减少电解质薄膜厚度。通常采用熔射法、烧结法和电化学蒸发涂层法制备电解质薄膜。实用的电解质膜的厚度为0.03~0.05 mm。比较先进的已达到0.01 mm。这样薄的电解质陶瓷材料除应当有足够的机械强度外,必须具有高度的气体致密性,否则将丧失燃料电池的性能。燃料极使用镍锆等耐热金属陶瓷,镍还用作燃料重整的催化剂,空气极在运行中处在高温氧化中,难以使用一般金属。铂的稳定性好,但费用昂贵,需要寻找替代材料,可用电子导电陶瓷。为了降低工作温度,另外一个重要的研究方向是寻找低温的质子导电的电解质。工作温度倘若能降低到700 ℃以下,sofc的造价就可以大幅度降低。 

 

2. 大功率电力电子技术的应用硅片引起的“第二次革命 

 

2.1 大功率电力电子器件的重大进展 

电力电子学(power electronics)的应用已经有多年的历史。电力电子学器件用于电力拖动、变频调速、大功率换流已经是比较成熟的技术。大功率电子器件(high power electronics)的快速发展也引起了电力系统的重大变革,通常称为硅片引起的第二次革命。 

近年来,大功率电子器件已经广泛应用于电力的一次系统。可控硅(晶闸管)用于高压直流输电已经有很长的历史。大功率电子器件应用于灵活的交流输电(facts)、定质电力技术(custom power)以及新一代直流输电技术则是近10年的事。新的大功率电力电子器件的研究开发和应用,将成为电力研究前沿。 

2.2 灵活交流输电技术(facts) 

灵活交流输电技术是指电力电子技术与现代控制技术结合以实现对电力系统电压、参数(如线路阻抗)、相位角、功率潮流的连续调节控制,从而大幅度提高输电线路输送能力和提高电力系统稳定水平,降低输电损耗。 

传统的调节电力潮流的措施,如机械控制的移相器、带负荷调变压器抽头、开关投切电容和电感、固定串联补偿装置等,只能实现部分稳态潮流的调节功能,而且,由于机械开关动作时间长、响应慢,无法适应在暂态过程中快速灵活连续调节电力潮流、阻尼系统振荡的要求。因此,电网发展的需求促进了灵活交流输电这项新技术的发展和应用。 

燃料电池技术论文篇6

【论文摘要】:电能高效洁净地生产、传输、储存、分配和使用的技术将成为电力技术的重点领域。

“电力技术是通向可持续发展的桥梁”,这个论断已经逐渐成为人们的共识。研究表明,为了实现可持续发展,应尽可能把一次能源转换为电能使用,提高电力在终端能源中的比例。因为,在保证相同的能源服务水平的前提下,使用电力这种优质能源最清洁、方便,易于控制、效率最高。如果能将大量分散燃用的化石燃料都高效洁净地转换为电力使用,人们赖以生存的环境和生活质量就会大大改善。因此,电能高效洁净地生产、传输、储存、分配和使用的技术将成为电力技术的重点领域。以下将对若干电力前沿技术的现状和未来发展前景进行简单评述。

1.分布式电源

当今的分布式电源主要是指用液体或气体燃料的内燃机(IC)、微型燃气轮机(Microtur_bines)和各种工程用的燃料电池(FuelCell)。因其具有良好的环保性能,分布式电源与“小机组”已不是同一概念。

1.1微型燃气轮机

微型燃气轮机(MicroTurbine),是功率为几千瓦至几十千瓦,转速为96000r/min,以天然气、甲烷、汽油、柴油为燃料的超小型燃气轮机,工作温度500℃,其发电效率可达30%。目前国外已进入示范阶段。其技术关键是高速轴承、高温材料、部件加工等。可见,电工技术的突破常常取决于材料科学的进步。

1.2燃料电池

燃料电池是直接把燃料的化学能转换为电能的装置。它是一种很有发展前途的洁净和高效的发电方式,被称为21世纪的分布式电源。

1.2.1燃料电池的工作原理

燃料电池的工作原理颇似电解水的逆过程。氢基燃料送入燃料电池的阳极(电源的负极)转变为氢离子,空气中的氧气送入燃料电池的阴极(电源的正极),负氧离子通过2极间离子导电的电解质到达阳极与氢离子结合成水,外电路则形成电流。

