线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

统计学基本概念8篇

时间:2023-09-20 15:23:32

统计学基本概念

统计学基本概念篇1

关键词:大学计算机基础;操作系统;教学策略

中图分类号:G642 文献标志码:B

1问题的提出

计算机基础教学旨在为非计算机专业学生提供计算机知识、能力与素质方面的教育,提高学生的计算机素质,为将来利用计算机解决本专业实际问题打下基础。在计算机基础课程系列中,作为第一门计算机课程,“大学计算机基础”发挥着重要作用,承担着普及计算机基础知识,提高学生计算机操作水平,为后续学习做好准备的重任。

操作系统是计算机系统核心组成部分。从理论学习的角度看,操作系统实现中所采用的思想与方法也被广泛应用在整个计算机科学与技术领域。了解操作系统的功能和基本工作原理,对于理解计算机系统的工作机理具有重要意义。从操作技能培养的角度看,应用软件与操作系统的关系十分密切,学习操作系统知识有益于对应用软件的理解和对操作技能的掌握。

与计算机专业“操作系统”课程相比,“大学计算机基础”操作系统部分的教学存在着特殊之处:

(1) 教学目标不同。“操作系统”课程是计算机专业的核心课程之一,目标是使学生掌握操作系统基本概念和结构,理解各子系统的工作原理及设计方法,培养其操作系统应用、维护、管理的能力,重在学习原理,掌握设计与开发技术。与之不同的是,“大学计算机基础”操作系统教学以基础知识教学为主、操作技能训练为辅,目标是使学生掌握一些系统软件基础知识,结合操作训练,加深其对计算机系统工作机理的认识,重在理解与应用。

(2) 教学对象不同。计算机专业“操作系统”课程安排较晚,原因在于前导课程的教学需要一定的周期,包括“计算机程序设计”、“数据结构与算法”、“计算机原理”等,经过前导课程学习的学生建立了支持理解操作系统知识的知识结构,较为熟悉计算机系统。而“大学计算机基础”课程开设在入学之初,大部分学生缺乏系统的学习,对计算机的认识很多是靠经验和直观感觉获取的,与科学概念之间存在着差距。

(3) 教学条件不同。从前导内容看,“操作系统”课程的前导课程较为完善,知识结构之间的衔接更为连贯;而“大学计算机基础”操作系统部分的前导内容仅涉及计算机基本组成、基本工作原理等,知识点之间联系较为松散。从课时上看,“操作系统”课程课时安排充分,而“大学计算机基础”能够分配给操作系统部分教学的课时相当有限,以我校为例,课堂学时仅4学时。从实验环节看,“操作系统”课程开设的多是验证性实验,与理论教学相呼应;而“大学计算机基础”操作系统实验以操作训练为主,重在对操作技能的培养。

这些区别表明“大学计算机基础”操作系统教学不可能采取“操作系统”课程的教学模式,要在短学时内取得较好的教学效果应设计更符合该课程特点的教学策略。虽然随着计算机技术的发展以及信息技术教育在中小学的普及,越来越多大学新生的计算机基础水平已经摆脱了“零起点”,但是,他们对一些基本概念的理解还仅限于直观认知的水平,大多并不系统和准确。大学计算机基础操作系统部分的教学重在理解与应用,其内容以基本概念为主,辅以基本操作训练,可以帮助学生建立基于科学概念的对计算机系统工作机理的正确认知。但是,根据认知理论,学生的学习是以其原有的经验、心理结构和信念为基础来建构知识的,学生缺乏对计算机系统准确的认知基础必然会给大学计算机基础课程教学带来不利的影响,增加其难度,因此,根据教学对象的认知特点设计教学策略就成为“大学计算机基础”课程教学研究的重要问题。

2基于迁移理论的教学策略设计

根据“大学计算机基础”课程教学对象的特点,我们可以将教学内容归纳为两类,一类是学生已经具有了一定的经验和直观认识,但认知不够准确或全面的知识点,另一类是学生完全缺乏相关经验和背景的新知识点。学习是一个连续的过程,任何学习都是在学生已有的知识经验和认知结构等的基础上进行的,而新的学习过程及其结果又会对学生原有的知识经验和认知结构等产生影响。因此,教学应尽可能的利用其原有知识、创设情境,促成新知识点与学生原有知识之间的关系。

迁移理论是教学策略设计中的常用理论,它体现了新旧学习之间的相互影响。迁移是“在一种情境中技能、知识和理解的获得或态度的形成对另一种情境中的技能、知识和理解的获得或态度的形成的影响”(James M. Sawrey)。迁移既可以是顺向的,也可以是逆向的。如果学生根据所学的科学概念解释了操作系统问题,或利用原有的其他领域知识获得了操作系统知识或解决了操作系统问题,这就是顺向迁移;如果学生原有的知识不严谨、不全面、不正确,不足以支持对操作系统的理解,需要通过教学,在肯定原有知识合理性的基础上,对其进行补充、改组或修正,这就是逆向迁移。

2.1基于前概念的教学策略

基于前概念的教学策略主要针对学生已经具有一定观念的知识点,教师应在肯定或者补充学生概念的基础上实现教师的引导。学生在科学领域学习某一概念和原理之前,根据日常经验或在学校教学情境中,对事物和现象的正确或不正确的看法和观念,称为前概念。前概念与错误概念不同,它可以与科学概念一致,只是缺乏严谨而科学的表述,对于这部分概念,教师只要稍做引导即可;它也可以与科学概念相冲突、甚至相悖,对于这部分概念,教师应该转变观念,试着去理解其合理性,进而对概念进行补充修正,实现知识的逆向迁移。根据我们的教学经验,大学新生的前概念相当普遍,如表1所示:

学生持有的前概念对于科学概念的学习既可能产生积极影响,也可能导致消极影响。利用与科学概念基本一致的前概念进行教学,教师只需对这些前概念做适当引导即可获得较好的教学效果,这并非研究的重点。与科学概念相冲突的前概念却可能给教学带来负面影响,学生的操作系统前概念大多是基于自身对计算机系统的观察和以及计算机操作经验而形成的,通过直观经验建立起的前概念通常具有相当的稳定性,拥有这些与科学概念相冲突的前概念,学生往往难以接受科学概念。

实现前概念向科学概念逆向迁移的首要条件是引发学生认知冲突,使得学生不满意自己的观点,认识到已形成概念的不足和不合理的地方,意识到新概念对于自己的价值,从而做好将新概念内化为自己知识体系内容的心理准备,提高教学的实效性。在“大学计算机基础”的操作系统教学中可以采取有针对性的设计实例或反例,或创设具体情境或背景的方法,使学生原有的操作系统观念无法解释新现象,转而接受更为合理的科学概念。

下面,以并发概念为例说明前概念向科学概念逆向迁移的方法。一般学生操作计算机时都会有同时运行多个应用程序的经验,如使用QQ聊天,同时使用MP3播放器听音乐,甚至还浏览网页、处理邮件等,但不会感觉到明显延迟。教学中可以基于这些直观认识引入并发概念。但是根据现实世界的经验,学生通常会认为在同一时间内有不同程序的多条指令在计算机中执行,如果排除高级体系结构、多CPU等因素,这显然与常用微机系统存在着不一致,此时如果提示学生注意只有一个CPU,即在同一时间内只可能有一个程序的一条指令能够获得执行,前概念认知就无法和实际系统相统一,从而引发学生的认知冲突。教师继续就该问题连续提问获取不同回答,则会进一步激化这种冲突,激起学生的求知欲,促使其积极思考。此时教师再适时提出正确的概念表述,科学概念就会很容易排除前概念的稳定性影响,得到学生的认可与接受。在原有观念被修正的同时,学生对并发概念的认知也进一步深入。过程如图1所示:

2.2基于相似情境的教学策略

一般而言,“大学计算机基础”中的操作系统内容比较浅显,以基本概念居多,大多可以通过日常经验或在教学情境中形成前概念,并以此为基础进行教学。但是,也有一些涉及计算机系统运行机理的基本原理、主要技术,受实验条件所限,很难获取直接经验,加上缺乏必要的前导知识,学生理解难度较大。学习是基于已有的知识经验和认知结构等进行的,因此,对于这些缺乏经验和背景的知识点,应采取不同的教学策略。我们可以从社会文化背景出发,创设学生熟悉的情境和背景,使其能够在已有生活经验的基础上建构知识体系。常用的方法之一就是根据日常生活经验设计相似情境,通过相似情境向新知识点的顺向迁移实现教学。一个好的相似情境不仅易于实现向新知识点的顺向迁移,使学生更容易理解和接受新知识点,而且能够提高学生的学习兴趣。

下面以进程三种状态的转换过程为例,说明基于相似情境的教学方法。该知识点属于操作系统基本原理,难以通过操作获取直观经验,我们选择排队就诊作为相似情境来阐释进程状态的变化过程,帮助学生理解。

进程状态转换与排队就诊之间的概念对应关系如表2所示(假设只有一个医生,一队病人)。

设计的排队就诊相似情境流程如图2(a),进程状态转换过程如图2(b)。

虽然设计的排队就诊流程与现实存在着一定差别,但是由于排队就诊是日常生活中的情境,因此,学生拥有足以理解该设计流程的经验背景。依图2可知,设计的流程与进程三种状态的转换过程具有很大的相似性,基于上述的概念映射关系,学生很容易实现从排队就诊流程向进程三种状态转换过程的顺向迁移,理解并接受新知识点。

3结束语

“大学计算机基础”是普通高等学校计算机基础教学的重要课程,操作系统在计算机系统中的重要地位决定了相关知识必然是该课程教学的重要内容。由于教学目标、教学对象和教学条件的差异,操作系统基础知识的教学历来是“大学计算机基础”课程的一个难点。本文根据这些特点以及教学实践经验,在知识分类的基础上,对“大学计算机基础”操作系统教学策略进行了一些探讨。实践表明,这些教学策略较好地解决了学生听操作系统内容枯燥、理解操作系统概念难的问题,不仅活跃了课堂气氛,而且更易于学生理解和接受操作系统基本概念、基本原理和方法,改善了教学效果。“大学计算机基础”课程还在不断发展完善中,随着社会的进步,该课教学目标、教学对象、教学条件等因素也在不断发展变化,相关的教学策略的研究也将继续。

参考文献:

统计学基本概念篇2

一、 “数与代数”中概念教学内容的分析

1.有关“数”的概念教学内容分析

“数”主要包括数的意义和数的运算[2]。数的概念主要包括整数、小数、分数、百分数、负数等。引入概念是概念教学的第一步,教师应从小学生看得见、摸得着的生活实际入手,合理运用实物、图表等直观教具,采取小学生动手操作等方法,帮助学生获得正确、完整、丰富的直观表象,把抽象的数学知识与学生日常生活中熟悉的、具体的事物联系起来,既易于学生理解,又能激发学生的思维能力和求知欲望。比如,“分数的初步认识”的教学,为了说明是“谁”的几分之几,教师可用不同形状和大小的图形作为教具,把它们分别折出二分之一,既让学生明白什么是二分之一,又知道虽然都是二分之一,却表示不同的大小。为此,教师一定要重点说明是“谁”的二分之一。

教师在数学概念的引入中,必须注重旧知识的铺垫。任何一个数学概念都不是突然出现的,它是从以往概念中逐渐演变而来的。旧概念是新概念的基础和推理依据,新概念是旧概念的深化和延伸。比如,教师可以从整除的概念引出约数和倍数的概念,继而导出公约数及最大公约数的概念等。

2.有关“代数”的概念教学内容分析

代数是研究数字和文字的代数运算理论和方法[3]。代数早在古代就已经发明了,当算术需要解决大量的各种数量关系问题时,寻求一种更加实用、普遍的方法就成为一条重要途径,通过不懈的追寻和努力,以解方程原理为中心问题的初等代数就应运而生。“数与代数”不仅是小学数学教材的重要内容,而且贯穿于整个数学教学的全过程,是学好数学的基础性工程。“数与代数”通常包含:数与代数的基本概念、数的运算法则、以字母表示数、代数式及其运算、方程和函数等。小学数学教材中,将“式与方程”安排在第二学段,其目的就是要使学生更早地领会字母表示数的意义,并在实际应用中了解等量关系并能用字母来表示这种关系。随着小学生逐步进入更高的年级,其思维水平和理解能力均有不同程度的提高,从以往具体形象思维阶段逐步向抽象逻辑思维阶段发展,对代数知识的认识也会上升到新的高度,同时渗透一定的函数思想,为以后中学数学学习奠定基础。

对于小学生来说,方程一般会透着几分神秘的色彩。因此,小学代数教学必须从最基本的概念入手,再通过简易方程概念的讲解,使小学生明白数学问题也可以通过代数方法来解决[4]。小学阶段一般用算术方法来解决数学计算问题,按照加减乘除四则运算规则,通过数量关系来列出算式。算术方法的基本特征是通过已知数按照一定的数量关系列出算式,经加减乘除运算求出要求的数量。比如:小丽的哥哥和姐姐分别送她几本书,其中哥哥送了她5本,她现在一共有13本书,那么姐姐送她几本呢?如果用算术方法来计算,则可以列出算式:13-5= 。如果用方程来解决,则要设字母X 为姐姐送的书数,通过数量关系可以列出方程:X+5=13。可以看出,算术方法与方程解决问题的思路有区别,算术方法是已知总数和一部分来求另一部分,而方程是用部分加部分等于总体的思路列出等式,将未知数与已知数一起运算来求出X的值。如果要解决的问题较为复杂,那么用方程列等式求解的优势将更为明显。方程的主要特征就是将未知数和已知数同等看待,将未知数用字母表示,这就是代数思维,其与算术思维有着本质区别。

二、 “图形与几何”中概念教学内容的分析

1.有关“平面图形”的概念教学内容分析

在小学数学中,平面图形的概念多数是通过抽象概括而形成的,主要涉及现实生活中的物体形状、大小、位置关系等。由于平面图形概念本身具有复杂性和抽象性等特点,加之小学生接受和理解能力所限,导致学习过程中会存在一定的困难。普遍来看,目前在平面图形概念教学中,通常会存在讲解概念机械照搬、揭示概念内涵不深、分析概念应用不直观等问题,导致学生理解掌握概念比较吃力,灵活应用的差距就更大。因此,在实际教学中,教师应该根据概念本身的特点和学生的认知特点,备课时对课程进行精心设计,上课时对学生进行科学引导。

