线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

滤波器设计论文8篇

时间:2023-04-01 10:07:14

滤波器设计论文

滤波器设计论文篇1

关键词:理论;仿真;滤波器;设计

中图分类号:TM461 文献标识码:A 文章编号:1007-9416(2017)02-0171-03

Abstract:The paper mainly discuss the design method of Chebyshev and LC filter that abroadly applied at analog circuit ,we design a High-pass filter using the method of mathematical theory and design instrument of ANSOFT DESIGNER based on the theory above , and analyze the two design methods.

Key Words:Theory;Simulate;Filter ;Design

滤波器是许多模拟射频电路与系统的设计问题的中心。滤波器可以被用来区分不同频率的信号,实现各种模拟信号的处理过程,因而在现代模拟射频电路与系统中得到了广泛的应用。

滤波器按照不同的标准可以有不同的分类,所有的分类方法都是依照个人应用需求而定的。在目前的电路系统中,由于LC滤波器具有结构简单,造价低廉,性能稳定的优点,因而得到了广泛应用。但是,因为LC滤波器是基于集总元件而构建的,所以在设计与调试过程中存在不少的困难,本文是以滤波器设计理论为依据,用ANSOFT DESIGNER设计工具为平台,设计了一个高通的切比雪夫滤波器,并就加以比较验证。

使用Ansoft Designer进行的滤波器设计[4],得到的切比雪夫滤波器电路如图2(与运算的电路参数相比,电感与电容值只有很小的差别,可以说基本上是一致的,后面的测试分析也说明了这一点)。

现对滤波器进行了相应的优化,此电路选定了滤波器的电容参数为51P,电感量为 0~100nH可以调节,依据滤波器性能指标要求,用Ansoft Designer进行优化仿真,优化过程是为了调整电感量来达到设计的要求,调整过程如下:

(1)设定电容为恒定值51P,电感调整为70nH--不满足设计要求。如图3。

(2)设定电容为恒定值51P,调整电感为85nH和94nH(之间) -----满足设计要求。如图4、5。

2 设计结果及性能评价

(1)理论分析与Ansoft Designer分析设计的结果进行了电路仿真验证,结果如图6、图7。

(2)实际电路调试与测量结果如图8(矢量网络分析仪测试结果):

通过实际调试测试与前面软件分析结果可以看出,切比雪夫响应滤波器对于元件参数的变化不敏感[5],滤波电路且兼具良好的选择性,设计出来的滤波器特性通过稍微的调整就能很好的满足设计指标的要求。我们通过对实际电路的测试可以发现,滤波器的特性与仿真出来的结果基本吻合,因此,验证了前面运算及仿真过程的正确性[6]。

3 结语

作为现代射频模拟电路中最重要的无源器件之一,滤波器的使用越来越频繁,所以,掌握滤波器的设计对于模拟射频工程师而言有着重大的意义。

通过本文的理论分析,对滤波器的设计流程进行详细的论述,并通过软件进行滤波器辅助设计和优化,使设计过程更加简化,同时对相关滤波器设计提供参考和借鉴。

参考文献

[1]韩庆文,陈世勇,陈建军.微波电路设计[M].北京:清华大学出版社,2014.123-155.

[2]丁宇,薛开昶,孙伟有源模拟滤波器的MATLAB辅助设计方法[J].计测技术, 2015,35(5),31-34.

[3]赵开才.基于MATLAB 的窄模拟带通滤波器的快速设计[J].自动化技术与应用,2014,33(5):66-69,89.

[4高原,彭晓宏,朱佳辉.用于音频的多级滤波器设计与实现[J].微电子学,2014,44(2),167-170.

滤波器设计论文篇2

在对动力蓄电池组(以下简称电池组)进行充放电时,要求其充放电电流纹波小,在短时间内达到稳定,这样才能保护电池,延长电池的使用寿命[1,2]。而电池组具有内阻小,本身具有反电动势等特点,较小的电压波动也会引起大的电流纹波。充电机使用电压型整流器充电时,即使整流器输出的电压纹波含量能够达到要求,输入电池组的充电电流也会有较大的纹波。假设充电器输出的电压为U0,电池组反电动势为E0,内阻为r0(r0<<1Ω且电池比容量越大,内阻越小[3]),则电池组的充电电流I0为I0=(U0?E0)/r0。例如,一组200V蓄电池组,内阻为0.3Ω,充电装置输出电压的谐波含量为0.5%那么,输出电流的总谐波含量为:(200×0.5%)÷0.3A=3.33A,若此时要求充电电流为30A,则输出电流的谐波含量11.1%。此外,由于电压型PW整流器是升压电路,因此用于电池充电时需要另加斩波电路降压,增加了系统的复杂性和开关损耗。电流型PWM整流器是降压电路,可以输出恒定的直流电流,适用于电池组充电,但是受直流侧储能电感限制,难以大容量化,这限制了它在包括电池组充电等领域的应用[4]。为了限制输出电流谐波含量,必须在整流器的直流侧设置滤波器,以减少充电电流的纹波比,延长电池组的使用寿命。文献[5]针对切比雪夫滤波器在阻带内的衰减有较快的增长速率的优点,讨论了切比雪夫滤波器在相控整流直流滤波器中的应用,而且避免了普通的滤波器级联造成谐振的可能,但是并未针对其他类型滤波器在此类应用展开讨论和比较。而本文通过大量的研究发现,当截止频率处对应衰减较大时,虽然巴特沃斯滤波器比切比雪夫型需要更多的阶数,但是其响应速度和滤波效果在一定条件下却优于切比雪夫滤波器,而这一优点在滤波器所需的阶数较小(如3阶时)尤其突出,因而更加符合电流型PWM直流滤波器设计的需要。设计滤波器的主要原则是频率响应和响应时间。滤波器按照两端联接系统阻抗的匹配情况,可分为匹配型滤波器和非匹配型滤波器。平时文献涉及的滤波器多是匹配型滤波器,而二者传输特性仅相差一个固定的平坦衰减值。因此理论分析时,为了不失一般性,本文首先以匹配性滤波器设计为例以频率响应和响应时间为主要依据,对这两种滤波器的滤波特性进行综合的比较。然后根据我国配电网系统阻抗和电池组阻抗之间的关系,设计了非匹配型巴特沃斯滤波器和切比雪夫滤波器的参数并进行了仿真和实验的验证。

2巴特沃斯滤波器和切比雪夫滤波器比较

按照低通滤波器的衰减特性,可以分为巴特沃斯滤波器、切比雪夫滤波器、考尔参数滤波器和一般参数滤波器。后两类滤波器要求元件严格符合设计值,而且为了达到设计的目的所需的阶数都较高这为滤波器的实现带来了困难[6],因此本文仅针对巴特沃斯和切比雪夫滤波器的输出特性进行讨论。

2.1巴特沃斯滤波器和切比雪夫滤波器简介巴特沃斯滤波器又称最平响应滤波器,在靠近零频率(直流)处具有一个最平通带,其平坦度随着阶数的增大而增大。趋向阻带时,衰减单调增大,在ω=∞上出现无限大值。其衰减特性如图1a所示。当截止频率为ωp时,其传输函数的模平方和衰减分别为切比雪夫滤波器的特点是,通带内衰减在零值和所规定的上限值之间做等起伏变化;阻带内衰减单调增大,在ω=∞上出现无限大值。其传输函数的模平方和衰减分别为

2.2相同衰减特性时阶数的确定首先研究一下当Ω很大时,巴特沃斯滤波器和切比雪夫滤波器的衰减特性。由式(2),若Ω1,则巴特沃斯滤波器衰减近似为由上式可知切比雪夫滤波器的衰减特性渐进于由起始值6(n?1)+20lgε开始,按每倍频程6ndB的速率上升的直线。且假设通带最大衰减为Ap,两滤波器有共同的表达式p20.1101Aε=?巴特沃斯滤波器阶数选取公式

