线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

信号与通信论文8篇

时间:2023-03-27 16:38:53

信号与通信论文

信号与通信论文篇1

【关键词】灰色关联理论证据理论通信

现代通信环境日益复杂,通信信号的密度成倍增加,电磁信号样式复杂多变,使得通信信号的识别变得异常困难[1]。信号检测设备通过对待识别通信信号的特征参数的观测,与数据库中己知信号的特征参数进行匹配,从而确定待识别通信信号的类型。

本文提出利用灰色关联算法获得各证据体的BPAF,然后利用基于证据理论[2,3]对证据进行融合。理论分析和仿真结果表明,该方法识别率高、可靠性强,适合于复杂下的通信信号识别。

一、灰色关联分析基本原理

三、算法的步骤

本文所提出的识别算法步骤如下:

(1)构造通信信号识别框架U

定义所有通信信号的类型U={R1,R2,…,RN}。

(2)获取证据的BPAF

计算比较数列与参考数列的灰色关联度,然后采用式(7)计算BPAF。

xij=xij+滓ij×randn(5)

xij、滓ij分别为第i类信号的第j指标的均值和方差,randn为均值为0、方差为1的正态随机分布。

假设三种传感器的测量方差如表2所示,根据表2和式(5)可以模拟来自于辐射源b1的观测样本。其中,信号侦察设备获取三个周期的样本,ELINT系统二个周期的样本,利用ESM一个周期的样本,获得的观测样本序列如表3所示。

利用灰色关联算法获得BPAF,如表4所示。

按照相同侦查设备融合的结果,如表5所示。

按照不同侦查设备融合的结果,如表6所示。可见,本文的方法可以正确的识别出的信号b1。

五、结论

针对复杂环境下的信号识别问题,本文研究了一种利用灰色关联算法获取BPAF,利用证据融合模型进行识别的方法。理论分析和仿真结果表明,该方法可以正确的识别出信号的类型。

参考文献

[1]林象平.雷达对抗原理.西安:西北电讯工程学院出版社,1985.6:171-175.

[2] Dempster AP. Upper and Lower Probabilities Induced by a Multivalued Mapping [J].The Annals of Mathematical Statistics, 1967,38(4):325-339.

[3] Waltz E, Lilnas J. Multisensor data fusion [M]. Boston: Artech House, 1990.

[4]肖新平,宋中民,李峰.灰色技术基础及其应用[M].北京:科学出版社,2005:27-35.

[5]王杰贵,罗景青,尹成友.多传感器信息融合机载辐射源识别[J].信号处理,2002,18(1),11~14.

信号与通信论文篇2

【关键词】蒙特卡罗仿真 信噪比 误码率

【中图分类号】TN911 【文献标识码】A 【文章编号】1006-9682(2012)10-0084-02

蒙特卡罗(Monte Carlo)方法是一种基于随机试验和统计计算的数值方法,其基本原理是当需要求解的问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,可以通过一种“实验”的方法,用这种事件出现的频率来估计该随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。如果需要求解的问题不是一个随机事件问题,还可以通过数学分析找出与之等价的随机事件模型,然后再利用蒙特卡罗方法去求解。[1]

误码率是评价一个通信系统性能优劣的重要指标,但由于误码率的计算公式复杂,甚至在很多情况下无法得到解析解。[2~3]因此通过蒙特卡罗方法模拟实际的通信过程,得到仿真的通信系统误码率就成为一种方便的手段,特别适用于难以对检测器的性能进行分析的情况。

一、多种二进制基带信号的传输与接收

1.正交信号的传输与接收

在数字通信系统中,0和1组成的二进制数据可以用两个正交波形s0(t)和s1(t)来传输,传输信号通过加性高斯白噪声

信道(AWGN)后叠加了功率谱密度为 (W/Hz)的噪声n(t)。

接收端的信号可表示为:

r(t)=si(t)+n(t),i=0,1;0≤t≤Tb (1)

接收端在接收到信号r(t)后,判断在区间0≤t≤Tb内发送

是0还是1。接收机的设计原则是使差错率最小,满足这个原则的接收机称为最佳接收机。AWGN信道的最佳接收机可以由信号相关器和检测器组成。图1所示:

图1 最佳接收机方框图

信号相关器将接收到的信号r(t)与两个可能的发送信号s0(t)和s1(t)做互相关,假设s0(t)是已发送信号,相关器计算在区间0≤t≤Tb内的两个输出,得:

(2)

式中,n0和n1为信号相关器输出端的噪声分量;Eb为脉冲信号s0(t)的能量。同理,当s1(t)是已发送信号,相关器计算得到两个输出为r1(t)=Eb+n1而r0(t)=n0。

在t=Tb时刻对这两个输出r0(t)和r1(t)采样后,判决器将比较r0(t)和r0(t)并按如下规则判决:当r0>r1时,传输的是0。当r0

因为s0(t)和s1(t)是正交的,所以理论误码率为[1、4]:

(3)

2.双极性信号的传输与接收

在s0(t)和s1(t)是双极性信号时,有s1(t)=-s0(t)。此时图1所示的最佳接收机只需要一个相关器即可。假设相关器与s0(t)做互相关,当发送的是s0(t)时,相关器的输出r=Eb+n,当发送的是s1(t)时,相关器的输出r=-Eb+n,噪声分

量n的方差 ,最佳判断器与阈值0相比较,若r>0则判

断s1(t)被发送,若r

因为s1(t)=-s0(t),所以理论误码率为[1、4]:

(4)

