线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

交流电动机的应用8篇

时间:2023-05-16 10:16:56

交流电动机的应用

交流电动机的应用篇1

关键词:负序电流;三相异步电动机;保护;PLC

1 引言

对三相交流异步电动机运行保护,传统的方法有两种:一是使用热继电器作为电动机过载和缺相保护,二是使用电机综合保护器进行保护。前者存在可靠性差和有效性差等缺点;后者对电动机接地故障未能进行有效的保护,并且体积较大,结构复杂、如果损坏只能整体换件。为了提高电动机保护装置的可靠性、有效性,本文提出了一种简单可靠的保护装置,并结合PLC实现故障判断和故障信号报警策略设计。

2 电动机保护原理

电动机是一种非线性、强耦合、多变量的电、机能量转换系统,在正常运行时三相电流的趋于平衡的,且电流不大于额定电流(起动时除外),如果发生断相、接地故障三相电流就不平衡,如果发生过载、短路故障、电流就会大于额定电流;采用电流互感器检测电动机负序电流的方法来提取断相保护信号,从零序电流提取接地、漏电保护信号,并用热继电器进行电动机的过载保护,用熔断器提供短路保护,将故障信号作为输入信号送入PLC进行故障判断及报警显示。

3 简单可靠的保护装置电路

电动机保护装置电路如图1所示,电压继电器KA5、KA6采集电源电压信号,三相电动机电流由电流互感器TA1、TA2、TA3采集,并经过整流后驱动电流继电器KA1、KA2、KA3,电动机的漏电和接地信号由TA4采集并整流后驱动KA4的线圈,当电动机正常运行时KA1、KA2、KA3、KA5、KA6的线圈电流应略大于它的最小吸合电流以保证继电器可靠动作,而KA4的线圈电流为零,继电器KA4不动作;当发生接地漏电故障时KA4线圈电流应略大于它的最小吸合电流以保证继电器可靠动作,并根据继电器的动作电流选择不同数据的电流互感器,整流桥选用3~5A/700V的整流桥;PLC的I/O接线图如图2所示。

4 工作过程分析

当闭合QS后,欠电压继电器采集电源电压信号KA5、KA6,如果它们不能吸合,则X0为OFF表明电源缺相或欠电压,这时按下起动按钮电动机不能起动,KM不会闭合,并发出相应的报警信号。如果电源正常,闭合QS,欠电压继电器KA5、KA6能吸合,则X0为ON表明电源电压正常,电源指示灯Y7亮,按下起动按钮SB1后KM线圈得电,电动机起动运行;电动机正常运行时,电流互感器TA1~TA3输出的二次电流经整流后,分别推动KA1~KA3,使X1为ON;若电动机出现某相失压(或者由于相间短路烧断熔断器造成的失压)、断相的不对称运行状态,则对应相的电流为零,则继电器KA释放,产生相应的故障信号X1为OFF,断相故障指示灯Y4闪烁,同时使KM线圈失电,并发出相应的报警信号。

如果电动机发生接地、漏电故障,电流互感器TA4

输出的二次电流经整流后推动KA4,使X2为ON,接地漏电故障指示灯Y6闪烁,同时使KM线圈失电,并发出相应的报警信号。

如果电动机电流超过正常电流一定时间后,热继电器动作产生过载信号X3为ON,过载故障指示灯Y5闪烁,同时使KM线圈失电,并发出相应的报警信号。

5 PLC的控制梯形图

为了区分几种故障信号,分别设置M10、M11、M12、M13四个存储继电器存储电源故障信号、断相故障信号、过载故障信号、接地故障信号。为了识别第一故障原因的信号,采用主控命令,当发生第一故障时,故障信号存储置位并退出主控,停止电机,并产生对应的闪烁信号和声音报警,直至按下确认按钮SB3,具体的梯形图如图3。

声音报警程序如图4,发生故障时Y10为ON则蜂鸣器响,按下确认按钮SB6后消声。

6 结束语

本文设计一种基于PLC控制的简单、可靠电动机综合保护电路,并以电动机失压、缺相、过载、接地故障为例,并提出基于PLC故障判别和报警策略的处理方法。其工作电路简单、具有理论根据、工作可靠的特点,因此这种方案具有很强的实用价值。■

参考文献

[1]许实章.电机学[M].北京:机械工业出版社,1990.

交流电动机的应用篇2

关键词:开关磁阻电机调速系统 采煤机电控

1、开关磁阻电机调速系统工作原理

该调速系统在结构上由电动机和控制器两部分组成,其框图如图1所示。电动机为定转子双凸极12/8齿结构。定子齿上有集中绕组,每四个齿的绕组相连接,构成A、B、C三相绕组,当某相绕组通电时,将产生一个使邻近转子齿与该相绕组轴线相重合的电磁转矩。顺序对各相绕组通电时(如A-B-C-A…..),则可使转子连续转动。改变通电次序,可改变电动机转向。控制该电流的大小和通断电时刻,可以改变转矩,改变转速,还可以实现制动运行。该电动机结构十分简单坚固,控制也十分方便。

为了检测电动机转子的瞬时位置和转速,在电动机后部装有传感器。该传感器采用高性能红外光电元件,其抗干扰能力强,耐热性能好、寿命长,并且有防尘密封罩保护。

图2表示控制器中的功率电路。三相交流电源二极管整流桥V转换为直流电源。六个IGBT功率开关和续流二极管组成三相半桥式逆变电路,分别向电动机三相绕组供电。当一相功率开关(如TA、TA)导通时,经端子(A1、A2)向电动机绕组(A组)通电。当功率开关关断时,该绕组通过续流二极管)(DA、DA)向电容器C续流和回馈能量,并使电流迅速降至零。这里功率开关同电动机绕组相串联,避免了桥式逆变电路(如变频器)易发生上下桥臂元件直通短路的危险。

控制电路的作用是根据外部操作控制要求和电动机实际运行情况连续调节输出信号,以通过驱动电路和功率电路改变电动机绕组的通电时刻,使之达到规定的运行要求,如转向、转矩、转速、电动与制动灯,并处于最佳工作状态。控制电路由一个单片机及数字、模拟电路组成,工作稳定、抗干扰强、响应快。

由图3所见,其调速系统属于转速电流双闭环系统,通过脉冲宽度调制电路调节加于电动机的转向,并通过改变换向角改变电动机的电动、制动工作状态。电流限幅电路则改善了电动机转矩的平稳性,并实现控制器和电动机的安全工作。此外,控制器还实现了多种保护和自诊断功能。操作显示电路的作用是接收手动或电气操作信号,如起动、停止、转向、转速信号等,并将操作情况和电动机的实际运行情况及故障情况用数码管和发光管显示出来。

交流电动机的应用篇3

【关键词】交流变频电动机 控制系统 研究

1 交流变频电动钻机的介绍

1.1 转盘独立电驱动钻机

转盘独立电驱动钻机就是转盘采用交流变频电动机单独驱动,绞车和钻井泵采用机械统一驱动的钻机。该型钻机采用多台柴油机通过液力变矩器或液力耦合器输出动力,然后经过链条并车,分别驱动绞车和钻井泵;转盘由1台交流变频电机通过齿轮或链条减速传动;绞车配辅助驱动装置,可实现自动送钻功能。其特点是转盘转速能够根据钻井工艺的需要来调节,不受钻井泵冲次的制约,同时,具备数控恒钻压自动送钻功能,实现以接近机械钻机的价格,获得交流变频电动钻机的优越性能。