3PWM整流器直流滤波器分析

3.1滤波器阶数的选取当整流器为电流源型PWM整流器时,其输出充电电流的谐波含量与整流变压器输出电压U0、调制比m、直流侧储能电感L、电池内阻r0以及电池端电压E0有关,当U0、r0和E0已定,PWM整流器输出电流谐波随着m的增大而减小。考虑极端的情况,假设oU/3=150V,电池端电压为E0=48V(根据目前实验室已有的条件,模拟4节12V/150A的串联电池组),r0=0.3Ω,直流侧储能电感为3mH,则按照10h率充电的原则,调制比应设在0.23左右,输出电流谐波含量为14.5%。因为PWM整流器输出谐波主要为高次谐波且与开关频率k有关[7]。按照2.1.1节方法,重新设计滤波器阶数,则巴特沃斯滤波器和切比雪夫滤波器的阶数都为3。

3.2相同阶数时两类滤波器比较分析同为3阶时巴特沃斯和切比雪夫滤波器的响应时间。根据文献[8],我国低压电网的阻抗值远大于动力蓄电池组的阻抗值,因此设计按匹配型滤波器设计充电机的直流滤波器会影响滤波效果,缩小输出电流的可调范围。按照非匹配型滤波器设计,并根据系统电压可近似看作恒定不变的特点,以恒压源激励的非匹配型滤波器设计两类三阶的滤波器。恒压源激励的三阶巴特沃斯和切比雪夫滤波器拓扑结构相同,如图2所示。参数见表1。系统的响应时间可近似由其阶跃响应得到。因为电池充电时滤波器两侧都有电源,将图2所示结构滤波器看作是由端口N1和N2构成的含源双端口网络,很容易写出当N1激励为U1,N2激励为E1时,N2电流I2对U1和E1的响应为当电池组内阻为0.3Ω,Ap取1~10之内的整数时巴特沃斯滤波器和切比雪夫滤波器的参数见表1。其中电感的单位为毫亨,电容的单位为微法。将表1的数据代入式(7)求拉氏反变换即可求出其阶跃响应。理论上说两滤波器的阶跃响应都是趋于无穷远处的减幅振荡,为了比较两滤波器的响应速度,认为振荡幅值小于稳定值的0.1%时即达到稳态,则系统响应时间见表2响应时间对应数据。

4仿真验证

4.1电流型PWM整流器滤波基于Matlab环境按照图2所示搭建电池充电系统,其中整流器选择电流型PWM整流器。因为电流型PWM输出电流谐波含量与整流变压器输出电压U0、调制比m、直流侧储能电感L、电池内阻r0以及电池端电压E0有关,论文仅讨论其他因素一定,调制比较低时的滤波效果(此时输出谐波含量较高)。此时仿真系统内参数设置为,整流变压器输出相电压为150V,直流储能电感为3mH,电池内阻为0.3Ω,端电压为48V,按照20A充电,m=0.23。将表1数据分别代入该系统的滤波器,仿真比较巴特沃斯滤波器和切比雪夫滤波器输出的滤波波形及其滤波效果。计算出相对于直流的谐波畸变率。因为滤波后各次谐波含量基本在0.5%以下,为了便于观察谐波分布情况,图中将基波含量略去不显示。计算结果见表2。限于篇幅,本文仅给出当Ap=5时,电流型PWM整流器输出电流波形,如图3所示。从表2和图3可以看出,当滤波器的阶数为3时,巴特沃斯滤波器的滤波效果和响应时间,整体输出性能要优于切比雪夫滤波器,因而更加适合于电流型PWM整流器直流侧滤波器的设计。

4.2三阶滤波器与滤波电感的比较因为直流侧电感的取值是限制电流型PWM整流器应用的一个关键因素,根据文献[10],要达到电池充电低纹波的要求,电感取40mH。因此本文设计了当直流侧仅用40mH电感滤波的电路,与Ap=5时巴特沃斯滤波器的滤波效果进行比较,仿真波形如图4所示。由图4可以看出,稳态时电感两端压降达到212V,而滤波器仅为60V。因为本文仿真所用为理想元件,因此对输出电流几乎没有影响,但是实际上电感元件是有内阻的,如此大的压降必定会产生巨大的损耗,这直接造成了能源的浪费。如果将滤波电感的内阻设为0.14Ω,则充电电流仅为15.6A(此部分在实验部分有进一步的验证)。因为电感滤波响应时间较慢,因此论文选取1.98~2s间的数据进行分析,当以直流为基准时,计算输出电流谐波含量,电感滤波计算结果为0.5710,滤波器计算结果0.3492,而且三阶滤波器的响应时间明显少于电感滤波的响应时间。仿真表明,无论对电感的需求还是实际滤波效果,三阶滤波器的效果要优于电感滤波。

5实验论文进行了三方面的实验验证:首先根据同一输出特性,设计了相同阶数和拓扑结构的巴特沃斯和切比雪夫滤波器进行滤波实验,验证两组滤波器在相同要求下各自不同的输出特性;然后在开环情况下,通过改变PWM整流器的占空比m改变输出电流的数值,以验证巴特沃斯滤波器的响应速度和稳态性能;最后进行了纯电感滤波和采用三阶滤波器滤波时,滤波电流响应速度和稳态性能的比较,验证三阶滤波器在响应速度和减小损耗两方面的优点。

5.1两滤波器输出特性比较图5所示为当Ap=3时,巴特沃斯滤波器和切比雪夫滤波器滤波前后电流波形以及滤波后电流频谱分析的结果。其中图5a和图5b是两滤波器滤波前后电流的对比,上半部分为滤波器输入电流,下半部分为滤波器输出电流,图5c和图5d是将数字滤波器DL1600采集的电流数据进行频谱分析后的结果。因为滤波后谐波含量较小,含量最大的为0.3%,因此显示时略去了柱状图中表示直流电流含量的部分,以便观察。由实验波形可以看出,两滤波器在稳态的滤波效果是满足滤波要求的,切比雪夫滤波器因为在阻带有较高的衰减增长速率,因而稳态滤波效果优于巴特沃斯滤波器。但是切比雪夫滤波器的传输函数在阻带内有等波纹的衰减,而巴特沃斯滤波器在阻带内衰减是平坦的,两者的传输特性决定了在相同的设计要求下,切比雪夫滤波器的响应速度比巴特沃斯滤波器要慢得多。为了增加直流侧滤波器频率较低谐波的衰减,需要增大Ap取值,这将增加切比雪夫滤波器的响应时间。在实验中切比雪夫滤波器需要120ms达到稳态,而巴特沃斯滤波器仅需40m即可达到稳态。

5.2巴特沃斯滤波器的响应特性在开环情况下通过改变调制比m改变输出电流I0,以验证滤波器的综合性能。调制比m数值由0.40.70.40.7,实验结果如图6所示。其中图的上半部分是滤波前的电流的波形,图的下半部分是滤波后的波形。限于篇幅略去了FFT的分析结果。经计算总谐波含量均小于0.5%。实验表明滤波器具有良好的滤波效果和响应速度。