3.单极性信号的传输与接收

用单极性信号来传送二进制序列,若信息比特为0,则不传送任何信号;若信息比特是1,则发送信号波形s(t)。因此,接收到的信号波形可以表示为:

与双极性信号一样,单极性信号的最佳接收机也只需要一个相关器。理论误码率为[1、4]:

(5)

二、二进制基带通信系统的蒙特卡罗仿真

在通信系统仿真中经常采用蒙特卡罗方法来实现误码性能的估计。为了说明问题,以加性高斯白噪声(AWGN)信道下二进制基带信号的误码性能为例,说明如何使用蒙特卡罗方法进行通信系统的误码性能仿真。

1.正交信号数字通信系统的仿真模型

用Simulink建立一个正交信号数字通信系统的仿真模型如图2所示。[1]

图2 正交信号数字通信系统误码性能仿真框图

在该系统模型中,主要包含以下模块:

(1)Random Integer Generator随机整数产生器模块,用它来产生消息比特。

(2)Porduct乘法器模块,在发送端产生s0(t)和s1(t),在接收端则与s0(t)和s1(t)进行相关运算。

(3)AWGN信道模块,用来对发送信号叠加高斯白噪声。

(4)Cumulative Sum累加器模块与乘法器Product2、Product3一起完成相关运算。

(5)Relational Operator关系操作模块用来对相关器的输出进行判决。

(6)误比特率统计模块(BER Calculation),对发送比特和解调比特进行比较,计算误比特率。

设置模型发送nsymbol=100000个数据比特,SNR的范围[0~12]dB,Simulink模型运行结果见图3。

通过曲线分析可知,蒙特卡罗仿真差错率与理论差错率在低信噪比情况下完全一致,而在高信噪比发生了一定的偏差。产生这一结果是因为蒙特卡罗的仿真精度和仿真次数N有密切关系。一般情况下,蒙特卡罗估计是无偏的,N越小,估计的方差就越大;N越大,估计的方差就越小。当N∞时,则估计值收敛于真实值。为了保证仿真精度,蒙特卡罗仿真次数N与给定差错率pe的关系应满足[5]N>10/pe。

由上式可知,当信噪比Eb/N0=10dB时相应的误码率数量级N在10-3以下,根据公式N>10/pe可知为了保证仿真精度与理论值的吻合,N应该大于104次。而上图的仿真误码率曲线是在固定仿真次数为105次的情况下得到的,故仿真误码率曲线与理论曲线基本吻合。当Eb/N0=12dB时相应的误码率数量级在10-5以上。根据公式N>10/pe可知为了保证仿真精度与理论值的吻合,N应该大于106次。而上图的仿真误码率曲线是在固定仿真次数为105次的情况下等到的,故仿真误码率曲线与理论曲线出现偏离。

根据上述分析可知,如果想要使信噪比较大时仿真曲线与理论曲线也比较吻合,可以在信噪比较大时,根据式子N>10/pe采用适当的仿真次数即可解决此问题。

2.双极性和单极性信号数字通信系统的仿真模型

与图2相比,双极性仿真模型只需要一个相关器与s0(t)相关,最后的判决器与0进行比较。单极性与双极性的仿真模型基本相同,只是在二进制数据源的输出端有很小的变化,因此两个模型可以通用。

对3种信号数字通信系统,在不同信噪比下,发送N=100000个数据比特,理论误码率结果图4所示:

从图4可以看出,单极性信号的误比特率高于双极性信号,与双极性信号似乎相差6dB,与正交信号也相差3dB。但是,需要注意的是,使用单极性信号,其平均发送的能量比双极性信号和正交信号少3dB。因此,单极性信号与正交信号性能是相同的,与双极性信号相差3dB。

三、结 论

文中对3种二进制基带通信系统的信号传输和最佳接收进行了理论分析,在此基础上,讨论了以误码率为性能指标的蒙特卡罗仿真建模方法,对蒙特卡罗仿真方法的试验精度等方面进行了性能分析。蒙特卡罗方法在通信系统的仿真中有着广泛的应用,因此有必要对其仿真方法进行研究,更好的运用这种方法解决实际工程问题。

参考文献

1 邵玉斌.Matlab/Simulink通信系统建模与仿真实例分析[M].北京:清华大学出版社,2008

2 Shanmugan K S.通信系统仿真原理与无线应用(肖明波等译)[M].北京:机械工业出版社,2008

3 许建霞、聂明新.基于MATLAB的数字基带传输系统的仿真[J].武汉理工大学学报,2005(6):450~452

信号与通信论文篇3

一、征文议题

本届年会将以“互联网+时代的管理会计信息化”为主题,同时兼顾其他热点内容,将重点研讨如下议题:

1.企业管理会计信息化研究与应用

2.政府会计信息化研究与应用

3.内部控制与IT风险管理研究及应用

4.审计信息化研究与应用

5.XBRL企业内部运用案例研究

6.“互联网+大会计”时代的会计信息化新发展

7.财政部会计信息化新法规实施与应用

8. 会计信息化技能认证及人才培养与教学改革研究

以上仅为参考性议题,在会计信息化理论研究和应用范畴内,作者可根据研究成果自行拟题,欢迎会计信息化理论和实务工作者提交相关论文。中国会计学会会计信息化专业委员会将组织评选年会优秀论文。

二、征文事项

1.征文截止日期

2016年6月10日(以论文发出日期为限)。组委会遴选后在2016年7月10日前发出正式的会议论文录用通知和参会邀请函。参会回执请务必于2016年7月20日前发至会务组。

