线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

功能材料论文8篇

时间:2022-12-11 02:14:50

功能材料论文

功能材料论文篇1

关键词:梯度功能材料,复合材料,研究进展

Abstract:Thispaperintroducestheconcept,types,capability,preparationmethodsoffunctionallygradedmaterials.Baseduponanalysisofthepresentapplicationsituationsandprospectofthiskindofmaterialssomeproblemsexistedarepresented.ThecurrentstatusoftheresearchofFGMarediscussedandananticipationofitsfuturedevelopmentisalsopresent.

Keywords:FGM;composite;theAdvance

0引言

信息、能源、材料是现代科学技术和社会发展的三大支柱。现代高科技的竞争在很大程度上依赖于材料科学的发展。对材料,特别是对高性能材料的认识水平、掌握和应用能力,直接体现国家的科学技术水平和经济实力,也是一个国家综合国力和社会文明进步速度的标志。因此,新材料的开发与研究是材料科学发展的先导,是21世纪高科技领域的基石。

近年来,材料科学获得了突飞猛进的发展[1]。究其原因,一方面是各个学科的交叉渗透引入了新理论、新方法及新的实验技术;另一方面是实际应用的迫切需要对材料提出了新的要求。而FGM即是为解决实际生产应用问题而产生的一种新型复合材料,这种材料对新一代航天飞行器突破“小型化”,“轻质化”,“高性能化”和“多功能化”具有举足轻重的作用[2],并且它也可广泛用于其它领域,所以它是近年来在材料科学中涌现出的研究热点之一。

1FGM概念的提出

当代航天飞机等高新技术的发展,对材料性能的要求越来越苛刻。例如:当航天飞机往返大气层,飞行速度超过25个马赫数,其表面温度高达2000℃。而其燃烧室内燃烧气体温度可超过2000℃,燃烧室的热流量大于5MW/m2,其空气入口的前端热通量达5MW/m2.对于如此大的热量必须采取冷却措施,一般将用作燃料的液氢作为强制冷却的冷却剂,此时燃烧室内外要承受高达1000K以上的温差,传统的单相均匀材料已无能为力[1]。若采用多相复合材料,如金属基陶瓷涂层材料,由于各相的热胀系数和热应力的差别较大,很容易在相界处出现涂层剥落[3]或龟裂[1]现象,其关键在于基底和涂层间存在有一个物理性能突变的界面。为解决此类极端条件下常规耐热材料的不足,日本学者新野正之、平井敏雄和渡边龙三人于1987年首次提出了梯度功能材料的概念[1],即以连续变化的组分梯度来代替突变界面,消除物理性能的突变,使热应力降至最小[3]。

随着研究的不断深入,梯度功能材料的概念也得到了发展。目前梯度功能材料(FGM)是指以计算机辅助材料设计为基础,采用先进复合技术,使构成材料的要素(组成、结构)沿厚度方向有一侧向另一侧成连续变化,从而使材料的性质和功能呈梯度变化的新型材料[4]。

2FGM的特性和分类

2.1FGM的特殊性能

由于FGM的材料组分是在一定的空间方向上连续变化的特点如图2,因此它能有效地克服传统复合材料的不足[5]。正如Erdogan在其论文[6]中指出的与传统复合材料相比FGM有如下优势:

1)将FGM用作界面层来连接不相容的两种材料,可以大大地提高粘结强度;

2)将FGM用作涂层和界面层可以减小残余应力和热应力;

3)将FGM用作涂层和界面层可以消除连接材料中界面交叉点以及应力自由端点的应力奇异性;