1.2 机电复合驱动钻机

机电复合驱动钻机是转盘在采用电机独立驱动的基础上,绞车采用交流变频电机驱动,而钻井泵仍然采用机械驱动。该方案主要应用在钻深5000m以下的钻机上。2~3台柴油机通过皮带并车驱动钻井泵,同时,还可驱动1台节能发电机。该型钻机能够实现交流变频电动机的主要功能,而价格只有全交流变频电动钻机的60%~70%,同时,具有良好的运行经济性。

1.3 全交流变频电动钻机

全交流变频电动钻机的绞车、转盘、钻井泵均采用交流变频电机驱动。其转盘传动主要有电机直接驱动和电机加减速箱驱动2种方式。绞车通常采用2台电机通过二级齿轮减速箱驱动,并配辅助驱动装置,也有采用一级齿轮减速箱方案的。除转盘独立电驱动钻机采用机械的多轴绞车外,交流变频电动钻机通常都采用单轴绞车结构,其传动形式是交流变频电机通过齿轮减速箱直接驱动滚筒轴,主刹车采用盘式刹车,取消了电磁涡流刹车,而采用能耗制动实现辅助刹车功能。

交流变频电动钻机常用的调速技术有矢量控制和直接转矩控制2种。矢量控制主要采用Siemens公司的变频器,直接转矩控制主要采用ABB公司的变频器。在控制方式上有一对一控制和一对二控制。采用一对一控制需要每台电机对应一个变频柜,而一对二控制可以根据需要切换绞车或钻井泵的变频柜来控制转盘,也可设置主从两个变频柜。

2 交流变频电机的控制系统

变频电动钻机控制系统由发电系统(发电机、控制柜)、交流传动系统(变频柜、制动柜)、控制网络(PLC柜、司钻操作台、工控机、远程计算机、AS-i总线系统或Profibus总线系统)、交流电机控制中心组成。

2.1 动力发电系统

目前广泛应用的是ROSS HILL电气控制系统,SIEMENS电气控制系统,其主要功能是基本相同的:控制柴油机的转速与发电机的励磁电流,得到600V、50HZ稳频、稳压电流,作为全井场的动力电源;发电机控制柜内还设有并网控制电路,控制多台发电机的并网以达到同期合闸操作。发电机可按工况需要,全部或任意两台以上在线运行时,负荷都能均衡分配,负荷转移平稳,能承受钻机的负荷特性和电动机起动时的冲击。发电机控制装置还具有功率限制、自起动电源电路、接地检测相序保护、过流保护、过压保护、欠压保护、过频保护、逆功保护、短路保护、柜内故障自检等功能。

2.2 交流传动系统

2.2.1变频驱动控制系统

变频主驱动系统由若干变频柜组成,分别将600V、50HZ恒压、恒频的交流电压变成0~750V连续可调的交流电压,以一拖一或者一拖二的驱动方式分别驱动钻井泵、绞车、转盘。绞车和转盘电动机具有反转功能,扭矩限制0%~100%范围内任意调节。在石油钻机中应用较多的是Siemens变频器。SIMOVERT master DRIVE 矢量控制变频器是采用IGBT元件、全数字技术的电压源型变频器。

2.2.2制动控制单元

制动柜内的制动单元和变频房外的制动电阻的主要功能是:在绞车需要制动时,控制电动机进入发电运行状态,使电动机产生于旋转方向相反的制动力矩,负载侧的机械能转化为电能通过逆变器传到变频柜直流母线上。当直流母线电压高于最高阀值时,制动控制单元自动将制动电阻接通,使中间直流母线之间电容器储存的多余电能以热能形式由制动电阻消耗,以维持直流母线上的电压保持恒定。这种制动方式称为能耗制动。自动送钻系统的制动单元也采用能耗制动。

2.2.3自动送钻

送钻变频柜将400V、50HZ恒压、恒频的交流电压变流成0~400V变压、变频连续可调的交流电压,以一拖一的驱动方式驱动送钻电动机。恒压方式可以实现恒压自动送钻。送钻电动机在恒速方式时具有正反转的功能,可以起到应急起放井架和钻具的功能,也可以恒速送钻。

2.3 控制网络

2.3.1司钻控制室

司钻控制室已成为交流变频电动钻机的标准配置,目前的司钻控制系统主要有模拟控制和数字控制2种。从控制功能来看,可以实现绞车无级调速,游动系统的位置、速度、加速度闭环控制,悬重限制保护,数控恒钻压自动送钻,转盘无级调速、转矩限制保护,钻井泵无级调速、泵压限制保护等功能。可以通过触摸屏和显示屏对控制系统的主要设备运行状态进行监控。

2.3.2PLC控制系统

通过数据采集单元(现场传感器、编码器、变送器等),可编程控制器经过计算处理,在触摸屏、显示屏等HMI人机界面显示以下钻机参数:悬重、钻压、井深、机械钻速、转盘转速、转盘扭矩、泵冲泵压、泥浆池液位、出口返回量、游车位置等参数。

2.4 MCC配电控制系统

交流电动机控制中心的主要功能是对井场的钻台、钻井液循环罐区、油罐区、压气机房和水罐区的交流电动机进行控制,并给井场提供照明电源。交流电动机控制中心系统对30KW以上的电机采用软起方式。MCC柜采用分装式结构,以便于维修更换。

3 变频钻机及其控制系统的发展趋势和前景

交流电动机的应用篇4

关键词:异步电动机;变频调速;调速方式

中图分类号:TP39 文献标识码:A 文章编号:1674-7712 (2012) 12-0023-02

电动机是进行工业、农业生产的一种重要工具,它能够将电能转变成为机械能从而满足生产的需要,也因此被广泛的运用到社会生产的各个领域。一般来讲,电动机可以分为直流电机与交流电机,只是近年来随着技术的发展以及直流电机固有的缺点,人们对交流电机的运用更为广泛。但是交流电机相对直流电机来说在调速方面有着一些困难,所以变频调速技术也就应用而生。随着交流传动电动机调速理论研究逐步突破以及调速装置(主要为变频器)性能的完善,交流电动机调速系统的缺点(性能较差)已经基本得到了克服。目前,交流调速系统的性能已经可以与直流系统相媲美,甚至可以超过直流系统。不仅使交流调速系统控制装置体积小,效率高,而且还更容易实现各种功能复杂但在结构上简单的控制方案,更加充实和推动了变频器理论的进一步发展。

一、交流异步电动机的变频调速技术概述

(一)交流异步电动机特点概述。交流异步电动机是在现今社会经济条件下运用最为广泛的一种动力机械,其承载着工业生产以及农业生产等重要的任务。但是作为一种机械设备,由于其特定的结构以及性能也有着属于自身的使用特点,具体来讲如下:

1.交流异步电动机使用优点。在电动机中主要有直流电动机与交流电动机,而交流异步电动机作为交流电动机的一种,具有自己明显的运用优势。首先,它具有简单的结构,并且功能齐全,可靠性高;其次,在其内部,控制器可以自成系统,也就使得软件功能完善灵活;再次,其控制功能全面精确,使用寿命长;最后,它在工作的过程中拥有着较高的工作效率,并且机器本身的重量也轻,通用性强,具有较低的运行成本。