通常,完整的燃料电池发电系统由电池堆、燃料供给系统、空气供给系统、冷却系统、电力电子换流器、保护与控制及仪表系统组成。其中,电池堆是核心。低温燃料电池还应配备燃料改质器(又称为燃料重整器)。高温燃料电池具有内重整功能,无须配备重整器。磷酸型燃料电池(PAFC)是目前技术成熟、已商业化的燃料电池。现在已能生产大容量加压型11MW的设备及便携式250kW等各种设备。第2代燃料电池的溶融碳酸盐电池(MCFC),工作在高温(600~700℃)下,重整反应可以在内部进行,可用于规模发电,现在正在进行兆瓦级的验证试验。固体电解质燃料电池(SOFC)被称为第3代燃料电池。由于电解质是氧化锆等固体电解质,未来可用于煤基燃料发电。质子交换膜燃料电池是最有希望的电动车电源。

1.2.2性能和特点

燃料电池有以下优点:(1)有很高的效率,以氢为燃料的燃料电池,理论发电效率可达100%。熔融碳酸盐燃料电池,实际效率可达58.4%。通过热电联产或联合循环综合利用热能,燃料电池的综合热效率可望达到80%以上。燃料电池发电效率与规模基本无关,小型设备也能得到高效率。(2)处于热备用状态,燃料电池跟随负荷变化的能力非常强,可以在1s内跟随50%的负荷变化。(3)噪音低;可以实现实际上的零排放;省水。(4)安装周期短,安装位置灵活,可省去新建输配电系统

目前燃料电池大规模应用的障碍是造价高,在经济性上要与常规发电方式竞争尚需时日。

1.2.3技术关键和研究课题

燃料电池的技术关键涉及电池性能、寿命、大型化、价格等与商业化有关的项目,主要涉及新的电解质材料和催化剂。熔融碳酸盐电池(MCFC)在高温条件下液体电解质的损失和腐蚀渗漏降低了电池的寿命,使MCFC的大型化及实用化受到限制。需要解决电池构成材料的腐蚀;电极细孔构造变化使电池性能下降等问题。固体氧化物燃料电池(SOFC)使用固体电解质且工作温度很高,对构成材料及其加工有特殊要求。为了得到高温下化学性稳定和致密性(不通过气体)的电解质,在氧化锆中加入Y2O3生成钇稳定氧化锆。为了降低工作温度,应尽可能减少电解质薄膜厚度。通常采用熔射法、烧结法和电化学蒸发涂层法制备电解质薄膜。实用的电解质膜的厚度为0.03~0.05mm。比较先进的已达到0.01mm。这样薄的电解质陶瓷材料除应当有足够的机械强度外,必须具有高度的气体致密性,否则将丧失燃料电池的性能。燃料极使用镍锆等耐热金属陶瓷,镍还用作燃料重整的催化剂,空气极在运行中处在高温氧化中,难以使用一般金属。铂的稳定性好,但费用昂贵,需要寻找替代材料,可用电子导电陶瓷。为了降低工作温度,另外一个重要的研究方向是寻找低温的质子导电的电解质。工作温度倘若能降低到700℃以下,SOFC的造价就可以大幅度降低。

2.大功率电力电子技术的应用硅片引起的“第二次革命

2.1大功率电力电子器件的重大进展

电力电子学(PowerElectronics)的应用已经有多年的历史。电力电子学器件用于电力拖动、变频调速、大功率换流已经是比较成熟的技术。大功率电子器件(HighPowerElectronics)的快速发展也引起了电力系统的重大变革,通常称为硅片引起的第二次革命。

近年来,大功率电子器件已经广泛应用于电力的一次系统。可控硅(晶闸管)用于高压直流输电已经有很长的历史。大功率电子器件应用于灵活的交流输电(FACTS)、定质电力技术(CustomPower)以及新一代直流输电技术则是近10年的事。新的大功率电力电子器件的研究开发和应用,将成为电力研究前沿。

2.2灵活交流输电技术(FACTS)