在平面图形概念的教学中,教师可以提供一些直观教具,使学生更容易理解概念的本质。比如“认识长方形和正方形”中,教师可以以现实生活中的长方形物品做示范,让学生直观感知长方形的特征。到学生动手体验环节时,让学生自己动手做一个长方形,教师可以让学生借助自己做的长方形来观察长方形有四条边、四个角、四个顶点,进一步增强学生感知的效果,使学生能够建立正确的空间观念。当然,在平面几何概念教学时,不应孤立地来教概念,而应将新旧知识联系起来,将课堂知识和实际生活联系起来,通过这种联系的教学思路,引领学生以联系的观点来分析概念、掌握知识、解决问题。

2.有关“立体图形”的概念教学内容分析

小学数学是一门系统性强、枯燥、抽象的学科,尤其是小学所学的立体图形的体积和表面积。由平面图形到立体图形,是小学生空间观念发展中的一次飞跃。但小学生的思维正处在从形象思维向逻辑思维过渡的阶段,他们接纳、理解抽象数学知识的能力有限。因此,立体图形的教学应在平面图形教学的基础上进行拓展,使学生更容易接受。在“长方体和正方体的认识”教学中,在引导学生掌握长方体的基本特征之后,教师可以组织学生进行讨论:长方体相对面为什么相等、相对的棱为什么相等?让学生通过对教具摸一摸、比一比等方式来理解长方体的基本特征。既让学生知道长方体的基本特征,又掌握了相对面的面积为什么相等、相对的棱长度相等等知识。通过这种实践性教学,可以使学生很好地把握“认识”这一关键词的内涵。

在立体图形概念教学过程中,教师应充分利用积木等教具,指导学生先从外在形象上认识事物,在头脑中形成一定的表象,再在此基础上进行概括。有条件的学校,还可以利用多媒体手段来演示,使教学更生动、更直观。比如,让学生拼搭四个正方体积木,看他们能拼出多少种不同的立方体,并从不同的方向和角度观察,探讨各种立方体之间的不同特点,培养学生的空间思维能力和概括能力。教师在组织学生进行实际操作时,要重点处理好两个方面的关系:一是“扶”与“放”。既要“扶”,也就是对学生的操作进行必要的指导,又要“放”,即为学生留出一定的探索时间和空间。能让学生自己操作的就不演示、能让学生自己完成的就不干预、能让学生自己归纳的就不讲解。二是“动”与“静”。所谓“动”,就是操作活动的过程。既要让学生明白要做些什么、怎样做,又要让学生知道想些什么、如何想。所谓“静”,就是活动后的总结归纳过程。通过组织学生进行交流讨论,引导学生把对立体图形的感性认识上升到理性认识。更为重要的是,在“立体图形”的概念教学中,教师给学生的不仅仅是得出教学结论,还有研究学习的方法。

三、 “概率与统计”中概念教学内容的分析

数学课程改革,将概率与统计纳入小学数学教材,并作为一个单独的领域来设置,这一举措在某种程度上具有里程碑意义。因为通过“概率与统计”教学,使小学生能初步了解统计与概率的基本思想和方法,并逐步形成统计观念,进而形成尊重事实、用数据说话的态度。同时,“概率与统计”教学还让学生知道了随机现象的概念,这对他们建立科学的世界观和方法论有直接影响[5]。小学阶段学习统计的主要内容是画统计图、求平均数。要认识某个随机现象,就可以用到统计的知识。比如,某地区20年来的10月9日的天气记录里有15次是秋高气爽,那么可以通过这一统计结果推测下一年10月9日是晴天的概率有多少。因为前20年10月9日这一天晴天的概率为75%,所以下一年同一天出现晴天的概率大约是75%。由此可见,通过合适的方法收集数据,并从统计学的角度进行分析处理,就可以从看似随机的现象中找到某些规律性的东西。

在小学数学教材中,一般都是将“统计与概率”这两部分内容融合在一起,主要有如下基本功能:一是知道数据在描述、分析、预测和解决日常生活中某些现象与问题的作用及价值;二是学会简单的数据收集、分析、处理的基本方法,并提高利用数据的基本能力;三是会制作简单的统计图表,解读一些随机现象并预测其可能性。比如,100粒种子大约有80粒种子发芽,那么种子的发芽率大约为80%;某产品平均每千件中大约有20件废品,则可以说该产品废品率为2%。由于统计与概率的概念对于小学生来说还有些艰涩,因此在概念教学中应少用些专业术语,而经常用可能性来代替概率这个概念。比如,让学生做20次抛掷硬币的试验,看看正面出现的可能性是多少,再引出概率的概念,如此更能让学生易于接受和理解。

概念的应用是概念学习的最高层次,可以帮助学生在解决一些情境复杂的问题时,使已知概念在头脑中相互作用、融会贯通,反过来又巩固、完善和拓展概念[6]。在学习“统计与概率”的过程中,教师应注重提高学生的能力。比如:组织交流、探讨活动,让学生自己选题,如“同学们每天几点钟睡觉的”,“每天都有多少同学上课发言的”,“同学们喜欢看哪类动画片”,“同学们喜欢什么运动”,“我们最喜爱的课程”,“我们最喜爱的游戏”……之后让学生按选择的题目进行分组,并调查收集相关数据,再用表格归纳整理,制成多种统计图。例如,根据统计图来看,如果喜欢某种运动的同学最多,那么可以根据这个统计结果,组织一次运动比赛,让大家切身体会统计工作的作用,从而加深对这一概念的认识。他们还可以把这些图表制成墙报、手抄报等,使同学们更有成就感。由此可见,“统计与概率”不仅是数学知识,还可以帮助学生提高运用统计和概率进行估算的能力。

综上所述,促进小学生对数学概念的认识和掌握,是小学数学概念教学的根本目的和主要追求。鉴于小学生的整体认知水平和接受能力有限,小学数学教师必须根据小学生的特点和数学概念本身的特点,以科学的、发展的、联系的观点来精心备课和组织教学。要通过多种直观、科学的方法,将教材中的数学概念转化为小学生易于接受的模式,帮助学生在观察、体验、实践和思考中直观了解、深入剖析概念的本质属性,以达到到良好的教学效果。

参考文献

[1] 高俊生.小学数学教师“图形与几何”领域疑难问题分析[D].长春:东北师范大学,2012.

[2] 钟鼎恒.小学数学教材“统计与概率”比较研究[D].武汉:华中师范大学,2013.

[3] 闫炳霞.小学数学“统计与概率”教学中的问题研究[D].重庆:西南大学,2007.

[4] 蒋秋,陈朝东.小学数学教科书中“统计”与“概率”内容的融合探析[J].教育导刊,2013(10).