2.交流异步电动机使用缺陷。虽然说,通过上面的分析我们可以看出交流异步电动机有着很多的运行优势,但是不可避免的它还是有着自身的一些缺点。其中调速性能差是其主要的缺点。它不能够像直流电动机一样进行灵活简单的调速,而是由于其工艺要求,需要一定的电动机调速上场合。所以,很多时候人们也往往因为交流异步电动机这样的一个缺点,会选用直流电动机来进行作业,或者是运用新的技术,来让交流异步电动机的运行能够进行符合其工艺要求的调速。当然这时候,交流异步电动机变频调速技术也就应用而生。

(二)交流异步电动机变频调速技术概述。变频调速技术是一种有效的交流异步电动机的调速技术,其是随着变频装置的出现而慢慢的发展起来的。并且随着电力电子技术以及微电子技术的不断深入发展,其技术也得到了很大的几进步,几乎可以跟直流电机的调速技术相媲美。具体来讲,变频调速技术有着下面的一个特点。

1.变频调速技术使用优点。在交流异步电动机中,使用变频调速技术主要有下面的一些优势:首先,变频调速相对于普通调速具有平滑性好、效率高的优点,并且在电动机处于低速运动的时候,其稳定性也好;其次,在调速的过程中范围比较大,并且使用时候的精确度也相对来说比较高;再次,在变频调速中由于其在电机启动的过程中所需要的电流比较低,所以具有比较明显的节电效果;最后,整个变频调速技术自动化程度高。

2.变频调速技术使用缺陷。跟所有的调速技术一样,虽然变频调速技术有着很多的优点,但是不可避免的也会出现一些缺陷。首先,由于变频调速技术的电流中含有很多的高次谐波,一方面会对电网造成污染,另一方面还能够对电机造成损耗,使得电机发热;其次,变频调速技术需要专用的变频电源,所以在造价方面就比较高,而且投资的回收期也相对来说比较长,技术复杂。

二、交流异步电动机变频调速技术发展方向

在现今的社会中,随着技术的不断发展以及科技的进步,变频调速技术也得到了长足的发展。作为变频调速技术的承载者变频器应该适应技术发展的趋势,不断的进行自身的完善,从而让整个变频调速技术更加现代化,更加灵活化。下面是变频调速技术的发展方向:

(一)向网络智能化发展。智能化是现金社会发展的一个主流方向,不管是小到手机等通讯工具还是大到电动机等机械设备,都在向网络智能化的道路上行走。而变频技术也应该适应这样的一个发展,能够免去那么多的设定,从而实现故障自我诊断以及部件的自动更换等等,并且在此基础上不断的延长变频器的寿命。

(二)向专门化一体化发展。专门化的研究与制造能够使得设备的性能更强,也能够使得技术更加先进。所以对于交流异步电动机来说也应该走专门化的发展道路。专门就某个领域进行变频器的研究,强化其性能,提高其技术。当然除此之外,还应该让变频器与电动机逐渐的一体化,让变频器成为电动机的一部分,从而更好的进行控制。

(三)向环保无公害的方向发展。近些年来,随着人们对环境的越来越重视,各种机械设备也慢慢的在呼吁环保无公害。而交流异步电动机作为一种设备在其进行调速的过程中也应该考虑绿色环保,将噪声以及电源谐波的污染将到最低。

三、交流异步电动机的变频调速技术的应用

交流异步电动机被广泛的应用到了电气传动之中,而在其的运用中对调速原理的理解就显得十分重要,下面是交流异步电动机变频调速的技术原理以及控制方法。

(一)交流异步电动机变频调速原理。在了解交流异步电动机变频调速技术原理之前,我们需要对交流异步电动机的转速先做个大体的了解。因为交流异步电动机变频调速技术的原理是从交流异步电动机的转速方程中得出的。

1.交流异步电动机转速方程。在交流异步电动机中,往往交流的调速是通过定子与转子之间的产生的旋转磁场而实现的,在定子与转子进行旋转的时候会产生感应电流,这个电流跟磁场相互发生作用,也就产生了电磁转矩,使得电动机转动起来,产生一定的转速,也就是同步转速。一般用n0来表示。其具体的转速公式如下:

其中,f是交流电源的频率,一般设定为50Hz,p则是磁极的对数,一般来讲当p=1的时候,n0就为每分钟3000转;而当p=2的时候,则n0为每分钟1500转。通过公式我们可以看出,当磁极对数越多的时候,转速也相应越慢,而转子的实际转速n一般都会比同步转速n0慢一点,也就是所谓的异步电机,由此产生的差别会用s来表述,其公式如下:

由上面的两个公式我们就可以得出交流异步电动机的转速方程,也就是如下面所示:

2.交流异步电动机变频调速技术原理。交流异步电动机变频调速技术原理是通过交流异步电动机的转速而实现的,也就是说在交流异步电动机中,电机的转速n与电源的频率f成正比,所以在进行电机异步频率的改变中,可以通过调节输入电源的频率以及改变电机的同步转速而实现,这也就是所谓的交流异步电动机变频调速的原理。

(二)交流异步电动机变频调速技术控制方法。在交流异步电动机变频调速中最基本的控制方法则为 恒定控制。这种控制方法通过改变变频器输出电压频率与电压幅值而实现调速,让整个电机的频率保持在稳定的状态内,使得电机的效率以及功率保持恒定。并且在控制的方式上也会随着运行频率基频的不同而控制状况不同。具体来讲,主要有下面的两种控制调速状况:

1.基频以下的变频调速。基频以下的变频调速又可以成为恒磁通变频调速,这种调速是 比恒定调速在基频以下的调速,所以当频率较低的时候,定子的抗压都不能够被忽视,所以这种变频后的机械的性能应该如下图所示:

如图所示,我们可以看出,当电机向低于额定转速n0方向调速的时候,电机会保持原来的机械特征,并且转矩也会随着电机转速的下降而减小,这就会让电机的负载能力下降。这也是变频调速的缺陷的一个反应。所以往往为了提高电机的负载能力,则使用 转矩补偿法,来增强交流电动机变频调速的使用性能。

补偿法是在电机频率降低的时候,采用提高电压的方法来使得磁通量保持恒定,从而让电机的转矩能够得到回升,以此来提高电机的变频调速使用性能。一般而言,进行补偿后的电动机机械性能曲线图如下所示:

2.基频以上的变频调速。交流异步电动机基频以上的调速方式,属于恒功率的调速方式,在进行变频调速之后的机械的性能曲线图如下所示:

我们可以看出,电动机在基频以上进行调速的时候机械特性曲线工作段的斜率逐渐的增大,使得机械的特性变软。使得机械在一个比较恒定的状态下进行工作。

四、总结

通过以上对于交流异步电动机变频调速技术的分析,我们可以看出这样的一种变频调速的控制方式虽然说给电动机的调速带来了很大的方便,使得操作也变得简单,但是在其控制的过程中还是存在着低速性能差的缺陷。所以,在进行交流异步电动机变频调速中一定要加大对技术的研究,弥补这些缺憾,从而让变频调速技术变得更加完善。

参考文献:

交流电动机的应用篇5

关键词:交流调速;半导体;电动机;变频

提高交流传动系统的性能,国内外有关研究工作正围绕以下几个方面展开:采用新型功率半导体器件和脉宽调制(PWM)技术 采用新型功率半导体器件和脉宽调制( ) 功率半导体器件的不断进步,尤其是新型可关断器件,如 BJT(双极型晶体管) 、 MOSFET(金属氧化硅场效应管) 、IGBT(绝缘栅双极型晶体管)的实用化,使得开关高频 化的 PWM 技术成为可能。目前功率半导体器件正向高压、大功率、高频化、集成化和智能 化方向发展。典型的电力电子变频装置有电压型交-直-交变频器、电流型交-直-交变频器和 交-交变频器三种。 电流型交-直-交变频器的中间直流环节采用大电感作储能元件, 无功功率 将由大电感来缓冲,它的一个突出优点是当电动机处于制动(发电)状态时,只需改变网侧 可控整流器的输出电压极性即可使回馈到直流侧的再生电能方便地回馈到交流电网, 构成的 调速系统具有四象限运行能力, 可用于频繁加减速等对动态性能有要求的单机应用场合, 在 大容量风机、泵类节能调速中也有应用。电压型交-直-交变频器的中间直流环节采用大电容 作储能元件,无功功率将由大电容来缓冲。对于负载电动机而言,电压型变频器相当于一个 交流电压源,在不超过容量限度的情况下,可以驱动多台电动机并联运行。电压型 PWM 变 频器在中小功率电力传动系统中占有主导地位。 但电压型变频器的缺点在于电动机处于制动 (发电) 状态时, 回馈到直流侧的再生电能难以回馈给交流电网, 要实现这部分能量的回馈, 网侧不能采用不可控的二极管整流器或一般的可控整流器, 必须采用可逆变流器, 如采用两 套可控整流器反并联、采用 PWM 控制方式的自换相变流器(“斩控式整流器”或 “PWM 整 流器”) 。网侧变流器采用 PWM 控制的变频器称为“双 PWM 控制变频器”,这种再生能量回 馈式高性能变频器具有直流输出电压连续可调,输入电流(网侧电流)波形基本为正弦,功 率因数保持为 1 并且能量可以双向流动的特点, 代表一个新的技术发展动向, 但成本问题限 制了它的发展速度。通常的交-交变频器都有输入谐波电流大、输入功率因数低的缺点,只 能用于低速(低频)大容量调速传动。为此,矩阵式交-交变频器应运而生。矩阵式交-交变 频器功率密度大,而且没中间直流环节,省去了笨重而昂贵的储能元件,为实现输入功率因 数为 1、输入电流为正弦和四象限运行开辟了新的途径。 随着电压型 PWM 变频器在高性能的交流传动系统中应用日趋广泛,PWM 技术的研究 越来越深入。

普通 PWM 变频器的输出电流中往往含有较大的和功 率器件开关频率相关的谐波成分, 谐波电流引起的脉动转矩作用在电动机上, 会使电动机定 子产生振动而发出电磁噪声, 其强度和频率范围取决于脉动转矩的大小和交变频率。 如果电 磁噪声处于人耳的敏感频率范围, 将会使人的听觉受到损害。 一些幅度较大的中频谐波电流 还容易引起电动机的机械共振,导致系统的稳定性降低。为了解决以上问题,一种方法是提 高功率器件的开关频率, 但这种方法会使得开关损耗增加; 另一种方法就是随机地改变功率 器件的导通位置和开关频率,使变频器输出电压的谐波成分均匀地分布在较宽的频带范围 内,从而抑制某些幅值较大的谐波成分,以达到抑制电磁噪声和机械共振的目的,这就是随 机 PWM 技术。

应用矢量控制技术、直接转矩控制技术及现代控制理论 应用矢量控制技术、直接转矩控制技术及现代 现代控制理论 交流传动系统中的交流电动机是一个多变量、 非线性、 强耦合、 时变的被控对象, VVVF 控制是从电动机稳态方程出发研究其控制特性,动态控制效果很不理想。20 世纪 70 年代初 提出用矢量变换的方法来研究交流电动机的动态控制过程, 不但要控制各变量的幅值, 同时 还要控制其相位, 以实现交流电动机磁通和转矩的解耦, 促使了高性能交流传动系统逐步走 向实用化。 目前高动态性能的矢量控制变频器已经成功地应用在轧机主传动、 电力机车牵引 系统和数控机床中。此外,为了解决系统复杂性和控制精度之间的矛盾,又提出了一些新的 控制方法,如直接转矩控制、电压定向控制等。尤其随着微处理器控制技术的发展,现代控 制理论中的各种控制方法也得到应用, 如二次型性能指标的最优控制和双位模拟调节器控制 可提高系统的动态性能,滑模(Sliding mode)变结构控制可增强系统的鲁棒性,状态观测 器和卡尔曼滤波器可以获得无法实测的状态信息,自适应控制则能全面地提高系统的性能。

广泛应用微电子技术 广泛应用微电子 电子技术 随着微电子技术的发展, 数字式控制处理芯片的运算能力和可靠性得到很大提高, 这使 得全数字化控制系统取代以前的模拟器件控制系统成为可能。 目前适于交流传动系统的微处 理 器 有 单 片 机 、 数 字 信 号 处 理 器 ( Digital Signal Processor--DSP ) 专 用 集 成 电 路 、 (Application Specific Integrated Circuit--ASIC)等。

开发新型电动机和无机械传感器技术 交流传动系统的发展对电动机本体也提出了更高的要求。 电动机设计和建模有了新的研 究内容,如三维涡流场的计算、考虑转子运动及外部变频供电系统方程的联解、电动机阻尼 绕组的合理设计及笼条的故障检测等。

为了更详细地分析电动机内部过程, 如绕组短路或转子断条等问题, 多回路理论应运而生。 随着 20 世纪 80 年代永磁材料特别是钕铁硼永磁的发 展, 永磁同步电动机(Permanent-MagnetSynchronous Motor--PMSM)的研究逐渐热门和深 入,由于这类电动机无需励磁电流,运行效率、功率因数和功率密度都很高,因而在交流传 动系统中获得了日益广泛的应用。此外,开关变磁阻理论使开关磁阻电动机 (Switched Reluctance Motor--SRM) 迅速发展, 开关磁阻电动机与反应式步进电动机相类似, 在加了转子位置闭环检测后可以有效地解决失步问题,可方便地起动、调速或点控,其优良 的转矩特性特别适合于要求高静态转矩的应用场合。 在高性能的交流调速传动系统中, 转子 速度(位置)闭环控制往往是必需的。

参考文献:

[1]《计算机操作系统教程》张尧学清华大学出版社(第二版)

交流电动机的应用篇6

关键词技术现状 工作原理 运行维护

中图分类号:F407.6 文献标识码:A 文章编号:

一、电动机技术发展及现状

在现代化生产过程控制中,电机是利用电磁感应原理工作的机械。随着生产的发展而发展的,现有的国产大流量电动执行机构存在着控制手段落后、机械传动机构多、结构复杂、定位精度低、可靠性差等问题。而且执行机构的全程运行速度取决于其电机的输出轴转速和其内部减速齿轮的减速比,一旦出厂,这一速度固定不可调整,其通用性较弱。反过来,电机的发展又促进了社会生产力的不断提高。从19世纪末期起,电动机就逐渐代替蒸汽机作为拖动生产机械的原动机,一个多世纪以来,虽然电机的基本结构变化不大,但是电机的类型增加了许多,在运行性能,经济指标等方面也都有了很大的改进和提高,而且随着自动控制系统和计算机技术的发展,在一般旋转电机的理论基础上又发展出许多种类的控制电机,控制电机具有高可靠性﹑好精确度﹑快速响应的特点,已成为电机学科的一个独立分支。

它应用广泛,种类繁多。性能各异,分类方法也很多。电机常用的分类方法主要有两种:一种是按功能用途分,可分为发电机﹑电动机,﹑压器和控制电机四大类。电动机的功能是将电能转换成机械能,它可以作为拖动各种生产机械的动力,是国民经济各部门应用最多的动力机械,也是最主要的用电设备,各种电动机消耗的电能占全国总发电量的60%~70%。另一种分类方法是按照电机的结构或转速分类,可分为变压器和旋转电机.根据电源电流的不同旋转电机又分为直流电机和交流电机两大类.交流电机又分为同步电机和异步电机.