2.征文注意事项

(1)应征论文应当是未公开发表的论文。

(2)应征论文被会议录用后将在中国会计学会网站、中国会计视野论坛――中国会计学会会计信息化专业委员会学术讨论版 网站上登载,同时将被中国学术期刊(光盘版)电子杂志社的“中国重要会议论文全文数据库”收录,并向《会计研究》《中国管理信息化》《财务与会计》《会计之友》等杂志推荐发表。

3.提交论文的内容与格式要求

(1)页面设置A4纸;(2)文章标题(居中,三号黑体,上下各空1行);(3)文章作者(小四号宋体,居中,作者之间用空格);(4)单位、邮政编码(小五号宋体,居中,后面空1行);(5)“摘要”(五号黑体,顶格),摘要内容(小五号宋体);(6)“关键词”(五号黑体,顶格),关键词(小五号宋体,下空1行);(7)以上项目的英文内容,使用Times New Roman字体,字号与中文部分相同,文题、“Abstract”、“Key Words”加粗;(8)正文(五号宋体,单倍行距),标题(黑体),图表分别按顺序编号;(9)“参考文献”(五号黑体);(10)作者个人信息单独一页(作者姓名、性别、职称、工作单位、通信方式(联系地址、邮编、电话、传真、E-mail地址))。

4.论文提交要求

通过电子邮件提交word格式论文。电子信箱:。邮件主题为“中国会计学会第十五届全国会计信息化年会征文”。

5.联系人:陈丹妮老师:0577-86596211;15067851757

应里孟老师:0577-86595931;15158550788

孙玉甫老师:0577-86599345;15258683890

6. 通信地址:浙江省温州市茶山高教园区温州大学城市学院会计分院

邮编:325035。

中国会计学会会计信息化专业委员会

信号与通信论文篇4

关键词:数字信号处理 微信平台 智慧课堂

中图分类号:G4 文献标识码:A 文章编号:1674-098X(2016)07(a)-0153-02

目前,几乎所有的工程技术领域都会涉及到信号处理问题,而数字信号处理由于具有精度高、可靠性强以及便于大规模集成等特点,已成为发展最快、应用最广泛的学科之一[1]。《数字信号处理》作为通信、电子类专业的一门重要专业课程,目前已广泛应用于语音、图像、雷达、通信、控制、声纳、航空航天、故障检测、遥感遥测、生物医学、地质勘探、自动化仪表等领域[2]。但是,《数字信号处理》课程目前的教学模式仍侧重于理论讲授,不能充分体现工程应用性,不利于应用型人才的培养。因此,《数字信号处理》课程的改革与实践势在必行。

《数字信号处理》课程以《高等数学》《线性代数》《信号与系统》等课程为基础,同时又作为《随机信号处理》《图像处理》《自适应信号处理》等后续课程的基础,具有承上启下的作用[3]。该课程具有较强的理论性,涉及到的公式推导繁多,对学生的数学基础有一定要求[4]。因此,应结合应用型地方本科院校的特点和需求,对《数字信号处理》课程进行教学改革与实践。

1 数字信号处理课程传统教学存在的问题

1.1 传统课堂缺乏师生间的有效互动,不利于学生自主学习

传统课堂以教师讲、学生听为主,这种满堂灌的教学过程缺乏师生间的有效交流和沟通,无法持续激发学生的自主学习动机,亦不能将学生学习过程中存在的问题及时反馈给教师,从而导致教师无法掌握学生对授课知识的理解和应用程度,学生的学习积极性也不高,缺乏自主学习的动力。

1.2 授课偏重理论,缺乏应用性

《数字信号处理》课程的理论性较强,公式推导多,需要具备一定的数学基础和《信号与系统》课程基础。目前的教学体系偏重理论知识的讲解,而忽视了理论结果的物理意义以及在工程实践中的应用,导致学生感到抽象和枯燥。部分同学由于前期基础课程学得不够好,缺乏自信心,对《数字信号处理》课程产生畏难情绪,从而缺乏学习热情和学习动力,学习积极性不高。

1.3 目前的教学模式多为自底向上,学生对课程的整体把握不足

当前的教学模式主要采用自底向上的方法授课,即将整门课程的知识点分解细化,分块讲述各部分知识点,此教学模式容易使学生只见树木、不见森林,即只掌握单独的知识点,却不能从整体上把握课程的核心思想。

1.4 授课方式单一,学生理解困难

目前的授课方式要不采用传统的黑板板书的形式,要不完全采用多媒体课件讲授,板书授课方式容易使学生陷入仅重视理论推导而不重视应用的误区,完全采用多媒体课件授课的方式则忽略了重要结论的理论推导,不利于基础知识的掌握[5]。

2 基于微信公众平台的数字信号处理智慧课堂建设

针对传统课堂师生间缺乏有效互动的问题,通过开发微信公众号,以微信公众平台为载体,微信用户可以利用微社区进行互动,并设定固定时间进行教师在线答疑。针对学生反馈的共性问题和重点难点知识点录制微课视频,并将录制好的微课视频上传至腾讯视频,在微信公众平台制作关键词回复,通过回复关键词就可以观看相应的微课视频,从而使学生随时随地打开微信公众号,即可实现在线答疑解惑。一方面可以增加学生的参与性,从而激发学生的学习热情,提高学生的学习积极性和自主学习的能力;另一方面教师可以通过后台数据,掌握学生反馈的问题和学习情况,从而以问题为导向开展课堂教学,实现智慧课堂平台建设。