5.3电感滤波与三阶滤波器的比较图7所示为电池端电压12.8V,变压器输出35V,直流侧采用三阶巴特沃斯滤波器和仅采用40mH电感滤波的实验波形。由于电感滤波时,PWM整流和电感是串联电路,因此无法进行滤波前后波形对照。但是因为图7a和图7b中除了滤波元件外,其他实验条件完全相同,因此电感滤波前的波形可以参考图7a中滤波前的波形。二者输出电流的频谱分析如图7c和图7d所示。从实验结果可以看出,三阶滤波器滤波电流频谱中6次及以上的谐波含量非常小。这是因为滤波器设计时以6次为阻带频率的起点;大于6次的谐波对应的衰减是按照频率的增大单调上升的直线。谐波次数越高,对应的衰减越大,因而6次及以上的谐波得到了很好的抑制。而电感滤波虽然对于最高次谐波的滤除效果接近三阶滤波器,但是总的谐波含量要大得多,这是因为电感滤波仅仅是利用元件“恒流”的原理减小电流纹波的缘故。因此三阶滤波器虽然所用两个电感远小于电感滤波时需要的电感值,但是滤波效果和响应速度要优于电感滤波。由实验还可以看出,由于电感的压降远大于滤波器压降,其损耗大于三阶滤波器,因此在相同的条件下,其输出电流仅为滤波器滤波的80%。用电桥法测量电感的内阻为0.14Ω,此结果进一步验证了仿真的结论。本实验证明,电流型PWM滤波器直流侧采用三阶巴特沃斯滤波器后,选用较小的电感值就能输出相对恒定的电流(谐波含量小于0.5%),达到大电感才能达到的滤波效果。而且由于滤波器两端的压降小于纯电感,因此损耗较小,能够输出更大的电流。

5.4实验误差分析分析实验结果,主要存在滤波电感的损耗和交流电压三相不平衡对实验结果造成的影响。(1)虽然实验结果可以达到低纹波的要求,但是其效果低于仿真预测。利用双桥法测量本实验用的电感,其电阻为0.1Ω左右。如同文献[5]验证,电感阻抗会影响滤波器的稳态滤波效果,是造成实验结果与仿真结果之间偏差的主要原因之一。但是动力蓄电池组充电电流在几十安至几百安[11],所需电感导线直径较粗,直流电阻很小,对滤波器的传输特性造成的影响可以忽略不计。因此本文设计的滤波器可以满足实际电池组充电需要。(2)稳态电流的频谱中有大量的2次谐波存在。测量电源的三相电压,发现实验用电源存在三相不平衡的现象,而且三相电压均含有一定的3次谐波,这对实验的结果产生了一定的影响。研究表明三相不平衡时三相电流型PWM整流器直流电压会产生6、12、18等6的整数倍的特征谐波和2、4、8、10等次的非特征谐波。直流电压谐波导致整流器产生直流电流谐波,直流电流谐波通过PWM反过来又会影响整流器的交流电流波形,即三相电流型PWM整流器直流侧n次谐波电流经PWM控制后,将在整流器交流侧产生n+1次谐波电流[10]。对于电网电压不平衡状态下,可以通过对三相电流型PWM整流器适当的控制抑制2次谐波,目前已有针对电压型PWM的抑制直流侧2次谐波的研究[12,13],但适用于电压型PWM整流器的方法有待于借鉴到电流型PWM整流器中。本文拟将这个问题作为后续问题继续展开深入的讨论和研究。

滤波器设计论文篇3

关键词 数字信号处理 FIR滤波器 Matlab

0 引言

数字信号处理是电子信息类专业的基础课程。我们将Matlab引入课堂教学中,将抽象的理论以易于理解的可视化形式加以演示,并结合实验教学的模式,帮助学生理解与掌握课程中的基本概念、基本原理和基本分析方法,发挥学生动手实践的主动性和创造性。

Matlab软件以矩阵运算为基础,其功能强大、简单易学、编程效率高。特别是其具有的数字信号处理工具箱,涵盖了经典信号处理理论的大部分内容,很多常用的算法都有对应的函数,可以方便地进行信号分析、处理和设计。

Matlab在教学中的应用主要体现在二个方面,①一是教师在讲解基本概念的同时,可以利用Matlab演示相应知识点的对应结果,能够更加生动直观地揭示其所包含的物理含义;二是让学生利用Matlab软件进行实验,深化学生对基本原理的理解,提高学生应用软件工具的能力。

本文以FIR滤波器的窗函数设计法为教学实例,对Matlab在“数字信号处理”课程中的应用加以探讨。

1 Matlab在课堂教学中的应用

FIR滤波器的窗函数设计法是从单位冲激响应着手,使要设计的FIR滤波器的单位冲激响应(())逼近理想滤波器的单位冲激响应(()),通常表示为:

() = ()()

即用一个有限长的窗函数序列()截取(),因而窗函数序列的形状及长度的选择就很关键。常用的窗函数有矩形窗、三角形窗、汉宁窗、哈明窗、布莱克曼窗等。这些窗函数各有优缺点,所以要根据实际情况合理选择窗函数类型。②笔者利用Matlab演示窗函数类型与窗宽对所设计的滤波器的影响。

1.1 窗函数类型

分别用矩形窗和哈明窗设计一个FIR低通滤波器,假设窗宽和截止频率相同( = 11, = 0.2%i),比较这两种窗函数设计的滤波器的幅频曲线,如图1所示,很容易观察到选择的窗函数对所设计的滤波器的影响。采用矩形窗时,过渡带较窄,阻带最小衰减较小;采用哈明窗时,过渡带较宽,阻带最小衰减较大。

1.2 窗宽

分别用不同窗宽( = 11, = 15)的哈明窗设计一个FIR低通滤波器,假设截止频率相同( = 0.2%i),比较两种不同窗宽设计的滤波器的幅频曲线,如图2所示,很容易观察到窗宽对所设计的滤波器的影响。增加窗宽,使得滤波器的过渡带变陡,但是阻带最小衰减不变。

通过以上Matlab演示,可以更直观地认识到窗函数类型与窗宽对所设计的滤波器的影响,并可归纳出一般性结论:

(1)滤波器的过渡带宽度与所选窗函数有关;而对于一定的窗函数,增加窗函数的长度(或窗宽)可以使过渡带变陡。

(2)通带和阻带内的波动幅度与所选窗函数有关;而对于一定的窗函数,增加窗宽不能改善波动幅度。

(3)阻带最小衰减与过渡带宽这两个性能指标是相互制约的,总不能兼得。

因此,设计FIR滤波器时,选择合适的窗函数尤为关键。其选取原则是在阻带衰减指标满足要求的情况下,选择使过渡带窄的窗函数。表1给出了几种常用窗函数的基本参数。

2 Matlab在实验教学中的应用

在实验教学中,我们采用了三种手段来设计一个FIR滤波器。④第一种手段按照窗函数设计法的理论分析步骤,用Matlab语言编程实现。第二种手段直接调用Matlab信号处理工具箱提供的 fir1函数设计滤波器。第三种手段调用滤波器设计和分析工具箱提供的图形用户界面设计滤波器。

[设计实例] 设计一个线性相位FIR低通滤波器,要求通带截止频率为 = 0.2%i,阻带截止频率为 = 0.4%i,阻带最小衰减为 = 50。

2.1 理论分析步骤法

窗函数法的理论分析步骤如下:(1)给定理想低通滤波器的频率响应,并求出理想低通滤波器的截止频率;(2)求理想的单位冲激响应;(3)查表1,根据窗函数的选取原则,确定合适的窗函数;(4)根据过渡带宽确定窗宽,并确定保证滤波器线性相位的相关参数;(5)求所设计的FIR滤波器的单位冲激响应;(6)求所设计的FIR滤波器的频率响应,检验是否满足设计要求。

对本文的设计实例,按照上述理论分析步骤,用Matlab语言编程实现,得到的滤波器幅频曲线如图3所示,可见满足设计要求。

2.2 fir1函数调用法

上述设计计算复杂,学生容易陷于繁琐的编程。选定窗函数的形状和长度后,FIR滤波器设计可简化为调用fir1函数。

fir1函数的调用格式如下:

b = fir1(N,Wc,''ftype'',Window)

其中,N为滤波器的阶数;Wc是截止频率,其取值在0~1之间,它是以%i为基准频率的标称值,设计低通和高通滤波器时,Wc是标量,设计带通和带阻滤波器时,Wc是1?的向量;设计低通和带通滤波器时,无需 ''ftype'',当ftype = high时,设计高通滤波器,当ftype = stop时,设计带阻滤波器;Window表示设计滤波器所采用的窗函数类型,Window的长度为N+1,若Window缺省,则fir1默认使用哈明窗;b对应设计好的滤波器的系数h(n),即单位冲激响应,h(n)的长度为N+1。