4)用FGM代替传统的均匀材料涂层,既可以增强连接强度也可以减小裂纹驱动力。

2.2FGM的分类

根据不同的分类标准FGM有多种分类方式。根据材料的组合方式,FGM分为金属/陶瓷,陶瓷/陶瓷,陶瓷/塑料等多种组合方式的材料[1];根据其组成变化FGM分为梯度功能整体型(组成从一侧到另一侧呈梯度渐变的结构材料),梯度功能涂敷型(在基体材料上形成组成渐变的涂层),梯度功能连接型(连接两个基体间的界面层呈梯度变化)[1];根据不同的梯度性质变化分为密度FGM,成分FGM,光学FGM,精细FGM等[4];根据不同的应用领域有可分为耐热FGM,生物、化学工程FGM,电子工程FGM等[7]。

3FGM的应用

FGM最初是从航天领域发展起来的。随着FGM研究的不断深入,人们发现利用组分、结构、性能梯度的变化,可制备出具有声、光、电、磁等特性的FGM,并可望应用于许多领域。

功能

应用领域材料组合

缓和热应

力功能及

结合功能

航天飞机的超耐热材料

陶瓷引擎

耐磨耗损性机械部件

耐热性机械部件

耐蚀性机械部件

加工工具

运动用具:建材陶瓷金属

陶瓷金属

塑料金属

异种金属

异种陶瓷

金刚石金属

碳纤维金属塑料

核功能

原子炉构造材料

核融合炉内壁材料

放射性遮避材料轻元素高强度材料

耐热材料遮避材料

耐热材料遮避材料

生物相溶性

及医学功能

人工牙齿牙根

人工骨

人工关节

人工内脏器官:人工血管

补助感觉器官

生命科学磷灰石氧化铝

磷灰石金属

磷灰石塑料

异种塑料

硅芯片塑料

电磁功能

电磁功能陶瓷过滤器

超声波振动子

IC

磁盘

磁头

电磁铁

长寿命加热器

超导材料

电磁屏避材料

高密度封装基板压电陶瓷塑料

压电陶瓷塑料

硅化合物半导体

多层磁性薄膜

金属铁磁体

金属铁磁体

金属陶瓷

金属超导陶瓷

塑料导电性材料

陶瓷陶瓷

光学功能防反射膜

光纤;透镜;波选择器

多色发光元件

玻璃激光透明材料玻璃

折射率不同的材料

不同的化合物半导体

稀土类元素玻璃

能源转化功能

MHD发电

电极;池内壁

热电变换发电

燃料电池

地热发电

太阳电池陶瓷高熔点金属

金属陶瓷

金属硅化物

陶瓷固体电解质

金属陶瓷

电池硅、锗及其化合物

4FGM的研究

FGM研究内容包括材料设计、材料制备和材料性能评价。

4.1FGM设计

FGM设计是一个逆向设计过程[7]。

首先确定材料的最终结构和应用条件,然后从FGM设计数据库中选择满足使用条件的材料组合、过渡组份的性能及微观结构,以及制备和评价方法,最后基于上述结构和材料组合选择,根据假定的组成成份分布函数,计算出体系的温度分布和热应力分布。如果调整假定的组成成份分布函数,就有可能计算出FGM体系中最佳的温度分布和热应力分布,此时的组成分布函数即最佳设计参数。

FGM设计主要构成要素有三:

1)确定结构形状,热—力学边界条件和成分分布函数;

2)确定各种物性数据和复合材料热物性参数模型;

3)采用适当的数学—力学计算方法,包括有限元方法计算FGM的应力分布,采用通用的和自行开发的软件进行计算机辅助设计。

FGM设计的特点是与材料的制备工艺紧密结合,借助于计算机辅助设计系统,得出最优的设计方案。

4.2FGM的制备

FGM制备研究的主要目标是通过合适的手段,实现FGM组成成份、微观结构能够按设计分布,从而实现FGM的设计性能。可分为粉末致密法:如粉末冶金法(PM),自蔓延高温合成法(SHS);涂层法:如等离子喷涂法,激光熔覆法,电沉积法,气相沉积包含物理气相沉积(PVD)和化学相沉积(CVD);形变与马氏体相变[10、14]。

4.2.1粉末冶金法(PM)