针对《数字信号处理》课程理论性较强、不易理解的问题,通过开发MATLAB图形用户界面,将典型的数字信号处理算法和实际案例通过MATLAB图形用户界面演示给学生,使学生通过工程案例加深对数学概念和物理概念的理解和掌握;并将开发好的MATLAB图形用户界面加载到微信平台,使学生亲自参与到数字信号处理算法的验证和实际工程案例的应用中,从而将理论与工程应用联系起来,真正做到物理概念、数学概念和工程概念的有机统一。

针对自底向上的教学模式导致学生对课程整体把握不足的问题,在课堂上,结合学科发展的最前沿,以具体工程实例导入,引出所涉及的理论知识,让学生从整体上把握理论知识。在课后,布置结合前沿科技的思考题,让学生了解最新研究成果,追踪学科前沿动态,并对整体内容进行归纳总结,帮助学生对所学知识进行整体把握。在制作配套教材的多媒体课件时,采用自顶向下的设计思路,从实际应用问题出发梳理课程的整体构架和知识体系,将涉及到的知识点以“知识链”或“知识树”的形式进行层层分解演示,将知识点串接起来,使学生对课程有一个整体把握,并将制作好的多媒体课件,加载到微信公众平台,供学生参考学习,从而使学生对课程整体构架和知识体系有更好把握。

单一的授课方式要么过于重视理论知识的讲解,要么缺乏对重要结论的理论推导,容易陷入极端,不利于学生综合素质的提高。因此,有必要研究能提升教学效果的多元化授课方式。对于重要公式的推导,采用板书,板书能够帮助学生跟随教师的思路领悟具体的推导过程,从而加深对公式的理解和掌握。对于不易理解的内容和具体案例的讲解,采用多媒体,通过图像、动画的演示,将抽象的概念形象化、具体化,以加深对理论的理解,并启发学生的思维。同时,将MATLAB软件应用于教学,淡化理论教学与工程实践的界限,通过编写程序可以简化繁琐的计算过程,并直观观察各种参数对结果的影响,进一步理解工程算法的应用,达到事半功倍的教学效果。

通过搭建微信公众平台,将在线辅导答疑、MATLAB图形用户界面演示、微课视频、多媒体课件整合起来,实现数字信号处理移动智慧课堂的建设。基于微信公众平台可以实现师生间的实时反馈,不仅有利于教师及时修正完善教学方式和教学内容,而且增加了学生的参与性,提高了学习的积极性,实现了师生教与学的双赢。

3 结语

通过将现代教育资源整合到微信公众平台,实现《数字信号处理》课程的智慧课堂建设,是“互联网+教育”的一个重要应用。该文的研究成果扩展性强,可以根据教学需要,灵活添加教学资源,使传统的封闭课堂走向开放,利用开放的互联网平台,可以将该文的研究成果更便捷推广到其他专业的教学中。

参考文献

[1] 高西全,丁玉美.数字信号处理[M].西安:西安电子科技大学出版社,2008.

[2] 王恩亮,张丽华.应用型高校“数字信号处理”课程教学改革与实践[J].科技经济市场,2012(12):98-99.

[3] 曹林.通信工程专业数字信号处理课程改革与思考[J].科技创新导报,2014(10):133-134.

信号与通信论文篇5

关键词:压缩感知;模拟信息转换器;欠采样;正交匹配追踪算法

中图分类号:TN911.7 文献标识码:A 文章编号:2095-1302(2013)02-0055-04

0 引 言

传统的数字信号处理以奈奎斯特采样定理作为基础,在模拟/数字信号的转换过程中,采样频率大于信号最高频率的2倍,才能从采样得到的数字信号中无失真地恢复原始信号。在实际应用中,为保证信号处理效果一般采样频率为信号最高频率的3倍以上,采集到的冗余数据在后续处理阶段再滤除。然而,随着当前日益增加的信息需求量,信号频率越来越高,带宽越来越宽,在信息获取中对采样速率、处理速度和信息存储空间等提出越来越高的要求。这将造成对ADC和处理器的性能要求更高以及数据存储和传输的压力。但是,在许多情况下,信号是稀疏和冗余的,在某些变换域是可压缩的,在处理过程中冗余信息将被丢弃,多余的数据就造成了资源的浪费。针对这个问题,在过去的几年,一种新的理论压缩感知被提出来,它的核心思想是通过很少的非适应性,凸优化的线性测量来恢复稀疏信号。压缩感知的理论基础是建立在以下领域并发展而来,例如应用谐波分析、框架理论、拓扑几何、优化理论和矩阵分析等[1]。在该理论下,信号的采样速率不再取决于信号的带宽,而是取决于信息在信号中的结构与内容,因此在满足信号的可压缩性以及表示系统与观测系统的不相关性两大条件下,从低分辨观测中恢复高分辨信号就成为可能[2]。

压缩感知理论主要涉及三个核心问题:一是信号的稀疏表示;二是非相干测量矩阵设计;三是信号重建算法优化设计。在应用研究方面,其影响已经涉及很多应用科学,如无线电通信的认知无线电方向和信道编码、阵列信号处理、雷达成像、图形图像处理、生物传感、模拟信息转换等。利用压缩感知理论,模拟信息转换器被设计用来在较低速率下获取样本,然后在后端DSP成功恢复感兴趣的压缩信号。模拟信息转换器可以代替传统的ADC,以较低的速率对高速模拟信号进行实时采样,获取所关心的信息,有效解决了传统采样理论遇到的瓶颈。压缩感知理论最初是针对离散信号提出来的,把它应用到模拟信号的研究目前处于起步阶段,存在很多困难。模拟信息转换需要能够实时采样连续信号,而不能直接使用离散信号的测量矩阵,同时要求数字处理器有较强的运算能力,能够及时对高速信号进行感知,硬件实现困难。因此,该算法的复杂度优化和硬件可实现性成为压缩感知应用的关键点之一。