统计学基本概念篇3

1.要把注意力放在基本概念上部分学生只重视知识体系中的重点、难点,而不重视基本概念和基础知识。如果教师直接告诉学生重点内容,在应试教育的背景下,学生会直接去复习重点而忽略基础知识的重要性。心理统计学是一门非常注重理解基础概念的课程,重点、难点都是建立在对基本概念的把握的基础上,是对基本概念的整合与深入,如总体、样本、平均数、方差、标准差等基础概念是房屋的地基,重点、难点如方差分析、两独立样本t检验等是房梁,地基与房梁都很重要,不能拆开,心理统计学的这种特点是由统计学科的逻辑性决定的。在心理统计学教学实践过程中经常发现,有些学生平时在课堂上表现很好,最后的考试成绩却不好,理解的也不好。经总结发现这些学生就是对基本概念的理解不到位,课堂上的所谓“表现好”只是记忆的表现,知识没有经过加工进入长时记忆,从而产生了一种学生在课堂上好像是对知识理解很好的假象。所以在心理统计学的课堂上,学生一定要放弃在高中时只重视重点、难点那种学习方法,要把基本功扎扎实实地打好。

2.加深对统计符号的记忆与理解心理统计学也是一门符号学,对不同符号所代表的意义的记忆与理解是很重要。心理统计学课程越到后期,教师在讲授的过程中运用专业术语越多,用符号也越多。如果学生忘记了前面学习的符号所代表的意义和功能,后面的课就听不下去。教师在讲解基本概念、统计符号所代表的意义时要放慢速度,让尽量多的学生参与到对基本概念的理解中来,对后面的教学工作有着不可估量的意义。

二、注重掌握各种统计方法

使用的条件学生在解决具体的心理统计学问题时,经常不能够准确地判断使用什么统计方法。如在解题时学生经常不能判断出在什么情况下使用独立样本t检验、在什么情况下使用相关样本t检验。究其原因还是对独立样本t检验及相关样本t检验的使用条件不清楚。所以在教学过程中,教师要经常强调各种统计方法使用前提条件的重要性。在什么前提条件下使用什么心理统计学方法是对马克思主义理论“具体问题具体分析”的最好体现。

三、注重及时复习

统计学基本概念篇4

一、巧用比喻,帮助记忆

一般来说,计算机概念是抽象的,是对事物本质的高度概括。职校学生由于刚接触计算机概念,往往对此不容易理解,也不容易记忆。因此,在教学过程中利用学生已有的生活经验或已获得的知识,适时地、确切地运用比喻,是十分有效的形象化教学手段。

在教学过程中将“内存储器”比喻为“一幢楼房”;将“内存单元”比喻为“一套住房”;将“内存单元的地址”比喻为“门牌号码”;将“硬件”比喻为“人体”;将“软件”比喻为“人的思维”等。通过这些恰当的比喻加深了学生对概念的理解和记忆,收到“画龙点睛”的效果。

二、借助故事,辨析概念

职业学校对计算机概念的教学要求相比高校要求虽然降低了不少,但有些计算机概念在教学实践中还是很有难度的。设计好一个生动的故事,将各种相关概念串联起来比较分析,既能提高学生的学习兴趣和注意力,又能促进学生对概念的理解和明辨,从而掌握其内涵要旨。借助故事,讲述概念、串联概念既直观易懂,又省力有效。

三、层层分析,揭示联系

“概念”是人们对客观事物的一种抽象认识,是反映客观事物特有属性的思维形式。这就要求计算机教师在教学过程中想方设法剖析基本概念的组成内涵,分析其外延,有机地帮助学生弄清此概念与彼概念之间的内在联系。在讲解“计算机系统”这一概念时,从“硬件系统”和“软件系统”两方面来阐述,指出“硬件”是构成计算机的物质基础,如,主机、显示器、键盘、鼠标等。“软件”则是各种各样的程序、数据。根据软件的性质又可分为系统软件和应用软件。为了帮助学生理清这些概念之间的联系。我采用树状层次结构图的形式来表示:

计算机系统硬件主机CPU运算器控制器主存输入设备输出设备外存储器软件系统软件操作系统语言处理软件数据库管理系统服务程序应用软件应用软件包用户程序

由于层次分明、内容详尽,学生对“计算机系统”这一概念的理解也较为深刻。

四、通过操作,理解概念

计算机是一门知识与技能并重的课程。通过操作强化对概念的理解,正所谓“事必躬亲”方会“熟能生巧”。如,学生对“人机对话”这一概念,不易理解。在《BASIC语言》教学中通过“INPUT”语句设计以下上机步骤,使学生理解其实质。

1.用“INPUT”语句编写程序,要求一次键入3个变量。

2.加提示信息,一次给3个变量赋值。

3.删除提示信息,再运行程序。

4.键入的常数个数少于语句中变量的个数,计算机询问后再继续键入下面的常数。

5.键入的常数个数多于语句中变量的个数。

6.应键入常量时,按了回车键。

这样,学生通过这一连串的“人—机—人”对话操作,一般都能较好地理解“人机对话”这一概念的含义。学生上机除了应有“技能”方面的要求外,还应该重视对概念的理解。概念不理解不可能有正确的操作。

五、分析单位,弄清概念

计算机中的概念有时不像其他基础学科出现的概念那样内涵稳定。往往同一概念名称在不同的场合有着不同的含义。帮助学生弄清这些概念可从量的单位着手。

六、循序渐进,逐步掌握

学生对计算机概念的认识总是逐步深化的,对概念的理解、掌

握其过程是渐进的。本人在教学过程中通过不同阶段的反复引导加深了学生对概念的理解。

七、反复求证,上下贯通

由于计算机学科新出概念多,其含义往往不同于日常用语或基础学科同一词,要准确理解它们,要求教师不断学习、摸索、体会。

总之,计算机教师要有一种“衣带渐宽终不悔,为伊消得人憔悴”的刻苦钻研精神,一定可以水到渠成地达到“众里寻他千百度,蓦然回首,那人却在灯火阑珊处”的教学境界。

参考文献:

[1]柳青.计算机组装与维护.高等学校教育出版社,2002.

[2]周丰治,Visual FoxPro 6.0:基础与应用.高等教育出版社,2001.

[3]严蔚敏.数据结构.清华大学出版社,1997.

统计学基本概念篇5

关键词:概率统计 教学方法 实际应用

中图分类号:021 文献标识码:A 文章编号:1007-3973(2010)011-155-02

大学教育的主要任务是培养高素质具有创新意识和能力的优秀人才,大学数学教学在完成这个任务中起着不可忽视的作用,大学数学教学的作用是灌输数学知识,提高数学素养,培养应用数学的能力,目标是获得数学基础知识,学会思维的方法,知道把握问题的全局,了解知识整体的构架,掌握应用的基本思路。工科数学教学的主要目的是培养学生用数学思想和工具去解决实际问题的能力,为学习其他课程打好基础,因此下面仅对工科数学中概率统计课程的教学进行探讨研究。

1 工科概率统计课程教学的现状与存在不足

掌握和应用数学的水平己成为民族文化素质、社会进步和发展的重要标志,概率统计是应用性和实践性很强的一门课程,但是,目前课程的教学方法和教学内容上在体现实际应用方面还存在着各种问题:教学手段上基本是采用注入式教学,按照教栩、大纲讲得过细、过透,生怕学生听不懂,有时把概念、定理讲得过神秘、复杂;教学内容上看,经典多且重,现在少而轻,概率重统计轻;从教学效果和侧重点看重视计算方法,轻视数学概念、思想方法,不注重应用能力的训练培养,结合实际领域不广泛,导致学生在实际问题中无从下手。概率统计作为大学数学的重要课程,在教学方法上没有充分利用当代的重要工具――计算机,教学内容上没有足够重视理论与实际相结合和在社会应用中的作用,这些明显不适应现代及末来的需求,所以对概率统计课程教学方法的改革是当前急待解决的问题之一。