灵活交流输电技术是指电力电子技术与现代控制技术结合以实现对电力系统电压、参数(如线路阻抗)、相位角、功率潮流的连续调节控制,从而大幅度提高输电线路输送能力和提高电力系统稳定水平,降低输电损耗。新晨

传统的调节电力潮流的措施,如机械控制的移相器、带负荷调变压器抽头、开关投切电容和电感、固定串联补偿装置等,只能实现部分稳态潮流的调节功能,而且,由于机械开关动作时间长、响应慢,无法适应在暂态过程中快速灵活连续调节电力潮流、阻尼系统振荡的要求。因此,电网发展的需求促进了灵活交流输电这项新技术的发展和应用。

燃料电池技术论文篇7

关键词: 燃料电池 测试系统 性能参数

随着全球对能源需求的增长及人类对环境要求的提高,各个国家对燃料电池的研究和开发日益增多。燃料电池是最有希望为汽车和居民提供清洁高效能源的技术之一。燃料电池发动机被认为是最有希望取代内燃机的新型能源动力系统[1],[2]。燃料电池测试系统不仅在燃料电池系统的研发阶段十分重要,即使是在其投入使用之后对于维持电池的正常工作也是不可或缺的[3]。强大的测试能力能够提供对燃料电池可靠的监控,提供灵活的结构,具备了这种能力,科学界能够很方便地设计他们的系统,以跟踪燃料电池技术进步[4]。

1.国内外燃料电池测试系统整体研究现状及水平

由于燃料电池还处于开发阶段,汽车工业还没有制定燃料电池的标准测试仪器,更谈不上统一规范的测试仪器供应商。许多公司开始走近这项挑战,研究准确测试燃料电池的解决方案。这些公司中最引人注目的是美国的Hydrogenics公司和美国国家仪器公司(National Instruments,简称NI),它们推出了一些软硬件测试产品,能够兼容多种燃料电池,测得几乎所有设计指标[5]。Hydrogenics的Greenlight公司是世界上最大的燃料电池测试系统生产基地,它是燃料电池工业测试诊断设备引领全球的供应商。NI是全球基于计算机测量的领导者,许多领先的燃料电池制造商都在开发的各个阶段使用NI硬件及软件工具来测试燃料电池。

在整个电池行业研发出燃料电池测试系统的公司屈指可数,且在2004年之前均为国外厂家[6]。为使研发燃料电池的专家能利用测量、控制、分析及可视化工具进行评估,武汉力兴测试设备有限公司紧跟世界燃料电池的最前沿技术,自主开发出具有国内领先水平的燃料电池测试系统,并于2004年一月推出国内首台燃料电池测试系统,该系统的推出填补了我国在燃料电池测试领域的空白,在推广国内燃料电池产业发展的里程碑上有着非同寻常的意义。

2.燃料电池测试系统的基本理论

2.1测试目的

虽然研究、开发、制造和应用部门的总目标各有不同,它们对于燃料电池的检测和监视项目要求却是相似的。对于研发部门,测试要求是确定输出能量、使用寿命和电池组的耐用性。在设计验收阶段,主要任务是优化设计以备大规模生产,以及在不降低效率的情况下降低电堆总成本。对于生产应用,要求燃料电池符合规范要求。而在实际使用中,监测电池的寿命和工作状态是非常重要的。好在这些不同的任务对电池测试系统的要求都差不多。

2.2测试系统的主要特点

①隔离。燃料电池测试系统先要进行各种需要信号调理的测量,然后原始信号才能有数据采集系统数字化。大容量电堆具有数百个单电池,从而电压测量要求数百伏的共模抑制。因此,测试不仅必须具有多个每个通道都能读取1-10V的通道,而且必须保持电堆的每一个和最后一个电池之间高达数百伏的隔离。

②数据采集系统必须能够扩展。由于燃料电池测试系统的通道数目可以从100个到1000多个,所以数据采集系统必须能够扩展,并且这些系统也要求可以进行信号的衰减和放大。

③模块化。对于今天的测试系统,模块化也是必需的。因为测试系统必须能够随着生产及验证技术的变革而变革。

④标定。任何测试系统都应该进行标定以确保测量有效和准确。

2.3测试的主要性能参数

燃料电池测试系统需要精确的监测和控制成百上千次测量,范围从燃料和氧化剂的流量、温度、压力和湿度到燃料电池组的输出电压和电流。测试燃料电池的性能是很重要的,而监测影响性能的变量更为重要,但最重要的是控制这些变量参数,安全运行也是至关重要的。所以监测控制的主要参数有:

(1)电压。在有负载的情况下,单电池的输出电压会从开路电压的1V左右降到0.6V左右,知道了每个单电池的电压就可以更近的了解电堆的健康情况。如果哪个单电池显示出不同电压,就表明此电池有问题,或者温度不正常,或者电极被淹。测试单电池或电堆的电压就可以正确操作、测试和设计燃料电池。

(2)电流。输出电流有时候很高,所以通常利用高斯效应来测,这种方法可以不直接使用导线来测试电流,而通过监测信号并按比例转换成电流读数。

(3)温度。要高效地产生电能,PEMFC必须在60-80℃的范围内工作,监视温度的目的是优化温度的改变以提高输出功率,热电偶和电阻是温度传感器,是监视电池组温度及反应气体温度的良好传感器。

(4)湿度。电池单元的每一个膜片必须保持一定的湿度,太干或太湿都会影响燃料电池的工作效率。因此测定和控制燃料电池的湿度非常重要。一种测试湿度的方法是通过电子湿度传感器,根据湿度的大小成比例的输出4-20mA的电流,测试仪器的输入通道可以读入这个电流信号。

(5)气体压力。在许多应用中,气流压力较大,此压力必须进行监视和管理。压力通过压力传感器进行测量并进行信号调理。

(6)气体流速。氢气流速一般使用产生正比于气流速率脉冲的质量流量计来测量,然后这些脉冲由计数器/定时器接口板进行监视,并使用软件换算成流量。电子调节器可通过试验台输出的电压或电流来控制压力和流量。

(7)负载。可利用可编程负载来改变阻值,改变阻值可利用可控制的GPIB负载设备或通过数字继电器并行连接各个电阻。第一种方法可以安装单独的一个单元通过GPIO来改变加在电堆上的电阻,第二种方法可利用继电器和开关改变阻值。

2.4燃料电池测试系统基本结构

燃料电池测试系统由硬件和软件两大块组成。硬件部分主要有控制器,传感器和加载装置;控制器主要基于计算机控制,这种方法充分发挥了计算机的优势:速度快,记忆能力强大和可升级。软件要易于升级并极具灵活性,用户界面友好,用户可很容易地进行各种复杂程度的编程及实验。表1列出了燃料电池测试系统基本结构单元。

3.结论

工程师们不断将新方法应用到燃料电池的测试中,不断寻求可靠、精确及灵活的测试系统来辅助缩短开发周期、提高燃料电池质量和降低成本,以开发出下一代燃料电池。凭借着燃料电池发展因环境、政府和消费者的压力而增加,加之政府的巨大投资,燃料电池测试系统的开发和应用定会取得更大进展。

参考文献:

[1]何仁.燃料电池汽车研究现状及发展前景[J].汽车工业研究,2001,(2):1-2.

[2]阿布里提.燃料电池汽车(FCEV)的现状及开发动向[J].电工电能新技术,2001,(3):4-6.

[3]燃料电池的测试[J].汽车工程,2002,24(1):84-87.

[4]杨靖云.燃料电池测试系统引人注目[J].电源技术,2004,28(5):311.

燃料电池技术论文篇8

1、Altshuller和Darrell Mann专利考察模式

前苏联著名发明家G.S. Altshuller(G.S.阿奇舒勒)及其同事提出了TRIZ理论,其目的是研究人类进行发明创造、解决技术难题过程中所遵循的科学原理和法则。其中包含很多适用于技术创新的工具和方法,如:矛盾解决原理、物质场分析等。产品技术成熟度预测是TRIZ理论的一项重要研究内容。科研工作者和生产者可以通过对产品技术成熟度的预测,了解产品技术的进化过程,为进一步的科研、生产策略和计划制定提供参考,对技术发展具有重要意义。

本文采用的产品技术成熟度预测方法有以下两种:

(1)应用Altshuller专利考察模式进行产品技术成熟度预测:通过对大量专利的分析,Altshuller将专利分为五个等级,并发现了专利等级、专利数量和获利能力随技术系统生命周期的变化规律,这些规律和S曲线(产品进化过程曲线)一起被后来的技术预测专家用来进行产品技术成熟度预测。