本文首先对压缩感知的基本理论进行了研究,对比分析了三种模拟信息转换器,介绍了常用重建算法,并通过仿真验证了模拟信息转换-信号重建结构的可行性,分析了实现结构的性能。最后,进行了总结并对压缩感知的研究趋势进行了展望。

1 压缩感知原理

4 结 论

由于现实环境中的大部分信号具有稀疏性或可压缩性,压缩感知理论利用信号稀疏性突破了奈奎斯特采样定理。事实上,把从对数据的采集直接转化为对信息的采集,就能以随机采样的方式,并用更少的数据采样点来完美地恢复原始信号。

本文介绍了压缩感知的基本理论,分析了压缩感知在模拟信息转换中的应用,并通过仿真验证了压缩感知理论的实际应用可行性。在射频和宽带无线通信信号的采样和信号检测分析中,基于压缩感知理论的欠采样系统的设计,能降低对高速ADC器件的依赖,可在有效减少数据量的同时,保证近乎完美地重建信号,降低系统资源消耗,提高系统性能。压缩感知理论在无线通信的频谱感知、信道编码、阵列信号处理等方面都得到了广泛的研究,从而推动了无线通信技术的进一步发展。可见,压缩感知具有十分重要的应用价值。

参 考 文 献

[1] ELDAR Yonina C, KUTYNIOK Gitta. Compressed sensing: theory and applications [M]. Cambridge: Cambridge University Press, 2012.

[2] 焦李成,杨淑媛,刘芳,等. 压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662.

[3] CAND?S E, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Trans. on Information Theory, 2006, 52(2): 489-509.

[4] DONOHO D. Compressed sensing [R]. Stanford: Stanford University, 2004.

[5] DONOHO D, TSAIG Y. Extensions of compressed sensing [J]. Signal Processing, 2006, 86(3): 549-571.

[6] KIROLOS Sami, LASKA Jason, WAKIN Michael. Analog-to-information conversion via random demodulation [C]// 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software. Dallas: IEEE, 2006: 71-74.

信号与通信论文篇6

关键词 新闻传播;微信公众号;应用价值

中图分类号 G2 文献标识码 A 文章编号 1674-6708(2017)187-0053-02

随着科学技术的发展,移动智能电话已经成为人们日常生活的重要部分,微信的出现使人们的交流距离变短,成为智能手机中必不可少的软件。随着微信的不断发展,微信公众号逐渐被广泛使用,对于新闻信息的传播产生极大影响。

1 关于微信与微信公众号的概述

1.1 微信与微信公众号的兴起、发展

伴随着移动互联网数据r代的发展,移动智能终端获得较大的发展空间,作为智能终端上的一款即时交流软件,自2011年推出后便获得了用户的大力推崇,深受用户的喜爱。2012年8月,微信公众平台应运而生。微信公众号是对微信个人版的升级,不仅极大地满足了用户的使用需求,更使用户的信息具有自主性与自动化,极大地提升了自媒体宣传的功效。

1.2 微信公众号的推送方式

经常使用微信公众号的用户可以发现,由于微信与QQ同属一类产品,因此微信公众号的推送方式与QQ邮箱具有一定的相似性,即二者同时具有邮件订阅的功能。但是在用户的参与性方面二者却存在一定的差异性。对于QQ邮箱而言,其最初的参与者智能通过阅读QQ邮件的方式来实现阅读方式,同时用户无法对个人认同的观点进行点赞行为,也无法发出任何的评论,未对评论功能进行开放,其原因在于在由于社会无法对用户的舆论信息进行监督,使得各种有益与垃圾信息并行,具有较大的局限性。

然而微信公众号的产生极大地弥补了上述的缺点与不足,对于公众号推送的主人可以自由决定是否开放评论功能,不仅在较大程度上维护了舆论环境的清洁,同时也提升了用户的活跃度。

2 新闻传播中微信公众号的应用价值

2.1 公众号微社区的应用价值

作为第三方平台,用户通过微信平台的自定义功能便可实现对微社区的浏览,并且用户可以微社区进行自由的交流。借助此种功能,新闻媒体可以有效地进行用户的线索收集,使公众号成为获取新闻线索的重要平台。例如澎湃新闻公众号,在页面的最底端有“彭友圈”选项,用户可以通过此选项将身边发生的重要内容传播到微社区中,该新闻公众号的编辑便可以通过微社区对新闻线索进行收集,同时该社区的用户也可以进行相互的评论,对社会热点进行一定程度的剖析。

2.2 公众号内容精准推送的应用价值

微信公众平台是微信公众号的强大后台支撑,当用户关注某个公众号后,其个人信息将自动被录进平台中,微信公众平台便在后台对用户进行分类,实现了推送消息的精准化,使得新闻价值得到了极大的提升。

2.3 公众号关系维护的应用价值

不论是企业还是个人,营销手段即为品牌营销。对于企业而言,品牌是维系客户关系的重要手段,对于媒体而言同样如此,当新闻媒体发表新闻资源时,公众号关注者可以进行投票,不仅使媒体了解用户的需求,更保持了与用户之间的活跃度,维系了与用户之间的良好关系。