PM法是先将原料粉末按设计的梯度成分成形,然后烧结。通过控制和调节原料粉末的粒度分布和烧结收缩的均匀性,可获得热应力缓和的FGM。粉末冶金法可靠性高,适用于制造形状比较简单的FGM部件,但工艺比较复杂,制备的FGM有一定的孔隙率,尺寸受模具限制[7]。常用的烧结法有常压烧结、热压烧结、热等静压烧结及反应烧结等。这种工艺比较适合制备大体积的材料。PM法具有设备简单、易于操作和成本低等优点,但要对保温温度、保温时间和冷却速度进行严格控制。国内外利用粉末冶金方法已制备出的FGM有:MgC/Ni、ZrO2/W、Al2O3/ZrO2[8]、Al2O3-W-Ni-Cr、WC-Co、WC-Ni等[7]。

4.2.2自蔓延燃烧高温合成法(Self-propagatingHigh-temperatureSynthesis简称SHS或CombustionSynthesis)

SHS法是前苏联科学家Merzhanov等在1967年研究Ti和B的燃烧反应时,发现的一种合成材料的新技术。其原理是利用外部能量加热局部粉体引燃化学反应,此后化学反应在自身放热的支持下,自动持续地蔓延下去,利用反应热将粉末烧结成材,最后合成新的化合物。其反应示意图如图6所示[16]:

SHS法具有产物纯度高、效率高、成本低、工艺相对简单的特点。并且适合制造大尺寸和形状复杂的FGM。但SHS法仅适合存在高放热反应的材料体系,金属与陶瓷的发热量差异大,烧结程度不同,较难控制,因而影响材料的致密度,孔隙率较大,机械强度较低。目前利用SHS法己制备出Al/TiB2,Cu/TiB2、Ni/TiC[8]、Nb-N、Ti-Al等系功能梯度材料[7、11]。

4.2.3喷涂法

喷涂法主要是指等离子体喷涂工艺,适用于形状复杂的材料和部件的制备。通常,将金属和陶瓷的原料粉末分别通过不同的管道输送到等离子喷枪内,并在熔化的状态下将它喷镀在基体的表面上形成梯度功能材料涂层。可以通过计算机程序控制粉料的输送速度和流量来得到设计所要求的梯度分布函数。这种工艺已经被广泛地用来制备耐热合金发动机叶片的热障涂层上,其成分是部分稳定氧化锆(PSZ)陶瓷和NiCrAlY合金[9]。

4.2.3.1等离子喷涂法(PS)

PS法的原理是等离子气体被电子加热离解成电子和离子的平衡混合物,形成等离子体,其温度高达1500K,同时处于高度压缩状态,所具有的能量极大。等离子体通过喷嘴时急剧膨胀形成亚音速或超音速的等离子流,速度可高达1.5km/s。原料粉末送至等离子射流中,粉末颗粒被加热熔化,有时还会与等离子体发生复杂的冶金化学反应,随后被雾化成细小的熔滴,喷射在基底上,快速冷却固结,形成沉积层。喷涂过程中改变陶瓷与金属的送粉比例,调节等离子射流的温度及流速,即可调整成分与组织,获得梯度涂层[8、11]。该法的优点是可以方便的控制粉末成分的组成,沉积效率高,无需烧结,不受基体面积大小的限制,比较容易得到大面积的块材[10],但梯度涂层与基体间的结合强度不高,并存在涂层组织不均匀,空洞疏松,表面粗糙等缺陷。采用此法己制备出TiB2-Ni、TiC-Ni、TiB2-Cu、Ti-Al[7]、NiCrAl/MgO-ZrO2、NiCrAl/Al2O3/ZrO2、NiCrAlY/ZrO2[10]系功能梯度材料