(2)应用Darrell Mann专利考察模式进行产品技术成熟度预测:受Altshullar专利考察模式的启发,Darrell Mann根据专利的基本功能,重点考察了两类特殊的专利:降低成本的专利和弥补缺陷的专利,得出了这两类专利的数量随技术系统生命周期的变化规律。据此进行产品技术成熟度预测,能够较快确定技术是否已经过了成熟期。

2、微生物燃料电池

微生物燃料电池(MFC)是利用电化学技术将微生物代谢能转化为电能的一种装置,其基本原理是作为燃料的有机物在厌氧阳极室中被产电微生物氧化,产生电子与质子,其中电子被微生物捕获并传递给电池阳极,通过外电路到达阴极,形成回路产生电流。而质子通过隔膜到达阴极,与氧气及电子反应生成水。微生物燃料电池具有无污染、适用范围广泛等优点,目前已经成为治理污染、开发新能源方面的研究新热点。

目前针对MFC专利领域的研究主要为专利趋势分析、分类号研究及检索和专利申请状况分析,但是针对MFC产品技术成熟度预测的研究未见报道。

二、样本构成

1、检索数据库

使用的检索系统为CNABS。

2、检索关键词及主要分类号

关键词:微生物、燃料电池、MFC

主要分类号:分类号: C02F、H01M

3、检索结果

检索截止日为2012年11月30日,经过去除噪音及去除同样的发明创造后,共获取2000-2011年相关专利申请182篇,作为主要统计分析样本;2000年之前未见相关专利申请;2012年专利申请公开不完全,仅作为背景分析,不纳入统计分析样本。

三、微生物燃料电池专利的分级和分类

专利分级使用Altshuller发明的专利五级分级标准,通过全面阅读分析专利信息(权利要求书、说明书及附图、摘要)、确立标志性专利、纵向比较等步骤而得出具体的分级;专利分类中关注Darrell Mann的专利考察模式中重点考察的两类特殊的专利:降低成本的专利和弥补缺陷的专利,确定每份专利或申请所属于的类别,最后统计数量,拟合曲线,与分级过程可同步进行。

1、专利信息分析与整理

在对微生物燃料电池进行分级和分类前,首先通过对专业背景资料和专利信息的阅读,对微生物燃料电池技术的发展有全面的了解,主要分析专利申请所要解决的技术问题,以及解决该问题所采取的技术手段。通过阅读分析,可以主观的了解技术的继承与发展脉络,为分级作准备。

在专利技术发展中,微生物燃料电池的技术改进主要为系统构型的改变、电极材料的改进、交换膜材料的变化及微生物的选用等。

微生物燃料电池在结构上可以分为单室MFC和双室MFC两种。典型的双室MFC由阳极室、质子交换膜和阴极室组成。单室MFC省去阴极室直接把质子膜固定在阴极上,阴极室暴露在空气中,空气中的氧气直接传递给阴极。二者各具有优缺点,在专利发展中发明人对MFC构型进行不断的调整,以克服在先技术的缺陷。例如申请号为20051001185.5(一种以有机废水为燃料的单池式微生物电池)的专利为首个单池式微生物燃料电池;申请号为20051008661.8(生物反应器——直接微生物燃料电池及其用途)的专利申请为双室结构的变形,即主要由筒状的阳极室、阴极室及将两室中间隔开的质子交换膜构成;申请号20071014496.5(一种管式升流式空气阴极微生物燃料电池)的专利,具备了微生物燃料电池构型的优点,并结合了上升流活性碳阳极和无膜空气阴极于一体的,可以使两电极间距离尽可能最小。