对本文的设计实例,调用fir1函数,得到的滤波器幅频曲线如图4所示,可见满足设计要求。

2.3 Fdatool图形用户界面法

滤波器设计和分析工具箱Fdatool(Filter Design and Analysis Tool)是快速设计和分析滤波器的图形用户界面。Fdatool可以设计几乎所有的常规滤波器,包括IIR滤波器和FIR滤波器的各种设计方法。它操作简单,方便灵活。

Fdatool界面总共分两大部分,一部分是design filter,在界面的下半部,用来设置滤波器的设计参数,另一部分则是特性区,在界面的上半部分,用来显示滤波器的各种特性。

对本文的设计实例,采用Fdatool图形用户界面法,得到的滤波器幅频曲线如图5的窗口上方所示:

比较上述三种设计手段,第一种手段并没有发挥Matlab强大的信号处理能力,但可以加深学生对窗函数法设计思路的理解。第二种手段需要充分掌握滤波器设计参数,并能够正确的调用函数。第三种手段在设计过程中,可以对比滤波器频率特性和设计要求,随时调整参数和滤波器类型,有利于滤波器设计的最优化,并且使得滤波器的设计变得更加直观简便,极大地减轻了工作量。

3 结束语

本文以FIR滤波器的窗函数设计法为教学实例,利用Matlab软件将相关知识点用图形化演示直观地表示出来,使学生易于理解相关理论知识。此外,实验教学中Matlab的应用可以加深学生对基本概念的进一步理解,并且锻炼了学生的动手能力和灵活运用数字信号处理知识的能力。

1、湖北省高等学校省级教学研究项目(厚基础强能力的创新人才培养模式研究与实践)

滤波器设计论文篇4

关键词: 自适应滤波器; LMS算法; TMS320F28234; FIR结构

中图分类号: TN713?34 文献标识码: A 文章编号: 1004?373X(2013)17?0062?03

0 引 言

滤波是信号处理领域的一种最基本而又极其重要的技术。利用滤波技术可以从复杂的信号中提取所需要的信号,同时抑制噪声或干扰信号,以便更有效地利用原始信号。滤波器在电子电路系统中应用很多,技术也较为复杂,有时滤波器的优劣直接决定产品的性能,所以滤波器的理论研究和产品开发非常的重要。

自适应滤波器是相对固定滤波器而言的,当固定的设计规范是未知的,或者采用时不变滤波器不能满足设计的要求设计规范时,就需要采用自适应滤波器。严格地讲,自适应滤波器是一种非线性滤波器,因此不满足齐次性和叠加性条件,如果在某个给定的时刻固定的滤波器参数,则其输出信号是输入信号的线性函数。自适应滤波器是在没有任何关于信号和噪声的先验知识的条件下,自适应滤波器利用前一时刻已获得的滤波器参数来自动调节现时刻的滤波器参数,以适应信号和噪声未知或随机变化的统计特性,从而实现最优滤波,所以其适用范围更广。

1 基于DSP的自适应滤波器的方案设计

本系统采用利用数字信号处理器来完成自适应滤波器的设计,系统如图1所示。

系统工作原理:自适应滤波器的整体设计思路中模拟信号输入,输入信号首先进行抗混叠滤波,然后将模拟信号变换成数字信号。根据奈奎斯特抽样定理,为保证有用信息不丢失,抽样频率至少是输入带限信号最高频率的2倍。经过ADC转换成数字信号,DSP芯片预先设计好的自适应滤波算法程序,对输入的数字信号处理。这种自适应滤波器的设计是具有跟踪信号和噪声变化的能力,也不需要知道关于输入信号的先验知识。经过DSP芯片处理后的信号通过DAC再转换成连续的模拟波形,之后进行平滑滤波就可得到需要的模拟信号。

1.1 自适应滤波器原理

自适应滤波器是一种能够自动调整本身参数的特殊维纳滤波器,在设计时不需要预先知道关于输入信号和噪声的统计特性,它能够在工作过程中逐步“了解”或估计出所需的统计特性,并以此为依据自动调整自身的参数,以达到最佳滤波效果。一旦输入信号的统计特性发生变化,它又能够跟踪这种变化,自动调整参数,使滤波器性能重新达到最佳。

1.2 自适应滤波器结构

自适应IIR滤波器与自适应 FIR滤波器相比较,自适应IIR滤波器存在突出的缺点,主要的缺点包括:自适应IIR滤波器存在不稳定的可能性倾向;而且收敛速度慢等。因此,一般采用FIR滤波器作为自适应滤波器的结构。自适应滤波器最直接的实现就是直接形式的FIR结构,但在本论文中采用FIR横向结构设计自适应滤波器。这种结构仅包含有由延迟级数所决定的有限个存储单元,可归结为有限冲激响应(FIR)或横向滤波器(Kallman)。输入信号被若干延迟单元延时,其延迟时间可以是连续的。这些延迟单元的输出与存储的一组权系数依次相乘,将其乘积相加得到输出信号。这意味着输出是输入信号与所存储的权系数或冲激响应的卷积。这种滤波结构仅包含有零点(因为没有递归反馈单元),因此,若要获得截止的频率特性,则需要有大量的延迟单元。但是,这种滤波器始终是稳定的,并能提供线性相位特性。图3所示为FIR横向滤波器结构。

1.3 DSP的最小硬件系统设计

DSP的硬件最小系统设计包括DSP芯片、电源转换电路、时钟电路、复位电路、JTAG仿真接口等,如图4所示。

2 基于DSP的自适应滤波器的软件设计

采用TMS320F28234实现自适应滤波器,自适应算法采用基本的LMS算法,滤波器的结构采用横向FIR结构。自适应滤波器的TMS320F28234的设计中,程序设计语言运用汇编语言,自适应滤波器程序设计流程如图5所示。

3 仿真验证

为了说明自适应滤波器的优越性,这里通过仿真结果来表明。通过引入一个已有的数据文件方式得到一个受到噪声干扰的正弦波信号,该波形作为自适应滤波的输入信号。自适应滤波程序在CCS 环境下编译、链接、修改语法错误,编译链接通过后,加载并连接程序,连接生成公共目标代码文件,在线下载到DSP中运行。将编译产生的可执行文件下载到DSP芯片中后,经过运行得到时域图,输入信号的时域图如图6所示。

由图6可以看到,低频信号中叠加了有噪声信号,导致低频信号出现了较大的畸变。低频的信号中叠加了比较多的高频噪声,只有进行高频滤波才能够得到比较好的原始低频信号。在观察输出波形时,能够看到输出波形中仅剩余了低频信号,滤除了高频成分。通过图6和图7的对比,输入信号的高频噪声基本上得到了滤除。但是由于参数设置不够精确等原因造成的高频噪声没有得到完全消除,但是也很明显的显现了低通滤波的目的。

4 结 语

在自适应滤波器的仿真结果中,自适应滤波器实现了对含有噪信号的频率跟踪,并表明自适应滤波器能很好地消除叠加在信号上的噪声。虽然也可以用固定滤波器来实现,但设计固定滤波器时需要预先知道信号和噪声的统计特性,而自适应滤波器则不需要,并且当信号和噪声的统计特性发生变化时,自适应滤波器也能自动地调节其冲激响应特性来适应新的情况,因此,自适应滤波器具有更加广阔的应用前景。

参考文献

[1] 刘郁林,景晓军,谭刚兵.自适应滤波算法与实现[M].2版.北京:电子工业出版社,2004.

[2] 郑宝玉.自适应滤波器原理[M].4版.北京:电子工业出版社,2006.

[3] 方艳梅,刘永清.数字信号处理[M].4版.北京:电子工业出版社,2007.

[4] 刘和平,邓力,江渝,等.数字信号处理器原理结构及应用基础:TMS320F28x[M].北京:机械工业出版社,2007.