4.2.3.2激光熔覆法

激光熔覆法是将预先设计好组分配比的混合粉末A放置在基底B上,然后以高功率的激光入射至A并使之熔化,便会产生用B合金化的A薄涂层,并焊接到B基底表面上,形成第一包覆层。改变注入粉末的组成配比,在上述覆层熔覆的同时注入,在垂直覆层方向上形成组分的变化。重复以上过程,就可以获得任意多层的FGM。用Ti-A1合金熔覆Ti用颗粒陶瓷增强剂熔覆金属获得了梯度多层结构。梯度的变化可以通过控制初始涂层A的数量和厚度,以及熔区的深度来获得,熔区的深度本身由激光的功率和移动速度来控制。该工艺可以显著改善基体材料表面的耐磨、耐蚀、耐热及电气特性和生物活性等性能,但由于激光温度过高,涂层表面有时会出现裂纹或孔洞,并且陶瓷颗粒与金属往往发生化学反应[10]。采用此法可制备Ti-Al、WC-Ni、Al-SiC系梯度功能材料[7]。

4.2.3.3热喷射沉积[10]

与等离子喷涂有些相关的一种工艺是热喷涂。用这种工艺把先前熔化的金属射流雾化,并喷涂到基底上凝固,因此,建立起一层快速凝固的材料。通过将增强粒子注射到金属流束中,这种工艺已被推广到制造复合材料中。陶瓷增强颗粒,典型的如SiC或Al2O3,一般保持固态,混入金属液滴而被涂覆在基底,形成近致密的复合材料。在喷涂沉积过程中,通过连续地改变增强颗粒的馈送速率,热喷涂沉积已被推广产生梯度6061铝合金/SiC复合材料。可以使用热等静压工序以消除梯度复合材料中的孔隙。

4.2.3.4电沉积法

电沉积法是一种低温下制备FGM的化学方法。该法利用电镀的原理,将所选材料的悬浮液置于两电极间的外场中,通过注入另一相的悬浮液使之混合,并通过控制镀液流速、电流密度或粒子浓度,在电场作用下电荷的悬浮颗粒在电极上沉积下来,最后得到FGM膜或材料[8]。所用的基体材料可以是金属、塑料、陶瓷或玻璃,涂层的主要材料为TiO2-Ni,Cu-Ni,SiC-Cu,Cu-Al2O3等。此法可以在固体基体材料的表面获得金属、合金或陶瓷的沉积层,以改变固体材料的表面特性,提高材料表面的耐磨损性、耐腐蚀性或使材料表面具有特殊的电磁功能、光学功能、热物理性能,该工艺由于对镀层材料的物理力学性能破坏小、设备简单、操作方便、成型压力和温度低,精度易控制,生产成本低廉等显著优点而备受材料研究者的关注。但该法只适合于制造薄箔型功能梯度材料。[8、10]

4.2.3.5气相沉积法

气相沉积是利用具有活性的气态物质在基体表面成膜的技术。通过控制弥散相浓度,在厚度方向上实现组分的梯度化,适合于制备薄膜型及平板型FGM[8]。该法可以制备大尺寸的功能梯度材料,但合成速度低,一般不能制备出大厚度的梯度膜,与基体结合强度低、设备比较复杂。采用此法己制备出Si-C、Ti-C、Cr-CrN、Si-C-TiC、Ti-TiN、Ti-TiC、Cr-CrN系功能梯度材料。气相沉积按机理的不同分为物理气相沉积(PVD)和化学气相沉积(CVD)两类。

化学气相沉积法(CVD)是将两相气相均质源输送到反应器中进行均匀混合,在热基板上发生化学反应并使反映产物沉积在基板上。通过控制反应气体的压力、组成及反应温度,精确地控制材料的组成、结构和形态,并能使其组成、结构和形态从一种组分到另一种组分连续变化,可得到按设计要求的FGM。另外,该法无须烧结即可制备出致密而性能优异的FGM,因而受到人们的重视。主要使用的材料是C-C、C-SiC、Ti-C等系[8、10]。CVD的制备过程包括:气相反应物的形成;气相反应物传输到沉积区域;固体产物从气相中沉积与衬底[12]。