在现代化工业生产过程中,为了实现各种生产工艺过程,需要各种各样的生产机械。拖动各种生产机械运转,可以采用气动,液压传动和电力拖动。由于电力拖动具有控制简单﹑调节性能好﹑耗损小﹑经济,能实现远距离控制和自动控制等一系列优点,因此大多数生产机械都采用电力拖动。

按照电动机的种类不同,电力拖动系统分为直流电力拖动系统和交流电力拖动系统两大类。

纵观电力拖动的发展过程,交,直流两种拖动方式并存于各个生产领域。在交流电出现以前,直流电力拖动是唯一的一种电力拖动方式,19世纪末期,由于研制出了经济实用的交流电动机,致使交流电力拖动在工业中得到了广泛的应用,但随着生产技术的发展,特别是精密机械加工与冶金工业生产过程的进步,对电力拖动在起动,制动,正反转以及调速精度与范围等静态特性和动态响应方面提出了新的,更高的要求。由于交流电力拖动比直流电力拖动在技术上难以实现这些要求,所以20世纪以来,在可逆,可调速与高精度的拖动技术领域中,相当时期内几乎都是采用直流电力拖动,而交流电力拖动则主要用于恒转速系统。

虽然直流电动机具有调速性能优异这一突出特点,但是由于它具有电刷与换向器(又称整流子),使得他的故障率较高,电动机的使用环境也受到了限制(如不能在有易爆气体及尘埃多的场合使用),其电压等级,额定转速,单机容量的发展也受到了限制。所以,在20世纪60年代以后,随着电力电子技术的发展,半导体交流技术的交流技术的交流调速系统得以实现。尤其是70年代以来,大规模集成电路和计算机控制技术的发展,为交流电力拖动的广泛应用创造了有利条件。诸如交流电动机的串级调速,各种类型的变频调速,无换向器电动机调速等,使得交流电力拖动逐步具备了调速范围宽,稳态精度高,动态响应快以及在四象限做可逆运行等良好的技术性能,在调速性能方面完全可与直流电力拖动媲美。除此之外,由于交流电力拖动具有调速性能优良,维修费用低等优点,因此它今后将广泛应用于各个工业电气自动化领域中,并逐步取代直流电力拖动而成为电力拖动的主流。

交流电动机的应用篇7

关键词:感应电机 软起动 交交变频

abstract:some starting manners of motor are given and analyzed in this paper, soft

starting is introduced emphasizly. but how to solve over loading starting is purposed

and ac-ac variable frequency is given.

keywords:inducing motor soft starting ac-ac variable frequency

1 引言

三相交流电动机从发明以来,经历了100多年的历程,在这漫长的岁月里,它为奠定与发展这项经典的传动技术树立了丰碑,。又由于其具有结构简单、运行可靠、维护方便、价格低廉,而广泛作用于电力拖动生产机械的动力,在机械、化工、纺织和石化等行业有大量的应用。然而,电动机的起动特性却一直举步维艰。这是因为电动机在恒压下直接起动,其起动电流约为额定电流的4-7倍,其转速要在很短时间内从零升至额定转速,会在起动过程中产生冲击,很容易使电力拖动对象的传动机构等造成严重磨损甚至损坏。在起动瞬间大电流的冲击下,将引起电网电压降低,影响到电网内其它设备的正常运行。同时由于电压降低,电动机本身起动也难以完成,造成电机堵转,严重时,可能烧坏电动机。因而如何减少异步电动机起动瞬间的大电流的冲击,是电动机运行中的首要问题。为此必须设法改善电动机的起动方法,使达到电动机的平滑无冲击的起动,于是各种限流起动方法也就应运而生。

2 传统的起动方法

2.1 定子串电抗器起动

对于鼠笼式异步电机一般采用定子回路串电抗器分级起动,绕线式异步电机则采用转子回路串电抗器起动。定子边串电抗器起动,即增加定子边电抗值,可理解为降低定子实际所加电压,其目的是减少起动电流。此起动方式属降压起动,缺点是起动转矩随定子电压的降低而成平方关系下降,外串电阻中有较大的功率损耗。又由于是分级起动,起动特性不平滑。

2.2 星-三角起动

起动时定子绕组星形连接,起动后三角形连接。在电动机绕组星形连接时,电动机电流仅为三角形连接的1/3,遗憾的是电动机的转矩也同样降低到三角形接线时的1/3,为了使电动机在额定转速时达到它的额定转矩,在经历了预先设定的时间后,又从星形接线转换到三角形接线,在转换过程中会出现二次冲击电流。

2.3 自耦变压器起动

当电动机起动时,电动机的定子通过自耦变压器接到三相电源上。当电机转速升高到一定值时,自耦变压器被切除,电动机定子直接接到电源上,电动机进入正常运行状态。同直接起动时相比,当电压降到w2/w1倍时,起动电流和起动转矩降到(w2/w1)2倍(w2/w1为自耦变压器的变比)。这种起动方式的优点是起动时定子电压的大小可调。比起定子串电抗起动,当限定的起动电流相同时,起动转矩损失较少。要使变压器的容量和耐压水平提高,将使得变压器的体积增大,成本高,且不允许频繁起动,同样也不能带重负载起动。

.4 频敏变阻器起动

对于绕线式异步电机来说,如果仅仅是为了限制起动电流、增大起动转矩,则一般采用转子回路串频敏变阻器起动方式。但此起动方式在频繁起动下,易发生温升,且结构复杂,不常用。

由此可知上述几种起动方式的共同特点是控制电路简单,起动转矩基本固定不可调,起动中都存在二次冲击电流,对负载机械有冲击转矩,且受电网电压波动的影响,一旦出现电网电压下降,会造成电机堵转,起动困难,且上述几种起动方法,在停机时都是瞬间停机,遇到负载较重时会造成剧烈的机械冲击。

3 软起动

所谓软起动是指装置输出电压按一定规律上升,使被控电动机的电压由零升到全电压,转速相应的由零平滑加速到额定转速的过程。它是电力电子技术与自动化控制技术的综合,是将强电和弱电结合起来的控制技术。在软起动器中三相电源与被控电机之间串入三相反并联晶闸管,采用反并联接线的晶闸管接在电动机的每相,利用晶闸管移相控制原理,控制其内部晶闸管的导通角,电动机起动时,用调节6个晶闸管的不完全导通来控制电动机的供电电源。换言之,起动时只有三相正弦波形的一部分向电动机供电。