2 工科概率统计课程教学改进的设想

概率统计是大学数学的主要课程,特点是:联系生活、理论深刻、解题方法独特且应用十分广泛。在几乎所有的科学领域中都可以应用概率统计的方法解决实际问题,为此笔者认为概率统计在教学改革上应强调以下几点:

2.1 明确教学思路及教学方法

在概率统计的教学中关键要明确学习的主体,要授之以渔,而非授之以鱼,要教会学生学习的方法,主要让学生掌握概率统计的思想和方法,根据课程紧密联系实际的特点突出应用性,培养学生用数学思想和方法解决实际问题的能力,使学生充分认清概率统计在社会实践中的重要性,才会下定决心学好这门课程。所以,在概率统计的教学过程中,可介绍著名数学家关于概率统计这门课程的评价,如“概率论已成为全部科学之基石之一,而它的女儿――统计科学已进入人类全部的领域之中”,“人生的最重要的问题大部分实际上只是概率论的问题”(拉普拉斯)等。

概率统计与其它大学数学在教学方法上应有着很大的不同,后者较为注重的是培养学生的抽象思维能力、计算能力,而概率统计的教学不仅培养学生的数学基础能力,重要的是使学生理解哲学背景,即统计思想,我国著名统计学家、中科院院士陈希孺先生曾多次指出统计思想的重要性,“统计思想是概率统计的灵魂,离开了统计思想的讲授,概率统计的教学就会成为无本之木,无源之水,就会变成高等数学的简单应用。”可在教学中结合本课程与生活实际联系密切、应用广泛的特点,用生动的实例或背景激发学生的学习热情,如在讲授古典概型、伯努利概型时一定要结合其背景,注意条件的判定,否则学生会死记硬背。对于各种分布的讲授要结合具体应用模型,如指数分布主要用于描述“电子元件的寿命”,“等待时间”等,这样讲解有利于提高学生的学习兴趣,加深学生对所学知识的印象。

2.2 强化基本概念的教学

概念是教学展开的基础,数学概念是抽象上的抽象,先前的概念往往是后继概念的基础,从而形成数学概念的系统。能否学好数学,是否掌握好概念是关键,学好数学概念是学好数学的前提,是培养学生逻辑思维能力和分析问题、解决问题的重要依据。要使学生准确、深刻地理解基本概念,因为数学概念往往互相关联,教师在处理教材内容时,要从整体上把握教材的知识体系,综观全局,引导学生掌握概念之间的纵横联系,在概念的统帅作用下,觉察出已学知识之间的联系。

如样本空间,一般在教学中往往忽略这个概念,但在后续课程及实际应用中都有重要作用,选择不同会得到不同的解题方法,选择不当会使问题复杂化。还有数学期望,方差,统计量等这些基本概念一定要讲清楚。

2.3 突出抓主线化繁为简的原则

对工科专业的学生,并不需要详细掌握定理的证明和计算过程,在概率统计的教学中只需要求学生掌握概率统计的主要概念、基本定理以及常用的数理统计的思想和方法即可,应将主要精力放在培养学生运用概率论思想和数理统计方法解决实际问题的能力上。

因此课程的教学原则是,抓住主线,即抓主要概念、理论、思想和方法,讲清楚最简单、最基本的知识和原理,说明知识扩展延伸的思路和方法,对复杂的定理证明和繁琐的计算过程可不讲或简单介绍。如概率统计的精华是分布函数、数字特征、统计特征、统计量,这些一定要讲透。

2.4 重视数理统计教学

概率统计课程的中心任务是揭示随即现象的统计规律性及内在联系。数理统计是概率统汁课程中的重要部分,学生对这部分内容的掌握直接影响解决实际问题的能力。因此,如何增强工科学生对数理统计思想方法的理解与应用已成为教学的一个重要的课题。传统的教学中只重视公式的推导、计算能力的训练,忽略了对统计思想的讲授,很多同学学完概率统计课程只知道照书上公式计算而不知道所以然,更谈不上统计方法的应用了。

统计学是讨论不确切推理的科学和艺术,逻辑思维的形式是演绎和归纳,归纳方法作为科学方法的基础,如效能与毁伤的问题,必须拙样:对于教科书中出现的大量的统计计算均可由软件实现,实际工作中需要统计处理的数据也大多由软件完成,因此,如何培养学生用数理统计思想建模,相应地成了现代数理统计教学工作的重点。在授课过程中,若条件允许,可以适当安排一些统汁软件的上机实验以帮助学生理解和使用统计软件。

3 工科概率统计教学中一些具体方法的探讨

如何使学生在课堂学习中取得较好的学习效果是许多教育工作者探索的一个重大课题,应用性较强的概率统计课程的教学是不能采用传统的教学模式的,通过多年的教学实践笔者认为可从以下几个方面进行尝试:

3.1 了解知识的来龙去脉

来龙,知识的来源,首先要求教师学习数学史,特别是概率统计发展史,比如,在介绍贝努里大数定律时,可顺便指出它建立在1731年,是概率论的第l篇论文。介绍数理统计知识时可指出数理统计学来源于实践,而它的发展又是为了进一步

指导人们的实践活动。去脉,知识的应用,教师要学习现代科技和开展科研,对自然界的深刻研究是数学最富饶的源泉,教学中还要培养教师和学生如何问问题,教师的问题应有诱导性,启发性,发散性,应倡导学生不拘一格大胆、创新提出各种问题和殴想,如期望与均值、方差与波动、统计特征与个别事件分别有什么关系等。

3.2 注意概念的直观含义或实际意义

数学是从人类生活中长大发展的,数学是一个整体,“数”、“形”是互通的,教学中充分利用概念的直观含义或实际意义,使得不容易理解的概念易于理解和掌握,比如引入分布函数的概念时可这样处理,离散型随机变量的统计特征可以用分布律描述,非离散型的该如何描述?问题1:彩电的寿命是一随机变量,对消费者来说,{=8年},还是{=8年零1天)?问题2:人的身高是一随机变量,你的身高是1.70米还是1.701米?实际生活中我们关心的是彩电的寿命是几年,你的身高是哪个范围,用随机变量描述的话,落在某一区间的概率是多少,由此引入分布函数的概念就比较容易理解了。

3.3 重视对思想方法的指导

数理统计的核心内容是参数估计、假设检验,对这一部分内容讲清原理比教会计算更重要。在一定程度上决定了学生日后对于统计思想使用的正确与否。如极大似然估计是建立在“极大似然原理”之上的,在授课过程中一定要讲清它的原理,而不是仅仅告诉学生怎样去做题;对假设检验则要讲清两类错误(风险)及“小概率原理”,在这基础上再讲假设检验会理解得更好。

3.4 强化应用强化与专业相结合的应用

传统的教学方法往往只重视数学理论上的连续性,不注重在实际中的应用性和可操作性。概率统计课程恰恰是一门应用性都很强的学科,所以教学改革的重点应充分体现“学以致用”的原则。可列举一些实例来说明学习、掌握概率统计知识和方法去解决日常生活中的问题是何等重要。如,生活中人们经常要在不确定的情况下做出决定,像天气预报、炒股、买以致等,也体现了数理统计的思想和方法都是长期实践的结果。