物理气相沉积法(PVD)是通过加热固相源物质,使其蒸发为气相,然后沉积于基材上,形成约100μm厚度的致密薄膜。加热金属的方法有电阻加热、电子束轰击、离子溅射等。PVD法的特点是沉积温度低,对基体热影响小,但沉积速度慢。日本科技厅金属材料研究所用该法制备出Ti/TiN、Ti/TiC、Cr/CrN系的FGM[7~8、10~11]

4.2.4形变与马氏体相变[8]

通过伴随的应变变化,马氏体相变能在所选择的材料中提供一个附加的被称作“相变塑性”的变形机制。借助这种机制在恒温下形成的马氏体量随材料中的应力和变形量的增加而增加。因此,在合适的温度范围内,可以通过施加应变(或等价应力)梯度,在这种材料中产生应力诱发马氏体体积分数梯度。这一方法在顺磁奥氏体18-8不锈钢(Fe-18%,Cr-8%Ni)试样内部获得了铁磁马氏体α体积分数的连续变化。这种工艺虽然明显局限于一定的材料范围,但能提供一个简单的方法,可以一步生产含有饱和磁化强度连续变化的材料,这种材料对于位置测量装置的制造有潜在的应用前景。

4.3FGM的特性评价

功能梯度材料的特征评价是为了进一步优化成分设计,为成分设计数据库提供实验数据,目前已开发出局部热应力试验评价、热屏蔽性能评价和热性能测定、机械强度测定等四个方面。这些评价技术还停留在功能梯度材料物性值试验测定等基础性的工作上[7]。目前,对热压力缓和型的FGM主要就其隔热性能、热疲劳功能、耐热冲击特性、热压力缓和性能以及机械性能进行评价[8]。目前,日本、美国正致力于建立统一的标准特征评价体系[7~8]。

5FGM的研究发展方向

5.1存在的问题

作为一种新型功能材料,梯度功能材料范围广泛,性能特殊,用途各异。尚存在一些问题需要进一步的研究和解决,主要表现在以下一些方面[5、13]:

1)梯度材料设计的数据库(包括材料体系、物性参数、材料制备和性能评价等)还需要补充、收集、归纳、整理和完善;

2)尚需要进一步研究和探索统一的、准确的材料物理性质模型,揭示出梯度材料物理性能与成分分布,微观结构以及制备条件的定量关系,为准确、可靠地预测梯度材料物理性能奠定基础;

3)随着梯度材料除热应力缓和以外用途的日益增加,必须研究更多的物性模型和设计体系,为梯度材料在多方面研究和应用开辟道路;

4)尚需完善连续介质理论、量子(离散)理论、渗流理论及微观结构模型,并借助计算机模拟对材料性能进行理论预测,尤其需要研究材料的晶面(或界面)。

5)已制备的梯度功能材料样品的体积小、结构简单,还不具有较多的实用价值;

6)成本高。

5.2FGM制备技术总的研究趋势[13、15、19-20]

1)开发的低成本、自动化程度高、操作简便的制备技术;

2)开发大尺寸和复杂形状的FGM制备技术;

3)开发更精确控制梯度组成的制备技术(高性能材料复合技术);

4)深入研究各种先进的制备工艺机理,特别是其中的光、电、磁特性。

5.3对FGM的性能评价进行研究[2、13]

有必要从以下5个方面进行研究:

1)热稳定性,即在温度梯度下成分分布随时间变化关系问题;

2)热绝缘性能;

3)热疲劳、热冲击和抗震性;

4)抗极端环境变化能力;