软起动的优点是起动特性曲线好,使晶闸管的导通角从零度开始,逐渐前移,电机的端电压从零开始逐渐上升,直至达到额定电压,起动电流从零线性上升至设定值,从而满足起动转矩的要求,保证起成功。表1为软起动同传统起动对照表。

4 重载起动方式(交-交变频起动)

4.1 交-交变频工作原理

尽管软起动具有起动平滑,起动时间等参数可调的特性,具有传统起动方法无法比拟的优越性,是传统降压起动器的理想换代产品。但可控硅调压方式的软起动器控制感应电动机,在减小电压的同时,供电频率仍为工频,使得其功率因数低,无功功率增加,这决定了其只能应用于轻载场合,对于重载起动就勉为其难了。然而在很多场合下,不能保证负载为轻载起动,如球磨机、破碎机、空气压缩机、风机等,这就使得我们想在降低电压的同时,能够减小供电电压频率,即保持v/f不变,保证恒力矩起动,因而变频器变频起动无疑是最好的起动设备,但如果把变频器仅作起动,不调速,资金浪费很大,特别是高压大容量的通用变频器价格就更为昂贵,且感应电动机的重载起动只是短时间的过程,故寻求一种感应电机的重载安全起动方法是很有必要的。纵上述几种起动方式可得出采用交-交变频器来实现重载起动。因为交-交变频没有中间直流环节,仅用一次变换就实现了变频,所以效率较高,而且大功率交流电机调速系统所用的变频器也主要是交-交变频来完成的。

交-交变频的工作原理是让两组交流电路按一定频率交替工作,就可以给负载输出该频率的交流电。改变两组变流电路的切换频率,就可以改变输出频率;改变变流电路工作时的控制角α,就可以改变交流输出电压的幅值。

如果让α角不是固定值,在半个周期内让正组变流电路p的α角按正弦规律从900逐渐减小到00,然后在逐渐增大到900。那么,正组整流电路在每个控制间隔内的平均输出电压按正弦规律从零逐渐增至最大,在逐渐减小到零。在另外半个周期内,对负组变流器n进行同样的控制,就可以得到接近正弦波的输出电压。和可控硅整流电路(软起动)一样,交-交变频电路也属于电网换相。

4.2 整流与逆变工作状态

假设负载的功率因数角为φ,即输出电流滞后输出电压φ角。另外两组交流电路在工作时无环流工作方式,即一组交流电路工作时,将另一组变流电路的脉冲封锁。下图给出了一个周期内负载电压、电流波形。

从图3中可以看出,那组变流电路工作是由输出电流的方向决定的,与输出电压极性无关。变流电路是工作在整流状态还是逆变状态,则是由输出电压方向和输出电流方向的异同决定的。

4.3 输出正弦波电压的调制方法

>使交-交变频电路的输出电压波形为正弦波的调制方法有多种,这里介绍广泛采用的余弦交点法。

晶闸管变流电路的输出电压为

(1)

式中,ud0为α=0时的理想空载整流电压。对交-交变频电路来说,每次控制时α角是不同的,式(1)中的u0表示每次控制间隔内输出电压的平均值。

设要得到的正弦波输出电压为

(2)

则比较式(1)和式(2)可得(3)

(3)

式中γ称为输出电压比,

因此 (4)

上式就是用余弦交点法求变流电路α角的基本公式。

式(4)可以用模拟电路来实现,但线路复杂,且不易实现准确的控制,所以采用微机来实现上述运算。可把事先计算好的数据存入存储器中,运行时按照所存的数据进行实时控制。为了用计算机实现实时控制,必须具备三相低频信号、同步信号、零电流检测三个基本条件。

4.4 三相低频信号的产生原理

用计算机产生三相低频信号,必须首先将要产生的低频信号进行数字化。这不仅在幅值上数字化,在时间上也要数字化。在时间上,以一度为单位(分辨率已经足够),将低频信号的一个周期分成360等份。根据需要的频率求出低频信号一度的时间,以次作为定时时间,这样每隔一度,便输出一次低频信号的对应值,每360循环一次,构成低频的周期。其它两相输出和上面一样,只是输出的对应数值不一样,正好相差120、240度。这样就构成了互差1200的低频信号。由于准梯形波具有较高的基波幅值,因此这里采用它作为低频参考信号,它是限幅的正弦波,当等于600时就已经到达了最大值。其目的是提高直流电压的利用率。

下面以准梯形波为例来说明三相低频信号实现的具体方法。

a. 建立一个准梯形波波形的表格,表格的大小为360个数据,这些数据分别以1度为间隔的准梯形波波形数据。表格存放在表首地址为table的内存中,第一个数据为1度时对应的波形数据,最后一个为360度对应的波形数据。表格的数据是按比例得到的。

b. 设一计数指针coun,初始化时,使coun=0,并起动定时器。在定时时间到达之后,计数指针coun增1,同时取出表中的数据(对应内存地址为table+coun)输出。当计数指针coun=360时,使coun复位为0,便完成了本周期的数据输出,为下一周期做准备。这样周而复始不断的取数输出,就产生了低频数字信号。

c. 其它两相低频信号分别滞后120、240度的同样波形,可以完全使用同样的表格。

d. 为了得到复值可变的低频信号,在低频数字信号输出之前,应乘以调制系数,调制系数的范围是0~1。

e. 1度对应的时间是由所需输出频率决定的,将其转换为定时时间常数后,存放于time的单元中,它就是控制交-交变频器输出频率的变量。

4.5 同步信号电路

采用微机定时方式进行交-交变频的移相控制时,需要给微机提供各晶闸管控制角起时定时时刻的方波信号,使移相控制装置向晶闸管发出的触发脉冲信号在电源电压的每个周期内均能重复出现。因此,这一方波信号的频率应与电源频率相同。所以,一般将此方波信号称为同步信号。此外,同步信号的另一作用是微机利用它的状态来进行判相定管,决定是某相的上管或下管工作与否。

取a相电压经同步变压器降压后,进入rc移相电路形成滞后30度的正弦电压,由三级管将正弦波形成方波,再经光电隔离、反相及输出电路,在输出端得到同步脉冲信号。

4.6 零电流检测电路

不论是电压型还是电流型控制的无环流交-交变频器,正反组变流器的换向都必须处于零电流状态,此时两组变流器的触发脉冲都被封锁。因此,实际的零电流一定要准确可靠的检测出来,这关系到换相的死区长短,以及换相的可靠性。

检测方法 检测负载电流的方法常用的有两种:lem电流传感器和检测和晶闸管端电压法。用lem电流传感器检测负载电流,可将主电路与控制电路完全隔离,且检测电路结构简单。但由于换相等原因,负载电流含有丰富的电流谐波,给电流检测、尤其是过零点检测带来了一定困难。lem传感器输出信号经滤波、整形后,会产生伪过零点,使控制系统出现误动作。由于晶闸管导通时其端电压为管压降,近似等于零,而阻断时端电压等于其所接交流电压(电网线电压或相电压)。同时检测变频器主电路中每一相上的六个晶闸管,如有一管导通说明此相有电流。如六管全关断则说明此相无电流,也就是电流过零点。这种方法直接检测零电流,不需要对电流波形进行整形,其输出信号完全对应着电流波形中的零电流,使检测电路更加准确、可靠。图4为零电流检测电路。