统计学基本概念篇6

《统计学》是财经院校经济类各专业的专业基础课,本课程的设置旨在培养学生对统计学的基本理论和基本方法的掌握,为相关专业课程的学习提供定性和定量的统计分析方法。

《统计学》是研究社会经济现象总体的数量表现和数量关系的方法论科学。

通过本课程的学习,使学生明确统计这个认识工具的特点、作用;掌握统计学的各种基本概念、基本原理和基本方法,尤其是各种定量分析的方法和技能,提高学生对社会经济现象数量研究时分析问题和解决问题的能力。

为更好地掌握《统计学》课程,除课堂教学应有的54课时外,要求学生做到课前预习、课后总结,重视本课程作业练习这一环节,以实现本课程的既定目标。

二、课程的教学目标及总的教学要求、重点、难点

教学目标及总的要求:

社会经济统计学是研究社会经济现象总体的数量表现和数量关系的方法论科学。

通过学习本课程,要求学生明确统计这个认识工具的特点、作用;掌握统计学的各种基本概念、基本原理和基本方法,尤其是各种定量分析的方法和技能,提高学生在对社会经济现象进行研究时的分析问题和解决问题的能力。

同时,为进一步学习各专业课程提供定性和定量分析的方法。

教学的重点:

统计学中的基本概念:统计总体、总体单位、标志、变量、统计指标和指标体系及其相互之间的区别和联系。

统计调查的意义,统计调查的分类。

统计调查方案的内容,调查对象、调查单位、填报单位和调查表、调查时间等概念。

统计报表制度的意义、作用和内容。

各种专门调查的概念、特点和作用。

统计整理的意义、步骤。

统计分组的概念、作用和形式。

分配数列的概念和种类。

分配数列中的名词概念,尤其是组中值的计算。

统计表的作用、结构和种类。

统计表的编制原则

总量指标的概念和作用。

总量指标的分类,尤其是时期指标与时点指标的区别。

相对指标的概念和作用及其表现形式。

各种相对指标的意义和计算方法。

正确运用相对指标的原则。

平均指标的概念和作用。

算术平均数、调和平均数、几何平均数、众数、中位数的意义和计算方法,注意算术平均数与强度相对指标的区别。

标志变异指标的意义和作用,各种标志变异指标的计算方法及特点,尤其是标准差的计算方法。

正确应用平均指标的原则。

动态数列的概念和作用。

动态数列的种类。

动态数列的编制原则。

各种动态水平分析指标和动态速度分析指标的意义和计算方法,这些指标相互之间的关系,如逐期增长量与累计增长量的关系、发展速度与增长速度的关系、环比发展速度与定基发展速度的关系、发展速度与平均发展速度的关系等。

序时平均数与一般平均数的异同点。

平均发展速度两种计算方法的侧重点。

动态数列的四种变动形态。

几种常用的测定长期趋势的方法:间隔扩大法、移动平均法,尤其是用最小平方法配合动态趋势方程。

季节变动的测定方法。

指数的概念、作用和种类。

综合指数的编制原理,数量指标指数、质量指标指数的计算。

平均数指数的编制原理,加权算术平均数指数、加权调和平均数指数的计算。

平均数指数与综合指数的关系,以及平均数指数在实际工作中的应用。

平均指标指数的编制和分析方法。

指数体系的概念和作用。

运用指数体系进行因素分析,以及根据指数体系进行指数间的推算。

抽样推断的概念、特点和作用。

抽样推断的基本概念。

抽样推断的理论依据。

抽样误差的概念和抽样平均误差的意义,抽样平均误差的计算方法。

抽样极限误差的意义及计算。

概率度的意义及其与抽样推断可靠程度的关系。

区间估计的方法与步骤。

抽样方案设计的内容以及抽样方案设计的原则。

主要的抽样调查组织形式。

简单随机抽样条件下必要抽样单位数目的确定。

相关关系的概念和种类,现象之间相互联系的两种类型:函数关系、相关关系。

相关关系的特点。

相关关系的测定方法,相关系数的概念、计算方法和性质。

回归分析的概念和一元线性回归分析的特点、方法。

相关系数与回归系数之间的数量关系。

估计标准误差的意义及计算方法。

相关系数与估计标准误差之间的数量关系。

国民经济统计核算的概念及国民经济核算体系的内容。

国民经济核算中三大产值指标的核算方法以及国内生产总值的三种核算方法。

国民经济统计核算中的五大平衡表及四大账户体系。

教学难点:

统计学中的基本概念。

调查单位与填报单位的区别。

普查、抽样调查、重点调查、典型调查的区别。

总量指标和相对指标的分类,相对指标的计算方法。

各种平均指标的应用条件及计算方法。

标志变异指标的意义及计算方法。

各种动态分析指标的意义和计算方法,以及指标之间的关系。

数量指标指数与质量指标指数的区分和编制。

算术平均数指数与调和平均数指数的区分和编制。

因素分析法。

抽抽样误差、抽样平均误差、抽样极限误差、概率度的意义。

概率度与概率的关系。

区间估计。

必要抽样单位数目的确定。

相关关系的种类。

相关系数的计算方法。

一元线性回归方程的建立及其与直线趋势方程的区别。

估计标准误差的意义及计算方法。

统计学基本概念篇7

关键词:概率;统计;衔接

中图分类号:G642 文献标识码:B 文章编号:1002-7661(2013)34-002-01

国家根据学生不同身心发展阶段从小学到大学都设有相应的学习内容,其内容体系安排和脉络走向设置是帮助学生在不同的身心发展阶段逐步建立概率和初步统计观念,而本科阶段学习更是要对新课标下教材内容的深度广度有全面认识。预习复习中小学的相关知识有助于唤起对已学的知识的回忆,有助于师生双方在教与学中调整、认知重点和难点,有助于师范学生认识、研究新课标提前进入教师角色在以后的工作岗位上全面、持续、和谐发展。

《中学数学课程标准》明确指出要使学生“经历运用数据描述信息,做出推断的过程,发展统计观念”。统计的意识和方法要成为未来公民所必备,义务教育阶段九年的有关统计与概率的学习时间具体划分为三个学段:

第一学段(1-3年级):学生将对数据统计过程有所体验,掌握一些简单数据的收集、整理和描述方法,能根据统计结果回答简单的问题,初步感受事件发生的不确定性和可能性。

第二学段(4-6年级):学生将经历简单数据统计过程,进一步学习数据的收集、整理和描述方法,且根据数据分析的结果做出简单的判断和预测,进一步体会事件发生可能性的含义,并能计算一些简单事件发生的可能性。

第三学段(7-9年级、初中阶段):学生将体会抽样的必要性以及用样本估计总体的思想,进一步学习描述数据的方法,进一步体会概率的意义,能计算简单事件发生的概率,能够在现实情境中,根据需要收集、处理一些有用的信息,并且根据对信息的处理结果,做出合理的判断。

三个学段的知识衔接:小学内容体现分类、统计、可能性三大部分知识的学习,初中主要有数据库的收集整理与描述、数据分析、概率初步 。可见小学、初中“统计与概率”课程的学习是从一般性的例子型学习到理论型认识学习,在教学内容安排上的指导思想是以小学的实例为主要教学基础,而在初中是进行理论拔高。如小学阶段计算基本平均值,了解一些可能性的事件,绘制条形统计图等内容架起了与初中概率统计内容之间的桥梁。小学课标要求了解统计与概率的基本思想方法,逐步形成统计观念,初中则要求在小学体验和初步理解统计与概率的基础上,主动地投入到数据统计的全过程中,并使用统计与概率的特有语言进行交流,进行简单推理。小学简单地从大量数据实验方面介绍了统计知识,为初中学习及建立统计思想打下基础。高中阶段教学目标是使学生具备基本的统计与概率的思想、方法和知识,能自觉地运用信息技术手段解决有关问题。初、高中衔接紧密的知识点有:科学计数法、各类统计图、平均数、众数、中位数、极差、方差、标准差、频率与概率等。高中要求对学习内容要有更深层次的理解。如初中阶段教学要“概念弱化”,对有关术语如总体、个体、样本等概念不要求严格表述。比较小学、初中、高中的教学内容,可见不同阶段的概率统计内容在编排和学习认识上是采用逐步渗透、逐步提高,螺旋式、阶梯式上升的方式。