从MFC产电机理来看,阳极作为产电微生物附着的载体,不仅影响产电微生物的附着量,同时还影响电子从微生物向阳极的传递,因此早期很多研究都集中在阳极材料的选择和修饰上。阴极作为电子受体,主要是氧化态的物质,近年在专利申请中也较为常见。例如申请号为20071019540.5的专利提供了一种铁离子循环电极及其制备方法;申请号为20071019656.9的专利提供了一种含锰离子的微生物燃料电池阳极的制备方法;申请号为20091004092.0的专利公开了一种用于微生物燃料电池的布阴极组件及其制备方法,该布阴极组件包括防水透气层、布基材料层和导电催化层或者包括防水透气布和导电催化层;申请号为20101001927.1的专利中使用碳化镍钼作为微生物燃料电池阳极;申请号为20101022015.2(一种微型微生物燃料电池)的专利申请中的阳极为金丝微电极阵列,空气阴极为膜电极:质子交换膜、催化剂层和气体扩散层。

膜材料在MFC中的应用主要为分离两极室中的电解液,同时使阳极室中的质子通过,其中质子交换膜被广泛使用。但出于成本的考虑,去膜和采用其他膜对质子交换膜进行取代成为专利申请的一个发展趋势,例如:申请号为20051011421.3(燃料电池用菌紫质质子交换膜的制备方法)的专利采用微生物作为燃料电池中质子交换膜,对环境不造成污染有效地降低了质子交换膜的生产成本;申请号为20081002795.3(一种微生物燃料电池及应用)的专利采用的膜材料为离子交换膜,具有与传统使用质子交换膜MFC相当甚至略高的输出功率与产电性能,能很好的替代传统使用质子交换膜MFC,并可降低微生物燃料电池成本。

微生物的选择影响着代谢通路,从而影响对有机质的去除和/或能量输出功率。在微生物的选用上,根据不同的发明目的有产气肠杆菌(申请号为20081002922.2)、海洋酵母(20091009798.8)、希瓦氏菌(申请号为20091014094.3和20091030567.7)、弗氏柠檬酸杆菌(20091019363.9)、蜡样芽孢杆菌(20111034751.2)等等。

此外,在应用的领域上,除了传统的用于发电和废水处理的微生物燃料电池之外,该技术扩展到其它的广大领域中,例如:申请号为20061003825.2(一种生态厕所)的专利申请利用微生物燃料电池理论,设计了粪便-微生物-质子膜-电极构成的“粪便电池”;申请号为20091009346.8的专利申请公开了一种面向植入式医疗设备供电的微生物燃料电池系统,该系统设置在人体的横结肠中,利用肠道微生物和内容物产电,可为植入式医疗设备提供能源;申请号为20101014660.4(微生物燃料电池及安有该电池的发电装置)的专利申请公开了一种安有微生物燃料电池的发电装置在稻田进行微生物发电中的应用;申请号为20111008632.6的专利申请中的微生物燃料电池能降解挥发性有机物,在处理挥发性有机废气的同时实现电能的回收。

2、分级

Altshuller的专利五级分级标准,具体如表1所示:

经过对专利信息的阅读分析后,确立了标志性专利:申请号为00810805(一种用于废水处理的使用废水和活性污泥的生物燃料电池)的专利为首个进入中国的微生物燃料电池申请,至少用到微生物、电池、废水处理三个领域的知识,采用交叉学科解决了产电的同时能够进行污水处理的的技术问题,创造了一种新的系统(仅在专利领域考虑)。作为首个标志性的专利,在专利等级分析时,定级较高,为4级;申请号为20051001185.5(一种以有机废水为燃料的单池式微生物电池)的专利为首个单池式微生物燃料电池,无须外加动力来提高阴极表面的氧气含量,无须投加电子转移介体,并且阳极池无需氮气吹脱就能较好地维持厌氧状态,使系统发生了质变,经过综合考虑,在专利等级分析时,定为3级。

对于其余的专利或申请进行分级,也要经过纵向比较,分析其所要解决的技术问题及采用的技术手段,根据分类标准来定级,例如:申请号为20061014499.1(可堆叠式单室微生物燃料电池)的专利公开了一种可堆叠式单室微生物燃料电池,这种构型虽然是首次出现,但是为通过数量的叠加来提高产电能力,量的变化更为明显,在Altshuller的专利考察模式中通常将这类专利定为一级。当然,如果专利中出现其他的技术特征,协同使得该专利较之前的专利申请有质的改变,分级可以再考虑;申请号为20091004203.8(一种微生物燃料电池及其制备方法和应用)的专利将微生物燃料电池及电芬顿有效的结合起来,使系统发生了质的变化,用到了全行业的知识,因此定位2级;申请号为20091007803.6(一种用于同步产电脱盐的污水处理工艺及装置)的专利利用微生物燃料电池的内电流在处理污水、产电的同时脱盐。使系统发生了质的变化,用到了全行业的知识,因此定位2级;申请号为20101022182.0(一种植物——土壤微生物燃料电池系统)的专利申请中,使阳极电极置于植物根部周围的土壤内,阴极电极置于土壤表面。主要以植物光合作用生产并释放到根部的有机质为燃料,避免了产电微生物以污水中有机质为燃料时,有机质对产电微生物的抑制作用,从而导致产电效率低的问题。系统发生变化,用到了全行业的知识,定位2级。