2.4 公众号的去中心化的应用价值

对于微信公众号而言,其并没有统一的订阅中心,在较大程度上实现了“去中心化”的目标,也是自微信公众号诞生以来所一直坚持的理念。因此对于用户只能通过微信进行自身所要的新闻公众号的搜索,对于新闻媒体而言,只能通过提供更为优质的内容来吸引用户的关注。例如,腾讯新闻视频,通过腾讯对新闻的深入解读,为用户提供了有力的阅读价值,深受用户的喜爱,实现了用户与媒体的双赢。

编辑与用户通过微信公众平台虽然可以进行视频、文字等的编辑,但是不得不说编辑出的内容在形式上十分呆板,无法满足用户的阅读需求。而微信公众号的出现,极大地改变了此种现状,弥补了缺点与不足,不仅满足了用户的各种需求与体验,更提升了编辑者的工作效率。

2.6 公众号运行载体的应用价值

随着移动终端设备的普及,使得微信公众号的普及程度也得以增强,这使得公众号的内容送达率得到了极大的提升,当编辑进行内容的推送时,微信便会提醒用户进行查看。除此之外,由于公众号的内容为用户自身的选择,因此用户会在第一时间阅读到喜欢的内容,在极大程度上使公众号的曝光率得到了提升。

2.7 微信公众号在新闻传播中具有宣传价值

宣传价值,不仅是微信公众号的基础价值,更是重要价值。由于微信公众号具有庞大的用户群体,因此对于公众号所推送的信息可以使大部分接收,例如某企业利用微信公众号对自身的品牌形象与企业文化进行宣传,使得大多数人有了一定的了解,为企业自身赢得了更多的消费对象,省去了中间环节,进而为企业创造了更多的财富,促进企业不断的发展。试想,若企业通过其他的渠道或者媒介进行宣传,势必会产生大量的宣传与广告费用,为企业增添较大的经济负担,若得不到良好的效果,无法引起受众的关注,必然会再次增加企业的额外负担使企业出现入不敷出的现象,对企业的发展造成严重的影响。

2.8 微信公众号在新闻传播中具有监督价值

所谓的监督价值主要是指对政府的监督。监督权是公民的基本权利之一,为促进政府的公正,避免政府出现腐败现象,公民可通过形式监督权对政府加以监督。例如汕头政府为促进自身的廉洁发展,讲政府的工作事项以及细则通过微信公众号对民众进行公开,人们可通过微信公众平台向政府提出各种意见,对政府的工作进行监督。通过微信公众号,人们实现了监督的权利,有力地促进了政府的廉洁发展,促使政府真正为人民群众谋福利。

2.9 微信公众号在新闻传播中具有及时推送的价值

对于传统的新闻传播而言,在新闻事件发生时,在记者得知消息并赶往现场的过程中,会浪费诸多事件,有时甚至会使新闻事件失去敏感性质,无法提升观众的兴趣。同时对于报纸等媒介而言,由于其新闻传播需要固定的较长周期,使得新闻的传播被延误,对观众形成一定的误导,极大地降低观众对于新闻的了解度。然而当微信公众号出现后,只要是关注公众号的用户都可能成为“记者”,会在第一时间将新闻事件通过公众号进行推送,使更多的人能够及时进行了解,弥补了传统的缺陷与不足,满足了用户的需求,并且随着智能手机的普及,人们可以随时随地对新闻内容进行观看,打破了地点与时间的束缚。

3 结论

从QQ到微信,人们的交流距离在逐渐缩短,更为重要的则是新闻传播的内容与速度在不断加快,微信公众号在新闻传播中具有十分重要的价值,不仅提升了新闻的价值,更满足了用户阅读与评论的需求,因此国家相关部门必须大力对微信公众号进行维护,以促使其发挥更大的价值。

参考文献

[1]徐建红.微信公众号在新闻传播中的应用价值浅探[J].新闻研究导刊,2015(8):83.

[2]张红梅,魏保东.探究微信公众号在新闻传播中的运用价值[J].新闻传播,2016(18):60.

信号与通信论文篇7

关键词:最大似然估计;卫星通信;成对载波多址技术;联合估计

中图分类号:TN911.7 文献标识码:A

成对载波多址技术(PCMA, Paired Carry Multiple Access)是近年来广泛采用的一种新型卫星通信多址接入技术。该技术在1998年由美国Viasat公司最先提出。与其它多址接入技术相比,采用PCMA的卫星通信系统能允许互相通信的两个地球站在时域和频域上完全重叠,也即互相通信双方的地面站可以采用完全相同的频域,时隙及扩频码字,所以使用PCMA后空间段频率的资源节省了50%,即提高了一倍卫星通信的频带利用率。同时,PCMA通信系统拥有很高的保密性和抗截获性,而相对的付出成本却很低,对系统的误码率影响很小。

1 PCMA的原理

采用PCMA的卫星通信系统必须满足以下几个基本条件:

1. 卫星系统必须以回路方式进行工作。即系统任何一个终端所发送的信号经卫星转发器返回后既能被自身终端所接收到,也能被网内的其余终端所接收到。采用全球波束的卫星通信系统和单波束覆盖范围内能互相通信的各个终端都可以看作是满足回路工作的条件,可将PCMA运用于其中。而一些要对回路进行抵消的卫星通信系统则不适用于PCMA。

2. 转发器必须采用透明转发器。当转发器接收到地面站发送的上行信号后,仅对其进行低噪声放大,带通滤波、变频及功率放大的工作并将其转发至各地面站,而不对其进行解调或重新调制等星上处理工作。