大学课程的抽象性与高中“统计与概率”直观性有不同,高中是由实例理解古典概型的特征并解决一些实际问题,本科教学对古典概型的计算是一个难点计算要求高,这从本科教材章节后的练习题量上有表现。本科对正态分布的概率密度函数知识点是全面介绍标准正态分布和正态分布表并结合实例给予补充和加强。高中只是通过实例让学生理解超几何分布、二项分布及正态分布并能进行简单的应用,正态分布只借助直方图等直观图认识正态曲线的特点及所表示的意义。

高中重点培养学生的运算、作图、推理、处理数据以及使用科学计算器等基本技能,本科注重概念、理论、思想、方法及计算能力的培养。大学阶段的随机变量及其分布是重点内容,必须给出随机变量的严格定义,要对离散型随机变量的有限可列值,无限可列值的情形作深入介绍,要对连续型随机变量的定义和分布函数的概念和离散型随机变量的均值和方差概念及性质进行讨论。而高中是由实例理解离散型随机变量及其分布列、离散型随机变量均值和方差的概念并会计算。

高中是由统计案例去体会统计的作用和基本思想,鼓励学生经历数据处理的过程,引导掌握抽取样本的不同方法,通过样本数据计算相应的数字特征,培养对数据的直观感觉从而认识统计结果的随机性,概念则是通过实例进行描述性说明。高中要求了解几种统计方法的基本思想及其初步应用,大学对理论基础要求比较严格,公式要记忆、计算要练习,注重渗透数理统计思想使得统计有了随机的思想,统计数字有了概率的分析,提供了“从数据进行推断”的普遍适用且强有力的思想方式,这比高中内容在深度和广度上有拓展。

另外,本科阶段《概率论与数理统计》的教学中始终贯穿数学建模思想,让本科学生体会并实践概率论是真正把实际问题转换为数学问题的一类学问,它要解决的并非是纯数学问题,而是要构思命题构建模型来解决实际问题。

参考文献:

[1] 中华人民共和国教育部.全国普通高中数学课程标准(修改稿).

[2] 全日制义务教育.数学课程标准.(实验稿)[M].北京 北京师范大学,2001,12.

统计学基本概念篇8

关键词: 自然语言理解; 语义相似度; 全文检索; 在线答疑系统

中图分类号:TP399 文献标志码:A 文章编号:1006-8228(2015)05-10-03

Abstract: The similarity calculation based on natural language understanding is still a research content of the computer language processing technology. Based on the knowledge representation of "HowNet", considering the both factors of depth and density, by using a more sophisticated multivariate semantic similarity algorithm, and with a full-text search matching technology, an online answer system in the limited field is designed and implemented. The experimental results show that, the system is reliable, the answer effect is more obvious, and the desired goal is achieved.

Key words: natural language understanding; semantic similarity; full text retrival; on-line answer system

0 引言

随着计算机网络技术的飞速发展,传统的教学手段已不能满足当前大信息量的教学内容需求,因此,创造一个在教师指导和引导下学生自主式学习的智能系统平台很有必要。智能的网络答疑系统可以利用自然语言处理技术对学生的疑问进行自动匹配处理,它的出现为网络教学提供了交互的情境,成为支持网络教学顺利进行的重要条件。智能网络答疑系统是传统课堂教学的重要补充,并逐渐在学生学习、认知、再学习这样一个闭环的学习过程中发挥着举足轻重的作用[1]。

1 设计思想及算法原理

基于计算机自然语言处理技术,充分利用校园网络资源,通过人机互动等丰富信息表现形式,实现一个智能的、高效的基于自然语言理解的专业课程自动答疑系统。系统设计的关键是如何实现快速、高效的智能搜索答案。该过程实际上类似于一个搜索引擎,其核心就是构建一个结构合理、具有完整丰富内容的知识库,并能够在自然语言理解的基础上,快速、准确的完成自动答疑工作。基于自然语言理解的在线答疑系统中两个关键技术分别是:中文分词技术和相似度计算。

1.1 中文分词技术

自然语言理解(Natural Language Understanding,简称NLU)研究如何让计算机理解和运用人类的自然语言,使得计算机懂得自然语言的含义,并对人给计算机提出的问题,通过人机对话(man-machine dialogue)的方式,用自然语言进行回答。为了使计算机系统能够较好地理解用户提出的问题,首先需要对问题进行处理,这一过程最先用到的最为关键的技术就是分词技术【2,3】。由于中英文之间的语言组织、词法结构不同,使得中文分词一直以来成为制约中文自然语言处理的主要因素。而中文文本中,只是字、句和段之间可以通过明显的分界符来简单划界,词与词之间没有天然的分隔符,中文词汇大多是由两个或两个以上的汉字组成,并且语句是连续书写的。这就要求在对中文文本进行自动分析之前,先将整句切割成小的词汇单元,即中文分词(或中文切词),相比英文语句处理,中文分词难度更大。

从算法处理上看,目前主要有三种【4-6】:一是基于词典的分词方法,它使用机器词典作为分词依据,分词效率高,目前应用范围较广;二是基于统计的分词方法,它是利用统计方法,通过对大规模文本的统计,让计算机自动判断的方法,该方法使系统资源开销较大;三是基于人工智能的分词方法,如专家系统和神经网络分词方法等,这类方法目前尚处于实验室阶段,尚未投入实际应用。

1.2 相似度处理技术

相似度计算在自然语言处理、智能检索、文本聚类、文本分类、自动应答、词义排歧和机器翻译等领域都有广泛的应用[7]。其计算方法按照基于规则和统计分为两种情况:一是根据某种世界知识(如Ontology)来计算,主要是基于按照概念间结构层次关系组织的语义词典的方法,根据在这类语言学资源中概念之间的上下位关系和同位关系来计算词语的相似度[8];二是利用大规模的语料库进行统计,这种基于统计的方法主要将上下文信息的概率分布作为词汇语义相似度的参照依据[9]。

⑴ 常用语义词典

对于基于语义词典的相似度计算方法,由于存在计算简单、基础条件低、假设条件易于满足等优点,受到越来越多研究者的欢迎。常用语义词典主要有[10-12]:WordNet、FrameNet、MindNet、知网(HowNet)、同义词词林、中文概念词典(CCD),以及叙词表、领域概念网、概念图等概念网络结构。本文对于相似度的计算主要是基于知网(HowNet)结构。其概念结构如图1所示。