[5] 何苏勤,王忠勇.TMS320C2000系列DSP原理及实用技术[M].北京:电子工业出版社,2003.

[6] 俞一彪,邵雷.DSP技术与应用基础[M].4版.北京:北京大学出版社,2006.

[7] 姜艳波.数字信号处理器DSP应用100例[M].北京:化学工业出版社,2009.

[8] 姜沫岐,段国强.DSP原理与应用[M].北京:机械工业出版社,2007.

[9] 王念旭.DSP基础与应用系统设计[M].北京:北京航空航天大学出版社,2002.

滤波器设计论文篇5

Abstract: This paper introduced DSP technology scheme for experimental teaching of digital signal processing course based on the present method of MATLAB.A FIR filter is taken as an example to show how to implement the scheme. The practice proves that it can effectively improve the students' ability of engineering practice.

关键词: 数字信号处理实验;MATLAB;DSP ;FIR数字滤波器

Key words: digital signal processing experiment;MATLAB;DSP;FIR digital filter

中图分类号:G642.0 文献标识码:A 文章编号:1006-4311(2013)26-0200-02

0 引言

《数字信号处理》课程是高校电子信息类专业的主干课程,其主要教学目的是使学生理解数字信号处理的基本理论和分析算法、掌握其基本算法和设计方法[1]。本科阶段数字信号处理课程主要涉及离散时间信号与系统基本概念、傅里叶变换算法、数字滤波器结构与设计等方面。由于本课概念较抽象,内容牵涉到较多数字公式,给学生在深刻理解课堂内容方面造成一定的障碍。很多高校设置课程时,均给予该课一定数量的实验课时,通过实验以帮助学生更好地理解数字信号处理理论知识。

目前,数字信号处理课程的实验方法主要是基于MATLAB软件为主,即在MATLAB中编程并运行观察有关信号处理效果[2][3]。运用MATLAB软件作为实验平台,确实能提供便捷的分析方法[4]。然而,基于MATLAB的数字信号处理课程实验过程中,大量调用了MATLAB已有的函数,学生只需修改这些函数的参数即可。这种模式不能有效训练学生将理论知识用于工程实践的能力。

针对以上问题,本文研究了在数字信号处理课程现有的MATLAB实验基础上,引入数字信号处理芯片DSP(Digital Signal Processor)及其软件,通过实验过程针对DSP芯片实现常用数字信号处理算法。

1 实验设计

数字信号处理课程共64课时,其中实验课时8课时。本文以系数对称有限冲激响应滤波器(Infinite Impulse Response,IIR)为例来分析在MATLAB实验的基础上,引入DSP实验的方法与实验过程,该实验课时为4课时,要求学生有基本的DSP编程知识。

1.1 实验内容 实验包括了MATLAB实验和DSP实验两个环节。其中,MATLAB实验部分的主要任务是产生实验原始数据、设计滤波器系数、调用滤波器函数验证滤波器滤波效果。DSP实验部分是用C语言或汇编语言编程实现FIR滤波器并观察滤波效果。

1.2 实验过程 实验过程可以分7步进行,分别为:①MATLAB设计数字滤波器,获得系数;②MATLAB给出仿真原始待滤波数据;③MATLAB调用数字滤波器函数验证滤波效果;④观察是否符合滤波要求,若不符合要求则重新设计数字滤波器;⑤如果符合要求则将系数、原始数据归一取整后送往CCS;⑥CCS使用获得的系数与数据,基于DSP编程调试;⑦观察DSP是否符合滤波要求,若不符合修改程序。

2 实验设计

2.1 MATLAB实验部分 MATLAB实验部分首要任务是根据实验要求设计所需数字滤波器。这个环节既可以调用MATLAB函数进行设计,也可以直接使用MATLAB提供的数字滤波器工具FDATOOL进行设计。无论哪种方法,都需要确定滤波器类型、阶数等参数,最后由MATLAB帮助获得滤波器系数。本文给出的实例为采样频率为12KHz,通带截止频率为1200Hz,阻带起始频率为2400 Hz,阻带衰减不小于-40dB的FIR直接型低通滤波器。

若以窗函数法进行设计,则要求学生在实验过程中,多次实验观察不同窗函数对滤波器滤波效果的影响。本文采用Bartlett窗为例进行设计,设计所得数字滤波器为23阶。

获得数字滤波器系数后,由MATLAB产生待滤波信号,待滤波指信号可以是白噪声,也可以是由程序指定的几个不同频率信号的叠加。本文所举实例为便于说明,设置了频率分别为800Hz、3KHz、4KHz的三种信号混合作为待滤波信号。

滤波前后的信号频谱如图1所示。从图1可以看出该滤波器确实能够实现低通滤波。此后,实验进入DSP实验环节,要求基于DSP编程,并将得到的实验结果与MATLAB实验结果作对比,以确保基于DSP实现了数字滤波器要求。

2.2 DSP实验部分 DSP实验为训练工程实现能力,必须要求学生考虑各方面的细节,包括存储器的安排。本实验中,安排了三个存储器区域,分别存放数字滤波器系数、等待滤波的原始数据以及滤波后的数据。其次,由于本实验的编程目标是TI公司C5000系列的定点芯片,必须考虑定标问题,本实验中建议学生定标为Q15。滤波器系数与待滤波的原始数据在导入DSP系统的存储器之前,要求先归一化后取整。

本文以TI公司的C54xx系列DSP芯片的汇编语言系统为例来编程实现FIR低通数字滤波器。

一个L-1阶的FIR数字滤波器的I/O方程可以表示为:y(n)=■b■x(n-i) (1)

MATLAB实验调用filter函数实现(1)式滤波器。学生虽然知道滤波器的各项参数含义,但缺乏如何将FIR差分方程用具体的编程语言实现的概念,为此,本实验要求学生使用C语言或汇编语言编程实现FIR滤波器。

程序的部分源代码如下所示:

LD *DATA_IN+, A ;取得待滤波数据

FIR: STL A, *FIR_DATA+% ;将待滤数据存入指定缓存区

RPTZ A, (ORDER-1)

;重复执行系数与数据相乘并累加实现滤波

MAC *FIR_DATA+0%, *FIR_COEF+0%, A ;

STH A, *DATA_OUT+ ;将滤波后数据存入指定缓存区

以上程序中,FIR_DATA是指向存放待滤数据的寄存器,FIR_COEF是指向存放滤波器系数的存储器单元的寄存器。DATA_IN、DATA_OUT是指向存放滤波前后数据的存储器单元的寄存器,MAC指令执行乘累加操作。

本文所举实例中DSP实验部分的运行结果分别如图2所示。

图2表明,基于DSP编程设计的数字滤波器,实现了低通滤波的效果。与MATLAB的运行结果对比,二者一致。

3 结语

在现有使用MATLAB开展数字信号处理实验的基础上,引入DSP技术,基于DSP设计数字滤波器,在实际操作过程中,数字滤波器的类型、各项参数、以及原始待滤信号如何产生,都在教师演示后,由学生举一反三进行修改。整个实验过程综合了数字信号处理基本理论知识、MATLAB函数、DSP基本原理及其编程等方面的知识,对学生的知识综合运行提供良好的平台。由于本文研究的实验方法兼顾了理论性与工程性,使学生体会了理论知识在工程实践中的运用过程,极大了调动了学生的积极性、提高了学生将理论用于实践的信心。

参考文献:

[1]程佩青.数字信号处理教程[M].清华大学出版社,2007,2.

[2]袁小平.基于Matlab的数字信号处理课程的实验教学[J].实验室研究与探索,2002,2.

[3]郭琳,王子旭,沈小丰.基于Matlab开展DSP教学的研究与实践[J].电气电子学报,2007,3.