采用PCMA的卫星通信系统中,由于地面站发送的信号能被自身接收,因此地球站能同时接收到对方的发射信号和本站发射的经透明转发器转发后的返回信号。尽管两者可能在时域和频域上完全重叠,但由于用户已知自身发射信号的内容,因此可以采用干扰抵消算法在一定程度上消除干扰信号。常用的PCMA应用模式分为对称模式和非对称模式。非对称模式中,主站的发射功率远大于小站的发射功率,因此小站一端接收到的有用信号功率远大于干扰信号发射的功率,可直接对有用信号进行解调,而主站一端所接收到的有用信号功率远小于自干扰信号的功率,必须采用干扰抵消算法将干扰信号进行消除。而对称模式恰好相反,该模式下,主站与小站双方的发射功率基本相等,并且由于接收到的两个信号的特征一致,波束范围内的其它接收站无法对信号进行解调,因此与一般的多址技术相比,PCMA具有较强的抗截获能力。本文所构造的PCMA信号都是基于对称模式下的PCMA信号。

为了抵消干扰信号,需要对干扰信号的幅度,频偏时延等参数进行估计。目前国内外的文献主要是对单个干扰信号参数进行估计。然而在实际情况中,往往存在多个干扰信号参数未知的情况,此时我们必须对多个未知参数而非单个参数进行估计。本章讨论了在频偏、幅度、相移三者都未知的情况下,采用最大似然估计法对多个未知参数进行联合估计,得出各估计量的估计表达式,并对估计性能进行仿真。

2 参数的联合估计

假设接收到的PCMA信号中,干扰信号幅度、频偏、相移三者都是未知参量。本节采用最大似然估计法对这三个未知参数进行联合估计。为了推导方便,先采用实信号来表示PCMA信号(即干扰信号,有用信号与噪声都采用实信号表示)。

最大似然估计算法的核心是通过使似然函数最大来求得参数的估计值。给出PCMA信号的概率密度函数如下式:

综上,各待估计参数的估计表达式可由式(17),(18)与(19)给出。不难看出,为求得各参数的估计值,首先必须通过式(17)求得频偏的估计值,再通过求得的频偏估计值来获得相移的估计值,最后通过求得的频偏与相移估计值来得到幅度的估计值。

3 仿真实现

假定有用信号与干扰信号的实际幅度比为0.98,考虑实际情况,即系统受到相移和频偏的影响。干扰信号与有用信号两者的相对相移为(1/4)pi,固定频偏Δf为3.85KHZ。采用QPSK调制方式进行调制,采用升余弦滤波器作为成形滤波器,设定滤波器的滚降系数为0.3,内插倍数为8倍。假设有用信号与干扰信号完全同步,固定数据长度为500,信噪比为10dB,为求得矢量参数的估计表达式,首先必须求得频偏的估计值。如上文所说,频偏的估计值即通过使得 最大所对应的Δf来确定。因此改变信噪比,通过不同信噪比下式(16)的最大值所对应的频偏来得到频偏的估计值。比较不同信噪比(SNR,Signal-to-Noise Ratio)下估计频偏与渐进频偏的关系如图1所示:

用求得的频偏估计值来对相移进行估计,得到不同SNR下估计相移与渐进相移的关系如图2所示:

最后通过求得的频偏与相移估计值来得到幅度的估计值。得到不同SNR下估计幅值与渐进幅值的关系图如图3所示:

图1、2与3的共同特点是在数据长度一定的情况下,随着信噪比SNR的不断增加,各估计量的估计均值越发趋近于实际渐进均值,满足最大似然估计的渐进特性。

在参数的联合估计中,幅度的估计表达式受频偏的估计值与相移的估计值影响。为了进一步说明频偏与相移的存在对幅值估计性能的影响,图4比较了存在相移与频偏时幅度的相对误差与无相移与频偏时幅度的相对误差,仿真图如图4所示:

比较图4的两条曲线可知,当存在相移与频偏时,通过估计相移与估计频偏求得的幅度估计值对应的相对误差明显高于不存在相移与频偏时幅度估计的相对误差。

结语

由于涉及到相对繁琐的数学运算与矩阵求逆,因此多个参数的联合估计一直是目前PCMA研究的难点与热点所在,目前国内外对该方面的相关研究也很欠缺。论文讨论了在频偏、幅度、相移三者都未知的情况下,采用最大似然估计法对多个未知参数进行联合估计,得出各估计量的估计表达式,并对估计性能进行仿真。从估计表达式中可以看到,为求得各参数的估计值,首先必须求得频偏的估计值,其估计值可通过求式(17)的最大值来得到,再通过求得的频偏估计值来获得相移的估计值,最后通过求得的频偏与相移估计值来得到幅度的估计值。通过仿真图得到,当数据长度固定时,三种估计量的在低SNR时,其估计均值与实际渐进均值相差很大,然而,随着SNR的不断提高,估计均值渐近达到于其实际均值,符合最大似然估计的渐近特性。

论文最后还比较了存在相移与频偏和不存在相移与频偏时幅度的相对误差,通过仿真说明前者的相对误差明显大于后者。

参考文献

[1]Bai Dong,Yi Na.Estimation of interference Amplitude in PCMA System.Vacuum Electronic.February 18,2003.

[2]Mark Dankberg. Paired Carrier Multiple Access for Satellite Communications. First Present At Pacific Telecommunions Conference.USA: Honolulum Hawaii. January 13,1998.

[3]P Djuric,J Kotecha,J Zhang.Applications of particle filtering to selected problems in commu-nications[R].Spain:Springer,2003.