⑵ 相似度计算

与概念相似度密切相关的一个概念是语义距离(semantic distance)。在一棵树形图中,任何两个节点之间有且只有一条路径,在计算语义相似度的时候,这条路径的长度就可以作为这两个概念的语义距离的一种度量,通常认为它们是概念关系特征的不同表现形式,两者之间可以建立一种简单概念词相似度用来描述概念树中两个节点之间的语义接近程度,一般最常用的是刘群提出的以《知网》为基础的相似度计算方法[13]:

式⑴中,p1和p2表示两个概念节点,dis(p1,p2)是树状结构中两节点间的最短距离,α是一个调节参数,表示相似度为0.5时的路径长度。

文献[14,15]综合考虑深度与密度因素,提出了多因素义原相似度计算方法:

式⑵中,h为义原树深度,l为LCN层次,LCN为最小公共父节点。

文献[16]认为该方法存在两点不足:一是该式仅把相似度取为密度、深度因素的算术平均值,显然对于概念节点分布不均的情况不够合理;二是该式没有对密度、深度两者的影响程度进行分析,这样对他的使用范围受到了限制。基于此考虑,提出了改进的语义相似度计算方法:

式⑶中,l(p1,p2)为分别遍历概念网中节点p1,p2到达其最小公共父结点所历经的父结点(包括最小公共父结点)数的最大值。w(p1,p2)为p1,p2所在层概念数的最大值。算法关键部分引进了一个调节参数λ(p1,p2),并保证在该参数的作用下,当节点p1,p2所在层概念数较多,即w(p1,p2)增大时,密度因素对相似度的贡献值大;而当p1,p2离最小公共父结点较远,即l(p1,p2)增大时,深度因素对相似度的贡献值较大。同时算法约定,当p1,p2的父结点和最小公共父结点相同,且同层只有p1,p2两个节点时,调节参数为0.5。该方法即为本文在相似度计算方面采用的算法模型。

2 模型设计

下面我们参考文献[17],按照一般教师对于问题的处理方式,在上述概念语义相似度计算的基础上,从计算机建模层面上给出计算机自动答疑模型的建模过程。

Step1:计算条件

已知标准问题库A可以表示为关键词序列:A=(a1,a2,…,an);学生提问B可以表示为关键词序列:B=(b1,b2,…,bn)。

Step2:相似度计算

⑴ 知识点关键词信息提取

该问题的处理主要通过提取学生问题中每一个关键词,对照系统知识库,从底层开始遍历搜索,当找到对应的概念节点时,提取该节点的高度、密度等属性信息,并保存起来,搜索完成后即可参加相似度的计算。

⑵ 概念相似度求解

概念相似度的计算采用语义相似度技术,设标准问题库A可以表示为知识点的一个向量组A=(a1,a2,…,an),循环遍历每一个学生输入的问题关键词序列,通过概念语义相似度算法可得到任意两概念之间的相似度Sim(ai,bj),其中i=1,2,…,m,j=1,2,…,n。

Step3:匹配结果输出

前面已经完成了输入问题和标准问题库之间的循环相似度匹配计算,为了将需要的信息提取出来,模型还需要设置一个阀值δ。通过阀值δ这个关卡,将相似度结果大于δ的问题提取出来,并按照降序排列输出即可。论文答疑系统模型建模流程如图2所示。

3 系统实现与验证

系统设计环境为Visual Studio 2005,数据库服务器为SQL Server 2000。采用B/S网络模型进行构架设计,按照系统功能需求划分为用户表示层、应用逻辑层和数据访问层三个层面。系统测试界面如图3所示。

如图3所示,在答疑系统界面中输入问句:“计算机包含哪些硬件?”,系统自动分词后生成的关键词语汇单元为:“计算机;硬件”(其中“包含;哪些”等作为停用词已经被过滤掉了),然后系统自动在数据库中检索匹配,最终反馈了12条相关结果,图3为部分结果截图。这里说明一点,反馈结果的多少取决于阀值δ,测试中我们选取的阀值δ为0.8,一般我们取阀值δ在0.8左右即可。

为了进一步验证系统的查询能力,我们将刚才的问句调整为:“计算机包含?”,这时系统自动分词后生成的汇单元只有一个关键词“计算机”,最终匹配结果如图4所示。

这里读者或许会发现,系统反馈回来的结果与问题毫不相关。其实,这并不是系统出错,而是“知网”概念网络中“计算机”与“硬件、软件”两个概念关系比较密切,表现为在概念网络中的节点位置较为接近,匹配结果相似度值较高,因此才有了上述的结果。也就是说,也许在某些时候当查询某个概念时,相近的结果就会被检索出来(或者当不确定查找的问题时,只需输入相近的问题,也会查询到想要的答案),这就是基于自然语言理解的语义相似度计算模型优势所在。

4 结束语

由于汉语词汇表达的复杂性和词汇语义概念较强的主观性,以及具体应用领域的专业性等因素影响,目前基于自然语言理解的相似度计算仍是计算机语言处理技术需深入研究的内容。本文在“知网”知识表示的基础上,充分考虑“知网”深度和密度因素影响,基于全文检索匹配技术,设计并实现了一个限定领域内的在线答疑系统,大量的运行结果证明了该系统是可靠的,达到了系统设计的目的。但在准确性方面还存在不足,从第一个测试中可以看出,提问人员真正需要的是:“计算机的硬件组成”。其重点关注的是计算机、硬件,而答案给出了太多的“计算机特点,计算机发展”等其他一些与“计算机”有关的匹配答案,其原因是关键词权重的影响因素没有体现出来,离真正的自然语言理解还存在一定的距离,这是系统下一步有待改进的地方。

参考文献:

[1] 冯志伟.自然语言问答系统的发展与现状[J].外国语,2012.35(6):28-30

[2] 黄,符绍宏.自动分词技术及其在信息检索中的应用研究[J].现代图书情报技术,2001.3:26-29

[3] 沈斌.基于分词的中文文本相似度计算研究[D].天津财经大学,2006:12-17

[4] 张波.网络答疑系统的设计与实现[D].吉林大学,2006:30-31

[5] 张丽辉.计算机领域中文自动问答系统的研究[D].天津大学,2006:14-18

[6] 朱.中文自动分词系统的研究[D].华中师范大学,2004:12-13

[7] 周舫.汉语句子相似度计算方法及其应用的研究[D].河南大学,2005:24-25

[8] 于江生,俞士汶.中文概念词典的结构[J].中文信息学报,2002.16(4):13-21

[9] 胡俊峰,俞士汶.唐宋诗中词汇语义相似度的统计分析及应用[J].中文信息学报,2002.4:40-45

[10] Miller G A, Fellbaum C. Semantic network of English [M]//Levin B, pinker S. lexical & conceptual semantics. Amsterdam, Netherlands: E lsevier Science Publishers,1991.

[11] Baker C F. The Berkeley frameNet project [C]//Proceeding ofthe COLING -ACL.98.Montreal, Canada,1998:86-90

[12] 黄康,袁春风.基于领域概念网络的自动批改技术[J].计算机应用研究,2004.11:260-262

[13] 刘群,李素建.基于“知网”的词汇语义相似度计算[C].第三届汉语词汇语义学研讨会论文集,2002:59-76

[14] AGIRREE, RIGAU G. A Proposal for Word Sense Disambigua-tion Using Conceptual Distance[EB/OL],1995:112-118

[15] 蒋溢,丁优,熊安萍等.一种基于知网的词汇语义相似度改进计算方法[J].重庆邮电大学(自然科学版),2009.21(4):533-537

推荐期刊