滤波器设计论文篇6

关键词:交叉耦合;散射参数;耦合矩阵;波导滤波器

中图分类号:TN713文献标识码:A

文章编号:1004-373X(2010)05-015-04

Precise Design of Ku-band Waveguide Filter with Cross-coupling

DENG Xiangke,HE Songbai

(Electronics Engineering College,University of Electronic Science and Technology of China,Chengdu,611731,China)

Abstract:Aiming at reducing the time-consumption of designing the waveguide filter with cross-coupling using software optimization,a Ku-band folded waveguide filter with cross-coupling has been designed using rectangular waveguide.Polynomial synthesis of S-parameter and matrix reduction are used to obtain coupling matrix,the design procedure is a combination of circuit model analysis and full-wave method,each resonance unit and coupling structure are simulated step by step with the help of HFSS,the software optimization on filter is avoided,the simulation results agree well with the theoretical value.

Keywords:cross-coupling;S-parameter;coupling matrix;waveguide filter

0 引 言

随着现代微波通信,尤其是卫星通信和移动通信的发展,系统对通道的选择性越来越高,这对微波滤波器的设计提出了更高的要求,而微波滤波器作为通信系统中的重要部分,其性能的优劣往往决定了整个通信系统的质量。因此研究高性能的微波滤波器具有重要意义,而如何实现滤波器的高选择性和小型化也成为现代微波滤波器的主要研究方向。

如果采用切比雪夫和巴特沃茨函数逼近的直接耦合滤波器,需要得到好的频率选择特性,只有通过增加滤波器的阶数予以实现,这往往会使得滤波器的体积和重量增加,不能满足现代通信系统的需求。广义的切比雪夫滤波器通过引入非相邻腔体之间的耦合产生有限传输零点,从而在不增加滤波器阶数的前提下提高了滤波器的频率选择特性,可以满足滤波器高选择性和小型化的要求。

传统的直接耦合波导滤波器的综合和设计方法已经非常成熟。带交叉耦合的折叠型波导滤波器由于存在非相邻腔体之间的耦合而没有固定的设计方法,往往在得到初始尺寸后需要进行软件优化才能得到期望的响应,这种优化由于非常耗时,从而增加了滤波器的设计周期。

本文首先介绍了耦合谐振电路和波导滤波器的基本原理,最后结合一个Ku波段波导滤波器的设计实例,说明了这种滤波器的设计过程。首先根据设计指标,确定滤波器阶数,并综合出耦合矩阵;接着根据耦合矩阵,确定滤波器归一化阻抗变换系数,进而得到每个耦合结构处的散射参数;最后参考文献[9]的方法,利用仿真软件HFSS完成对滤波器的仿真设计。整个设计过程将理论散射参数计算和全波分析相结合,避免了使用软件对滤波器的尺寸进行优化,仿真结果和理论值吻合较好。

1 基本理论

耦合谐振回路可以作为微波腔体滤波器的等效电路,这种电路模型反映了滤波器的拓扑结构,并建立了滤波器参数和几何尺寸之间的关系。图1为用串联谐振耦合电路描述的滤波器等效电路图。

图1 耦合滤波器等效电路

从图中可以看出,一个微波滤波器可以用一系列串联谐振回路和它们之间的阻抗变换器表示,电路的谐振频率和阻抗变化系数决定了滤波器的响应曲线。

定义

χi=ω02dΧi(ω)dωω=ω0

为第i个谐振器的电抗斜率参数。其中,Χi(ω)为第i个谐振器的电抗值。Ц据阻抗变换器的公式可以得出等效电路中阻抗变换器的阻抗变换系数K为:

K01=m01RAχ1FBW

Ki,i+1i=1,2,…,n-1=FBWmi,i+1χiχi+1

Kn,n+1=mn,n+1RBχn+1FBW

(1)

式中:FBW为滤波器的相对带宽;mi,i+1为滤波器的归一化耦合系数。对于矩形波导谐振腔,波导半波长串联谐振器的电抗斜率参数为:

χi=(π/2)Z0(λg0/λ0)2

(2)

式中:Еg0为波导波长;λ0为波在自由空间传播的波长。将式(2)代入式(1),且由于RA=RB=Z0,可得到波导滤波器阻抗变换系数对特征阻抗Z0У墓橐换值为:

K′01=K01Z0=m01λg0λ0π2FBW

K′i,i+1i=1,2,…,n-1=Ki,i+1Z0=

FBWmi,i+1π2λg0λ02

K′n,n+1

=Kn,n+1Z0=mn,n+1λg0λ0π2FBW

(3)

对于含有交叉耦合项的滤波器等效电路,其归一化阻抗变换系数可以用式(3)的第二个公式计算,计算时需将式中的mi,i+1替换为相应的非相邻腔体间归一化耦合系数。

2 设计实例

2.1 技术要求

若设计一个四腔Ku波段波导滤波器,其指标为中心频率15 GHz,带宽300 MHz,回波损耗20 dB,带外衰减大于28 dB(f0±500 MHz),则根据设计指标,需要在15.25 GHz和14.75 GHz处设置传输零点以满足带外衰减的要求,因此需要实现1,4腔之间的交叉耦合。本文采用折叠型结构在波导H面开圆孔,以实现非相邻腔体之间的耦合,直接耦合则通过感性膜片的耦合实现。

2.2 耦合矩阵提取

本文根据设计指标确定滤波器的低通原型,以滤波器阶数、有限传输零点的个数和相对位置、回波损耗等参数为已知量,通过递归算法求解滤波器S参数的多项式表达,再结合二端口网络的y参数模型建立S参数和滤波器等效电路之间的关系,通过对S参数多项式进行变换和多项式展开,获得耦合矩阵的初始值。ё詈罄用实对称矩阵的相似变换对初始耦合矩阵进行消零,得到最终的耦合矩阵如下:

01.0190000

1.01900.845 270-0.253 390

00.845 2700.798 6900

000.798 6900.845 270

0-0.253 3900.845 2701.019

00001.0190

对应的低通原型如图2所示。

图2 滤波器低通原型

2.3 滤波器尺寸计算

本文选用WR62波导(宽边为15.8 mm,窄边为7.9 mm)作为滤波器设计用波导。在获得滤波器耦合矩阵后,需要计算滤波器的几何尺寸,以获得需要的响应。首先将滤波器的归一化耦合系数代入式(3),求得归一化阻抗变换系数:

K′01

=K′45=0.233 28;

K′12=

K′34=0.043 01;

K′23=0.041 86;

K′14=-0.013 28。Ы阻抗变换器等效为一个二端口网络,可以建立其散射参数和阻抗变换系数之间的关系[10]。其中:

S21=2K′1+K′2

(4)

通过式(4)可以得到每一个耦合结构处S21的理论值:

|S21|01=|S21|45=0.442 5;

|S21|12=|S21|34=0.088 42;

|S21|23=0.083 57;|S21|14=0.026 56。

为了避免对波导滤波器的软件优化,需要分步骤计算每┮桓霆耦合结构的尺寸和谐振腔的长度。具体步骤如下:

步骤一:确定输入输出耦合,1腔和2腔,3腔和4腔之间耦合膜片的尺寸,在HFSS中建立感性耦合膜片的模型(如图3所示),设置所有膜片的厚度均为2 mm,通过调整膜片缝隙尺寸,直到软件解算的S参数和理论的S参数相等,得到膜片的缝隙宽度分别为Иd01=d45=746 mm,d12=d34=478 mm。

步骤二:计算1腔和4腔的长度。在第一步的基础上根据直接耦合波导滤波器的设计公式(5)计算谐振┣1和4的长度。

l=π-12(φ1+φ2)λg02π

(5)

式中:Е摘1和φ2分别为第一个和第二个耦合膜片S21的相角;λg0为波导波长。经过计算得到1腔和4腔的长度为1084 mm。需要说明的是,此处计算的谐振腔长度没有考虑交叉耦合对腔体谐振频率的影响,因此不能作为最终的尺寸,只能为后续步骤提供设计的初始值。