[4]Steven M.Kay.统计信号处理基础-估计与检测理论[M].电子工业出版社,2006.

信号与通信论文篇8

[关键词]电子对抗 通信干扰 单音信号 训练序列同步 Matlab仿真 无线局域网协议 干信比 状态机

一、引言

由于IEEE 802.11a的广泛应用,因此从国家信息安全和军事国防的高度来看,很有必要从电子对抗的角度去考虑如何对IEEE 802.11a通信进行干扰的问题。目前,人们对IEEE 802.1 1a的研究大多集中于其通信机理本身,少数从通信对抗角度进行研究的学者,也是主要针对于干扰信号对通信过程建立后的过程进行讨论。

然而经过研究发现,IEEE 802.11a的通信信号与其它很多数字通信体制一样,在通信过程建立之前,需要同步过程来协调各种参数指标,因而其同步过程也受各种干扰因素的影响,当干扰因素强度超过一定界限后,同步过程受到影响,从而使通信无法建立。而针对数字通信的同步进行干扰,其干扰效能往往要比干扰信号本身更为简便。因此本文的研究重点正是通过研究干扰信号对IEEE 802.11a的同步过程影响,来评估干扰对其通信的影响。

二、理论分析

2.1定时粗同步原理

定时粗同步是PLCP到达接收机后第一步操作。接收机同步通过两个宽度与短序列重复周期相同的判别窗,对接收到的短训练序列数据进行采集,而后进行三步操作:

首先,两个判别窗采集到的数据进行如式(1)的相关运算;(1)第二步,第二个判别窗中数据再进行一次自相关运算;(2)

最后,再由这两个数据进行比例运算,从而得到定时粗同步的判别电平。(3)

当判决电平为高电平时,接收机判定信号到达,并记录检测到高电平的位置;反之当判决电平为低电平时,则接收机判断信号没有到达,因而接收机并不进行后续的操作。

2.2干扰对同步的影响分析

当干扰信号与数据信号叠加后,干扰信号势必影响判决电平的数值大小,从而影响接收机对信号到达与否的判别。

设单音干扰影响下的接收信号为:

RM(n)=RB(n)+A'J(n) (4)

基带信号的离散形式为RB(n),干扰信号离散形式为,(n),A'为干扰信号的幅度系数。

从单音信号的自相关函数中可以得知,当延时τ=nT(n=0,1,2,3……)时,自相关函数为正最大值;当延时T=(n+0.5)T(n=0,1,2,3……)时,自相关函数为负最大值。

将此条件纳入式(1)与式(2)中分析,即可得到推论:当单音信号的周期T=D/(n+0.5)时,Cn为负最大值,而式Pn由于τ=0,因而为正最大值。在这种情况下Cn与Pn在整体上的数值差异最大,从而使最终的结果最小化。

当短序列重复周期D=16、单音信号周期T=16/5.5时,Mn的数值非常小且稳定,因此当周期T=D/(n+0.5)的单音干扰信号随短序列进入接收机时,很容易产生误判,从而造成对后续OFDM通信活动的阻隔和压制。

三、仿真程序介绍

本文的仿真程序除包含IEEE 802.11a协议所设计的从发射到接收过程中的一系列操作外,还重点针对训练序列同步的特点,对接收存储器和接收状态机进行仿真,以使仿真程序从同步成功与同步失败两个方面,反映干扰信号对IEEE802.11a训练序列同步过程的影响效能。

为了模拟干扰对整个IEEE 802.11a通信活动的影响,本文编写了相关仿真程序,整个仿真程序从结构上分为三个部分:发射机部分、信道与干扰信号产生部分与接收机部分。发射机部分的主要功能,是产生一串随机数据用以模拟要发送的有用数据,然后经过信道卷积、信道交织、QPSK调制、加入训练训练、插入导频、降PAPR转换、IFFY运算、插入循环前缀、滤波、数字上变频等一系列操作后,最终形成射频信号发送到信道部分。信道与干扰信号产生部分的功能有两方面,一是模拟信道中自然存在的高斯白噪声,二是产生干扰信号,并用过信号功率计算,得到需要的干扰信号功率比(JSR)。最终形成由信号、高斯白噪声与干扰信号三部分组成的混合信号。接收机部分结构相对比较复杂,进入接收机的混合信号先经过数字下变频与滤波器后,进入接收机的数据存储器,接收机的同步,就从存储器中调用数据。经过定时同步与频率同步后,进行FFT运算,而后经过降PAPR逆变换、相位补偿、QPSK解调、解交织、解编码等与发射机部分相对应的逆操作后,得到还原后的数据信息。

四、程序仿真与结果

本文在仿真程序中,将短序列重复周期设为16,因此为了验证之前的理论分析,应当设置一个周期T=16/(n+0.5)的基带单音干扰信号。然而,由于仿真程序接收机部分设计有低通滤波器,因此为避免信号经过滤波器时产生功率损失,本文在仿真时将n设置为0,即单音周期T=32,此干扰信号经过滤波、上变频后,在空间中与信号叠加,单音干扰与短序列信号叠加后的信号进入接收机进行解调,最终产生的误码率如下图1所示:

由仿真结果可以看到单音周期T=32时的干扰效果。当干扰信号功率比(JSR)为-3dB时,接收误码率就达到0.1,而同步失败率达到0.3左右。而使用噪声调幅干扰方式进行仿真,要达到同等误码率水平,则JSR需要达到7-8dB左右。

五、结论

推荐期刊