5 出现的问题及解决方法

交-交变频电路的输出电压是由若干段电网电压拼接而成的。当输出频率升高时,输出电压一个周期内电网电压的段数就减少,所含谐波分量就要增加。这种输出电压的波形畸变是限制输出频率提高的主要因数之一。所以最高输出频率不高于电网频率的1/3-1/2。但由于我们主要用于起动,一旦速度达到了1/3全速,可以控制相应的晶闸管,使它们切换到软起动,软起动方式仍由本装置实现。在软起动的作用下完成起动结束。因为此时电压相对较小,切换的过程中,不会有很大的冲击电流。

由于采用无环流控制方式,有换流死区,所以输出波形有一点畸变。可以采用快速的,比较好的零电流检测方法来减小死区时间。

6 结束语

传统起动方式将逐渐被可控硅软起动所取代,然而软起动却不能很好解决感应电机的重载起动,因而给出了一种实用的交-交变频起动方式来解决这个问题。由于目前采用交-交变频技术成本相对过高,同时由于国内的研究开发相对滞后,致使该技术还主要限于大型矿井的关键设备。但随着这一技术相对成本的不断降低,人们节能意识的不断深入,该技术在矿井中的应用必将迎来一个全新的时期,同时在应用范围上也将扩大,并有待开发和完善。

参考文献

[1] 电动机降压起动器的选择与分析 凌浩 2000.12 vol.20 p66

[2] 交流异步电动机的软起动与保护探讨 何友全 矿山机械 2000.5

[3] 陈伯时,陈敏逊, 交流调速系统,机械工业出版社,1997

交流电动机的应用篇8

关键词:感应电机 软起动 交交变频

abstract:some starting manners of motor are given and analyzed in this paper, soft

starting is introduced emphasizly. but how to solve over loading starting is purposed

and ac-ac variable frequency is given.

keywords:inducing motor soft starting ac-ac variable frequency

1 引言

三相交流电动机从发明以来,经历了100多年的历程,在这漫长的岁月里,它为奠定与发展这项经典的传动技术树立了丰碑,。又由于其具有结构简单、运行可靠、维护方便、价格低廉,而广泛作用于电力拖动生产机械的动力,在机械、化工、纺织和石化等行业有大量的应用。然而,电动机的起动特性却一直举步维艰。这是因为电动机在恒压下直接起动,其起动电流约为额定电流的4-7倍,其转速要在很短时间内从零升至额定转速,会在起动过程中产生冲击,很容易使电力拖动对象的传动机构等造成严重磨损甚至损坏。在起动瞬间大电流的冲击下,将引起电网电压降低,影响到电网内其它设备的正常运行。同时由于电压降低,电动机本身起动也难以完成,造成电机堵转,严重时,可能烧坏电动机。因而如何减少异步电动机起动瞬间的大电流的冲击,是电动机运行中的首要问题。为此必须设法改善电动机的起动方法,使达到电动机的平滑无冲击的起动,于是各种限流起动方法也就应运而生。

2 传统的起动方法

2.1 定子串电抗器起动

对于鼠笼式异步电机一般采用定子回路串电抗器分级起动,绕线式异步电机则采用转子回路串电抗器起动。定子边串电抗器起动,即增加定子边电抗值,可理解为降低定子实际所加电压,其目的是减少起动电流。此起动方式属降压起动,缺点是起动转矩随定子电压的降低而成平方关系下降,外串电阻中有较大的功率损耗。又由于是分级起动,起动特性不平滑。

2.2 星-三角起动

起动时定子绕组星形连接,起动后三角形连接。在电动机绕组星形连接时,电动机电流仅为三角形连接的1/3,遗憾的是电动机的转矩也同样降低到三角形接线时的1/3,为了使电动机在额定转速时达到它的额定转矩,在经历了预先设定的时间后,又从星形接线转换到三角形接线,在转换过程中会出现二次冲击电流。

2.3 自耦变压器起动

当电动机起动时,电动机的定子通过自耦变压器接到三相电源上。当电机转速升高到一定值时,自耦变压器被切除,电动机定子直接接到电源上,电动机进入正常运行状态。同直接起动时相比,当电压降到w2/w1倍时,起动电流和起动转矩降到(w2/w1)2倍(w2/w1为自耦变压器的变比)。这种起动方式的优点是起动时定子电压的大小可调。比起定子串电抗起动,当限定的起动电流相同时,起动转矩损失较少。要使变压器的容量和耐压水平提高,将使得变压器的体积增大,成本高,且不允许频繁起动,同样也不能带重负载起动。

.4 频敏变阻器起动

对于绕线式异步电机来说,如果仅仅是为了限制起动电流、增大起动转矩,则一般采用转子回路串频敏变阻器起动方式。但此起动方式在频繁起动下,易发生温升,且结构复杂,不常用。

由此可知上述几种起动方式的共同特点是控制电路简单,起动转矩基本固定不可调,起动中都存在二次冲击电流,对负载机械有冲击转矩,且受电网电压波动的影响,一旦出现电网电压下降,会造成电机堵转,起动困难,且上述几种起动方法,在停机时都是瞬间停机,遇到负载较重时会造成剧烈的机械冲击。

3 软起动

所谓软起动是指装置输出电压按一定规律上升,使被控电动机的电压由零升到全电压,转速相应的由零平滑加速到额定转速的过程。它是电力电子技术与自动化控制技术的综合,是将强电和弱电结合起来的控制技术。在软起动器中三相电源与被控电机之间串入三相反并联晶闸管,采用反并联接线的晶闸管接在电动机的每相,利用晶闸管移相控制原理,控制其内部晶闸管的导通角,电动机起动时,用调节6个晶闸管的不完全导通来控制电动机的供电电源。换言之,起动时只有三相正弦波形的一部分向电动机供电。

软起动的优点是起动特性曲线好,使晶闸管的导通角从零度开始,逐渐前移,电机的端电压从零开始逐渐上升,直至达到额定电压,起动电流从零线性上升至设定值,从而满足起动转矩的要求,保证起成功。表1为软起动同传统起动对照表。

4 重载起动方式(交-交变频起动)

4.1 交-交变频工作原理

尽管软起动具有起动平滑,起动时间等参数可调的特性,具有传统起动方法无法比拟的优越性,是传统降压起动器的理想换代产品。但可控硅调压方式的软起动器控制感应电动机,在减小电压的同时,供电频率仍为工频,使得其功率因数低,无功功率增加,这决定了其只能应用于轻载场合,对于重载起动就勉为其难了。然而在很多场合下,不能保证负载为轻载起动,如球磨机、破碎机、空气压缩机、风机等,这就使得我们想在降低电压的同时,能够减小供电电压频率,即保持v/f不变,保证恒力矩起动,因而变频器变频起动无疑是最好的起动设备,但如果把变频器仅作起动,不调速,资金浪费很大,特别是高压大容量的通用变频器价格就更为昂贵,且感应电动机的重载起动只是短时间的过程,故寻求一种感应电机的重载安全起动方法是很有必要的。纵上述几种起动方式可得出采用交-交变频器来实现重载起动。因为交-交变频没有中间直流环节,仅用一次变换就实现了变频,所以效率较高,而且大功率交流电机调速系统所用的变频器也主要是交-交变频来完成的。