经过对分析样本的全面阅读与分析后,最终将微生物燃料电池专利信息整理汇总如表2所示:

四、微生物燃料电池产品技术成熟度预测

1、Altshullar专利考察模式

根据表2内容,绘制专利数量统计曲线和专利等级统计曲线,并与标准曲线进行对比,如图1、图2所示。

统计曲线拐点位置与标准曲线对应的拐点位置如箭头所示。根据曲线拐点可以预测,微生物燃料电池产品技术目前已结束婴儿期,处于快速成长阶段。由专利数量统计曲线可知:技术系统较婴儿期阶段有较快的发展,研发数量稳步增长。而对于专利等级统计曲线的变化:当微生物燃料电池产品技术进入稳定的发展轨道,数量增长明显,某个特定技术空间内的专利密度增大,将会导致专利保护范围的缩小,且会出现大部分针对单一要素进行某一指标的提高的专利技术,从而拉低专利等级。

2、Darrell Mann专利考察模式

在进行专利数据整理时,发现2000-2011年间高校申请和科研院所申请量占总申请量的96%,从侧面说明微生物燃料电池产品技术还处于研发阶段,因为还没有大规模投入使用,反映在Darrell Mann专利考察模式中,以降低成本为目的的专利申请会小于弥补技术缺陷的专利申请。

Darrell Mann专利考察模式主要应用是快速判断技术是否进入成熟期。根据表2内容,绘制弥补技术缺陷专利数量统计曲线和降低成本专利数量统计曲线,并与标准曲线进行对比,如图4、图5所示。

从图4(a)和图5(a)中可以看到在2009年到2010年间弥补技术缺陷专利数量和降低成本专利数量出现了明显下滑,结合图1(a)——专利数量统计曲线,可以看到其原因为2010年专利申请数量明显低于2009年。这种情况的出现有以下的可能:(1)对专利申请的国家和地区进行统计,发现2009年进入中国大陆的专利申请共7份,占2009年专利申请数量总数的17.9%,而2010年其他国家和地区进入中国大陆的专利申请数量为0,2011年同样为0,说明其他国家和地区出于技术发展或专利战略等原因,于2010年起逐渐放弃我国的专利市场,使专利申请数量受到影响,而这个原因很可能是由于遇到了产电能力难以大幅度提高的技术瓶颈以及生产成本的控制难以达到实现广泛应用的目的;(2)微生物燃料电池领域的研究主力为高校和科研院所,2009年有24所高校及科研院所提交了专利申请,2010年仅有19所,研究室的科研方向转向也部分影响了2010年的专利申请数量。

但是该曲线的下滑段并不影响曲线上升的总趋势判断,从图4和图5中可以看出,微生物燃料电池产品技术还未进入成熟期,结合对专利信息的理解和两种分类专利数量对比,应该还处于成长期当中。

五、结论

进入我国最早两份关于微生物燃料电池的申请(申请号:00809995、00810805)均由韩国科学技术研究院于2000年递交,之后才出现由我国高校兴起的微生物燃料电池专利申请,在经历模仿、吸收后、开始创新,因此微生物燃料电池产品技术经历的婴儿期比较短暂,进入成长期比较迅速。

经过对专利信息的分析,同时结合期刊文献公开的关于微生物燃料电池的资料,认为应用Altshuller和Darrell Mann的专利考察模式对微生物燃料电池产品技术的成熟度预测结果是可信的。在未来的发展中,微生物燃料电池技术将会不断的成熟,成为污水处理领域的常用技术。

推荐期刊