步骤三:计算2和3腔之间耦合孔尺寸及谐振腔长度。本文采用折叠型结构,因此2,3腔之间的耦合利用波导H面开方孔实现,具体模型如图4所示。设计时同样通过调节耦合孔的尺寸获得和理论值相等的S参数。计算得到的耦合方孔尺寸为8 mm×6.05 mm。由于2,3腔之间的耦合为波导H面的耦合,因此不能利用直接耦合滤波器的计算公示计算谐振腔长度。本文通过软件仿真确定2,3腔的长度,模型如图5(a)所示。仿真时通过调节谐振腔的长度,使S21У姆逯党鱿衷谥行钠德15 GHz处。经过计算,谐振腔2和3的长度为12.43 mm,其S参数仿真结果如图5(b)所示。

图3 膜片缝隙宽度计算模型

图4 H面耦合孔尺寸计算模型

图5 谐振腔长度计算模型及结果

步骤四:计算1腔和4腔交叉耦合孔的尺寸。┩2腔和3腔的耦合类似,1腔和4腔的耦合也通过波导H面的耦合孔实现,其模型如图6(a)所示。建模时需要将耦合孔放置在腔体的中间,以提供最大的电场耦合,从而产生负的耦合系数。此模型是在假定m12=m23=m34=0У奶跫下对1,4腔间的耦合进行仿真的,其等效电路模型如图6(c)所示。将其看作一个┒端口网络,其散射参数可以通过计算三个阻抗变换器级联的散射参数获得。本文首先计算每个阻抗变换器的A矩阵,然后将┤个阻抗变换器的A矩阵相乘,以获得级联后的A矩阵,最后根据A矩阵和散射矩阵之间的变换关系,得到等效电路中S参数的理论值,其中S21=0.460 6。

图6 交叉耦合孔尺寸计算模型

仿真时首先利用图6(a)的模型,设置腔体长为步骤二计算得到的值,通过调节耦合孔的直径,使软件计算的S参数和理论值相等;在获得耦合孔尺寸的初值后利用图6(b)的模型,调整谐振腔1的长度,使软件计算的S21峰值出现在15 GHz处(需要说明的是,此处得到的谐振腔长度是为了更精确的计算耦合孔的尺寸);接着再利用图6(a)的模型,将腔体长度改为调整后的尺寸,重新计算耦合孔的尺寸,如此重复进行两次,耦合孔的直径和1腔的长度值将会得到收敛,此时得到耦合孔直径的最终值为2.97 mm。

步骤五:计算1腔和4腔的长度。同步骤三类似,仿真时通过调节谐振腔的长度,使S21У姆逯党鱿衷谥行钠德15 GHz处,最终得到谐振腔2和3的长度为11.11 mm。

2.4 波导滤波器仿真结果分析

根据之前计算的波导滤波器的尺寸,在HFSS中建立滤波器的最终模型(如图7所示),其幅频特性曲线和杂散曲线分别如图8和图9所示。从仿真结果可以看出,其S参数曲线和理论值吻合较好。

图7 滤波器总体外观

图8 滤波器仿真结果

图9 杂散曲线仿真结果

3 结 语

根据耦合谐振滤波器的电路模型及其散射参数,结合全波建模仿真完成了Ku波段交叉耦合波导滤波器的仿真设计。设计过程避免了利用仿真软件对滤波器的尺寸优化,大大缩短了设计时间,且仿真结果和理想响应吻合较好。

参 考 文 献

[1]王小林.微波滤波技术在通信系统中的应用[J].空间电子技术,2001,15(4):52-54.

[2]Boria V E,Gimeno B.Waveguide Filters for Satellites[J].Microwave Magazine,2007,8(5):60-70.

[3]Matthaei G L,Young L,Jones E M T.Microwave Filters Impedance-matching Networks and Coupling Structures[M].New York:McGraw-Hill,1964.

[4]Yin S,Vasilyeva T,Pramanick P.Use of Three Dimensional Field Simulators in the Synthesis of Waveguide Round rod Bandpass Filters[J].RF and Microwave Computer-Aided Engineering,1998,8(6):484-497.

[5]甘本祓,吴万春.现代微波滤波器的结构与设计[M].北京:科学出版社,1973.

[6]黄健,甘体国.波导E面金属膜片滤波器的分析[J].微波学报,1999,15(3):257-261.

[7]Guglielmi M.Simple CAD Procedure for Microwave Filters and Multiplexers[J].IEEE Trans.Microwave Theory Tech.,1994,42(7):1 347-1 352.

[8]饶克谨,游伯强.毫米波鳍线滤波器的优化设计[J].电子学报,1988,16(6):56-62.

滤波器设计论文篇7

关键词:IIR;格型滤波器;DSP Builder;FPGA

中图分类号:TN713文献标识码:A文章编号:1009-2374(2010)01-0038-02

在信号处理系统中,数字滤波器是一项重要且普遍应用的技术。它通过一定的数学函数关系来改变输入滤波器信号中所含频率成分的相对比例或滤除某些频率成分。数字滤波器按其响应方式可以分为无限冲激响应滤波器(IIR Filter)与有限冲激响应滤波器(FIR Filter)两种。IIR滤波器与FIR滤波器相比,可用较低阶数获得较高的选择性,在相同的时钟采样速率和相同的晶体管数量的前提下能提供更好的过渡带下降速率,具有广泛的应用性。

格型滤波器在IIR滤波器中起着重要作用。一是它的模块化结构便于实现数据高速并行处理,易于VLSI集成;二是一个n阶格型滤波器可以产生从1阶到n阶的n个横向滤波器的输出性能;它对有限字长的舍入误差不灵敏。由于这些优点,格型滤波器在现代谱估计、自适应滤波、语音处理、线性预测等方面应用广泛。

本文采用FPGA产商Altera公司开发的信号处理软件DSP Builder设计了一种新型格型IIR滤波器。此种格型滤波器较之传统的结构,所占用的逻辑单元大幅度减少,同时进一步提高格型IIR滤波器的运算速度。本文最后以Altera公司的Stratix II 90系列芯片作为FPGA的下载芯片,利用Quartus II软件为开发平台,进行了项目文件的分析、综合、编译适配、时序仿真分析和网表复写。根据最后的实验,新型的IIR滤波器工作的信号频率由原来的26.3MHz提高到现在52.3MHz,所占用的逻辑单元数有原来的372个下降为183个。

一、传统格型滤波器的设计

本数字IIR滤波器的系统实现有各种结构形式。Gay和Marekl于1973年提出了一种经典的格型滤波器结构。其基本单元的形状与快速傅立叶变换中的蝶形单元类似,基本的数学理论是Schur算法。在格型滤波器中 ,分母应用 Schur 算法来分析,分子部分则用 Schur算法对分母处理的结果为正规直交基函数的多项式展开算法进行分析。

稳定的IIR系统应满足以下条件:

N(z)== (1)

N=izi (2)

lN= (3)

由以上三式,可以得到格型滤波器的数学理论Schur算法具体实现。利用N(z)的表达式递推得到N-1(z)。由于两者的阶数相差为1,因此,可以通过相同的方法循环得到从N(z)的所有N个表达式。并且这N个表达式中的常数项绝对值小于z最高次幂的的绝对值。

图1表示一个传统格型IIR滤波器的结构示意图。输入信号在每经过一个相同的模块,递归多项式的次数将降低一次。经过所有的N个模块后,递归多项式变为常熟。通过匹配这些模块的常数,就可以使用简单的乘法和延迟模块把这些串联起来,构成完整的IIR滤波器系统。

二、新型格型IIR滤波器的设计

本文提出的新型格型IIR滤波器结构是基于传统IIR滤波器的结构。具体的结构图如图2所示。

图2为3阶格型IIR滤波器的结构图。由图2所示,为方便计算,N阶格型IIR滤波器的最后一阶信号流入延迟单元的节点记为x1,x1前的信号节点记为m1,同理可得m2,m3,…,mN。由信号系统的基本原理,可以得到以下等式:

x1z-1=m1(4)