交-交变频的工作原理是让两组交流电路按一定频率交替工作,就可以给负载输出该频率的交流电。改变两组变流电路的切换频率,就可以改变输出频率;改变变流电路工作时的控制角α,就可以改变交流输出电压的幅值。

如果让α角不是固定值,在半个周期内让正组变流电路p的α角按正弦规律从900逐渐减小到00,然后在逐渐增大到900。那么,正组整流电路在每个控制间隔内的平均输出电压按正弦规律从零逐渐增至最大,在逐渐减小到零。在另外半个周期内,对负组变流器n进行同样的控制,就可以得到接近正弦波的输出电压。和可控硅整流电路(软起动)一样,交-交变频电路也属于电网换相。

4.2 整流与逆变工作状态

假设负载的功率因数角为φ,即输出电流滞后输出电压φ角。另外两组交流电路在工作时无环流工作方式,即一组交流电路工作时,将另一组变流电路的脉冲封锁。下图给出了一个周期内负载电压、电流波形。

从图3中可以看出,那组变流电路工作是由输出电流的方向决定的,与输出电压极性无关。变流电路是工作在整流状态还是逆变状态,则是由输出电压方向和输出电流方向的异同决定的。

4.3 输出正弦波电压的调制方法

>使交-交变频电路的输出电压波形为正弦波的调制方法有多种,这里介绍广泛采用的余弦交点法。

晶闸管变流电路的输出电压为

(1)

式中,ud0为α=0时的理想空载整流电压。对交-交变频电路来说,每次控制时α角是不同的,式(1)中的u0表示每次控制间隔内输出电压的平均值。

设要得到的正弦波输出电压为

(2)

则比较式(1)和式(2)可得(3)

(3)

式中γ称为输出电压比,

因此 (4)

上式就是用余弦交点法求变流电路α角的基本公式。

式(4)可以用模拟电路来实现,但线路复杂,且不易实现准确的控制,所以采用微机来实现上述运算。可把事先计算好的数据存入存储器中,运行时按照所存的数据进行实时控制。为了用计算机实现实时控制,必须具备三相低频信号、同步信号、零电流检测三个基本条件。

4.4 三相低频信号的产生原理

用计算机产生三相低频信号,必须首先将要产生的低频信号进行数字化。这不仅在幅值上数字化,在时间上也要数字化。在时间上,以一度为单位(分辨率已经足够),将低频信号的一个周期分成360等份。根据需要的频率求出低频信号一度的时间,以次作为定时时间,这样每隔一度,便输出一次低频信号的对应值,每360循环一次,构成低频的周期。其它两相输出和上面一样,只是输出的对应数值不一样,正好相差120、240度。这样就构成了互差1200的低频信号。由于准梯形波具有较高的基波幅值,因此这里采用它作为低频参考信号,它是限幅的正弦波,当等于600时就已经到达了最大值。其目的是提高直流电压的利用率。

下面以准梯形波为例来说明三相低频信号实现的具体方法。

a. 建立一个准梯形波波形的表格,表格的大小为360个数据,这些数据分别以1度为间隔的准梯形波波形数据。表格存放在表首地址为table的内存中,第一个数据为1度时对应的波形数据,最后一个为360度对应的波形数据。表格的数据是按比例得到的。

b. 设一计数指针coun,初始化时,使coun=0,并起动定时器。在定时时间到达之后,计数指针coun增1,同时取出表中的数据(对应内存地址为table+coun)输出。当计数指针coun=360时,使coun复位为0,便完成了本周期的数据输出,为下一周期做准备。这样周而复始不断的取数输出,就产生了低频数字信号。

c. 其它两相低频信号分别滞后120、240度的同样波形,可以完全使用同样的表格。

d. 为了得到复值可变的低频信号,在低频数字信号输出之前,应乘以调制系数,调制系数的范围是0~1。

e. 1度对应的时间是由所需输出频率决定的,将其转换为定时时间常数后,存放于time的单元中,它就是控制交-交变频器输出频率的变量。

4.5 同步信号电路

采用微机定时方式进行交-交变频的移相控制时,需要给微机提供各晶闸管控制角起时定时时刻的方波信号,使移相控制装置向晶闸管发出的触发脉冲信号在电源电压的每个周期内均能重复出现。因此,这一方波信号的频率应与电源频率相同。所以,一般将此方波信号称为同步信号。此外,同步信号的另一作用是微机利用它的状态来进行判相定管,决定是某相的上管或下管工作与否。

取a相电压经同步变压器降压后,进入rc移相电路形成滞后30度的正弦电压,由三级管将正弦波形成方波,再经光电隔离、反相及输出电路,在输出端得到同步脉冲信号。

4.6 零电流检测电路

不论是电压型还是电流型控制的无环流交-交变频器,正反组变流器的换向都必须处于零电流状态,此时两组变流器的触发脉冲都被封锁。因此,实际的零电流一定要准确可靠的检测出来,这关系到换相的死区长短,以及换相的可靠性。

检测方法 检测负载电流的方法常用的有两种:lem电流传感器和检测和晶闸管端电压法。用lem电流传感器检测负载电流,可将主电路与控制电路完全隔离,且检测电路结构简单。但由于换相等原因,负载电流含有丰富的电流谐波,给电流检测、尤其是过零点检测带来了一定困难。lem传感器输出信号经滤波、整形后,会产生伪过零点,使控制系统出现误动作。由于晶闸管导通时其端电压为管压降,近似等于零,而阻断时端电压等于其所接交流电压(电网线电压或相电压)。同时检测变频器主电路中每一相上的六个晶闸管,如有一管导通说明此相有电流。如六管全关断则说明此相无电流,也就是电流过零点。这种方法直接检测零电流,不需要对电流波形进行整形,其输出信号完全对应着电流波形中的零电流,使检测电路更加准确、可靠。图4为零电流检测电路。

5 出现的问题及解决方法

交-交变频电路的输出电压是由若干段电网电压拼接而成的。当输出频率升高时,输出电压一个周期内电网电压的段数就减少,所含谐波分量就要增加。这种输出电压的波形畸变是限制输出频率提高的主要因数之一。所以最高输出频率不高于电网频率的1/3-1/2。但由于我们主要用于起动,一旦速度达到了1/3全速,可以控制相应的晶闸管,使它们切换到软起动,软起动方式仍由本装置实现。在软起动的作用下完成起动结束。因为此时电压相对较小,切换的过程中,不会有很大的冲击电流。

由于采用无环流控制方式,有换流死区,所以输出波形有一点畸变。可以采用快速的,比较好的零电流检测方法来减小死区时间。

6 结束语

传统起动方式将逐渐被可控硅软起动所取代,然而软起动却不能很好解决感应电机的重载起动,因而给出了一种实用的交-交变频起动方式来解决这个问题。由于目前采用交-交变频技术成本相对过高,同时由于国内的研究开发相对滞后,致使该技术还主要限于大型矿井的关键设备。但随着这一技术相对成本的不断降低,人们节能意识的不断深入,该技术在矿井中的应用必将迎来一个全新的时期,同时在应用范围上也将扩大,并有待开发和完善。

参考文献

[1] 电动机降压起动器的选择与分析 凌浩 2000.12 vol.20 p66

[2] 交流异步电动机的软起动与保护探讨 何友全 矿山机械 2000.5

[3] 陈伯时,陈敏逊, 交流调速系统,机械工业出版社,1997

推荐期刊