由信号流向及递归思想,可以得到:

mi=((x1-mklk)li+mi-1)z-1 (5)

(6)

(7)

因此,(8)

其中ak,bk满足Levinson-Durbin递归的条件,具体的数值可以参考Levinson-Durbin算法来求得,读者可以参考文献[4],在此不再赘述。本文采用软件DSP Builder来仿真所提出的新型格型滤波器的性能,具体的电路实现为图3。其中,仿真的信号源是Matlab软件中 Simulink库的随机信号发生器、正弦信号发生器和两端口示波器。

三、滤波器电路的仿真

DSP Builder在算法友好的开发环境中帮助设计人员生成DSP设计硬件表征,从而缩短了DSP设计周期。采用DSP Builder设计的第一步是在Matlab中的Simulink进行设计输入,即在Simulink的环境中建立MDL模型文件。用模块化的方式调用Altera DSP Builder和其他Simulink中的模块,构成系统级的仿真,具体的算法级仿真如图3所示。

输入格型IIR滤波器的信号采用频率分别为98MHz、201MHz的正弦信号与随机噪声信号的叠加,其中随机噪声信号的幅度为4,所输入的正弦信号的幅度为10。格型滤波器的采样频率为489MHz,要求能够滤除高频信号和随机噪声信号。

仿真波形如图3所示,下方图是输入信号,上方图是输出信号。输入信号通过IIR格型滤波器后基本上变成单频的正弦信号输出。可见,该IIR滤波器可以比较好的消除随机噪声信号和高频信号。

Matlab中的Simulink对已经设计好的格型IIR滤波器系统进行编译,通过调用DSP Builder的Signal Compiler工具可直接生成QuartusⅡ工程文件,再调用QuartusⅡ完成综合,网表生成和适配,直至完成FPGA的配置下载过程。本文选用的FPGA芯片为Stratix II EP2S90F1020C4。仿真结果是,传统格型IIR滤波器所占用的逻辑单元数为372个,信号最高工作频率为26.3MHz,滤波器的建立时间为7.813ns,保持时间为0.194ns。本文提出的新型格型IIR滤波器所占用的逻辑单元数为183个,信号最高工作频率为58.3MHz,滤波器的建立时间为7.708ns,保持时间为0.233ns。

由上面两组仿真数据对比可知,IIR滤波器的建立时间、保持时间和关键路径延时相差不大。延时的大小与连线的长短和逻辑单元的数目有关,同时还受器件的制造工艺、工作电压、温度等条件的影响。因此,单纯的改变系统电路结构并不能根本的改善IIR滤波器的建立时间、保持时间等参数的大小。但新型格型IIR滤波器下载到Stratix II EP2S90F1020C4中所占用的逻辑单元数比传统的格型IIR滤波器减少51%,器件工作的最高频率较之传统格型IIR滤波器提高了95%。由此得出,新型格型IIR滤波器在占用资源数和工作速度等性能都有较大改善。

四、结论

采用格型IIR滤波器的数学理论,提出了一种新型的滤波器电路图。在此基础上,利用DSP Builder工具设计了3阶新型格型IIR滤波器。通过与传统格型IIR滤波器的仿真结果的对比得出,本文提出的格型IIR滤波器提高了信号的最高工作频率和减少所占用FPGA芯片的逻辑单元数等性能指标。本文的研究成果对利用DSP Builder进行数字信号处理和格型IIR滤波器的设计具有一定的参考价值。

参考文献

[1]翟海涛,杨军,朱江.一种基于FPGA的高速FIR滤波器的设计[J].信息化研究,2009,(4).

[2] R.W. Jones,B.L Olsen,B.R. Mace. Comparison of convergence characteristics of adaptive IIR and FIR filters for active noise control in a duct. Applied Acoustics[J].2007,68(7).

[3]彭煊,杨红卫,刘金福,等.基于Schur运算格的线性ICA估计算法[J].电子学报,2004,(3).

滤波器设计论文篇8

关键词:LC 滤波器 大功率 陶瓷基板电容

中图分类号:TN622 文献标识码:A 文章编号:1007-9416(2014)05-0086-02

在现代通信和电子对抗系统中,由于大功率发射机不可避免地会寄生一定功率的谐波信号,大功率滤波器用于接在发射机的输出端对谐波信号进行抑制,从而改善各分系统之间的电磁兼容性,提高系统的整体性能。因为大功率滤波器对系统性能的影响起着举足轻重的作用,所以研制一种损耗低、抑制性能好的大功率滤波器相当有必要。

本文所设计滤波器带宽225MHz-500MHz,带内损耗小于 0.2dB,回波损耗优于20dB,160MHz-710MHz之外抑制优于20dB,125MHz-880MHz之外优于40dB。当然要想提高抑制增加滤波器节数是有效的方法,但是节数越多体积越大,本文所选为7节滤波器。

1 带通滤波器的仿真设计

滤波器设计的理论知识已众所周知,本文不再过多讨论。利用Ansoft Designer的理论模型设计225MHz-500MHz带通滤波器。带通滤波器的原理图如图1。

在电路设计中插入器件画出电路图,并引入变量对电感和电容值进行调谐,最后仿真结果如图2。

得出仿真的电感和电容值后,按公式(1)、(2)计算出实际线圈和陶瓷基板的大小。

其中是平板表面积,代表平板间距,是真空中电导率值为8.85418×F/m,为相对真空中的介电常数;当

2 板材温升的简单计算

温升的计算方法有热阻法、热容法、散热面积法等多种方法,本文采用热阻法简单计算一下基板的温升。

温升(℃),热阻(℃/),功耗(),为平板的厚度(),为平板垂直于热流方向的截面积(),为平板材料的热导率()。

滤波器的承受功率是2000瓦,损耗小于0.2dB,AL2O3陶瓷的热传导率是29.3,聚四氟乙烯的热传导率是0.27。假设以热损耗是100瓦,按公式(3)、(4)进行计算,AL2O3陶瓷基板的温升在5℃左右,而聚四氟乙烯板的温升在500℃左右。当然,散热方式包括传导和辐射,即使50%的热量通过辐射的方式散出去,聚四氟乙烯板的温升也有250℃左右,对于此滤波器来说聚四氟乙烯板是绝对不适用的。本文只是粗略估算一下板材的温升,计算并不是很准确。

3 带通滤波器的测试

调试完成后的带通滤波器实物图如图3。

带通滤波器用矢量网络分析仪测试通带、抑制、回波的小信号,结果如图4。

此滤波器不仅进行了常温功率试验,在高低温-10℃和+55℃时承受2000瓦功率工作状态依然稳定。

4 设计中的一些细节

带通滤波器在设计时选用了理想模型,电感和电容按理论值所制作出的滤波器频率会稍有偏差,需要对电感和电容做细微的调整。

绕制电感线圈时,铜线如果选用太细散热效果不好,选用太粗滤波器的体积较大,在设计中要选用适当粗细的铜线。

电容在选择时,通路电容按就近档容值选用ATC10E型高耐压值陶瓷电容,对地电容选用AL2O3陶瓷基板电容,以利于滤波器散热。

陶瓷基板在焊接到金属底板上时,如果两种材质的热膨胀系数相差较大,最好选用中间膨胀系数材质的金属做垫板,以提高环境适应性。

5 结语

本文所设计的LC大功率滤波器在损耗、回波、抑制、功率容量等各方面的指标都比较好,大幅提高了LC滤波器的功率容量。而且本设计方案适用于所有使用LC滤波器的频段,能够很好的满足大功率发射机的工程使用需求。

参考文献

[1]Joseph F.White.射频与微波工程实践导论[M].北京:电子工业出版社,2009.

[2]Reinhold Ludwig,Pavel Bretchko.射频电路设计-理论与应用[M].北京:电子工业出版社,2002.

推荐范文