5)其他性能评价,如热电性能、压电性能、光学性能和磁学性能等

功能材料论文篇2

关键词:纳米涂层;场发射;电子强关联;软凝聚态物质

2003年在国际和中国都发生了具有突发性的灾难事件,但中国的GDP仍以9.1%的高速度在增长,达到了人民币11.6万亿元,其中第二产业贡献4万多亿元。中国现今的第二产业主要领域是冶金、制造和信息,在世界的地位是大加工厂,也是大市场。在国际竞争中所以有优势是中国的劳动力廉价,这个优势我们能保持多久?我们还注意到与化工有关的产品中,我们的生产效率是国际发达国家的5%,能耗是3倍,环境的破坏是9倍。这就是我们所付出的代价。不论形势如何严峻,21世纪是中华民族振兴的机遇期,制造业绝对是一个极其重要的领域,是个急速发展变化的领域。2003年3月国际真空学会执委会在北京举行,会议上讨论了将原来的冶金专委会改名为“表面工程专委会”,当时也考虑了另一个名字“涂层专委会”,我想用涂层材料更合适,含有继承性和变革性。20世纪70年代曾经说成是塑料年代,此后塑料科技和工业迅速崛起,极大地改变了人类社会。继而是信息时代,通信网、计算机网、万维网、智能网,信息流,日新月异地改变着人类的生活和观念。我们这个时代是高速发展的时代,技术和观念都在与时俱进地改变着。

本世纪初兴起了纳米科技,促进其到来的是由于微电子小型化的发展趋势,推动科技发展进入纳米时代[1],不仅电子学将进入纳电子学领域,物理学进入介观物理领域,各类科技,包括生物医学等都在探索纳米结构与特性。涂层和表面改性越来越多地增加了纳米科技的内容,这是一种低维材料的制造和加工科技,将是制造技术的主流,将迅速地改变传统制造技术的方法、理论和观念,作为现今国际上的制造大国,世界加工厂,我们更应该注意研究制造技术的发展和未来。

1突破传统制造技术的观念

纳米科技研究的内容主要是在原子、分子尺度上构造材料和器件,测量表征其结构和特性,探索、发现新现象、新规律和应用领域。与我们熟悉传统的相比,纳米材料和器件具有显著的维数效应和尺寸效应。近几年来,在纳米材料制造方面做了大量的研究工作,在纳米粒子粉材的制造,以及材料结构和特性测量、表征上取得了显著成果[2~7]。接下来深入到纳米线、纳米管和纳米带的研究[8~14],出现了一些成功有效的制造方法,发现了一些惊人的结构和特性。在此基础上,发展了纳米复合材料的研究,展现了非常有希望的应用前景[15~17]。近来人们在纳米科技初期成果的基础上挑战某些产品的传统加工技术,比如Al组件的快速加工。

T.B.Sercombe等人报道了快速加工铝(Al)组件的新方法[18],这个方法的主要特征是用快速成型技术先形成树脂键合件,然后在氮气氛中分解其键和第二次渗入铝合金。在热处理过程中,铝与氮反应形成氮化铝骨架,在渗透过程中得到刚体结构。与传统制造工艺相比,这个过程是简单的快速的,可以制造任何复杂组件,包括聚合物、陶瓷、金属。图1是过程示意和原型样品,(a)是尼龙巾镶嵌铝粒子的SEM像,中心有结构细节的是Mg粒子,白色是Al粒子,加入少量的Mg是为还原氧化铝,它将不是铸件中的成分。在尼龙被烧去时,这个结构基本保持不变。(b)是氮化物骨架,围绕Al粒子的一些环状结构的光学显微镜像,再渗入Al时将形成密实结构。(c)是烧结的氮化铝和渗铝组件,小柱的厚为0.5mm其密度和强度都达到了传统铸造技术的水平。他们还制作了公斤重量多种结构的样品。这是一种冶金技术的探索,开辟了一种新的冶金和制造技术途径。

2纳米材料的完美定律

描述材料结构的常用术语是原子结构和电子结构。原子结构的主要参量是晶格常数、键长、键角;电子结构的主要参量是能带、量子态、分布函数。对于我们熟悉的宏观体系,这些参量多是确定的常数,但对于纳米体系,多数参量随着原子数量的改变而变化。这是纳米材料和器件的典型特征,它决定了纳米材料的多样性。其中有个重要规律,我们称之为纳米材料的完美定律,用简单语言表述:“存在是完美的,完美的才能存在”。它包括了纳米晶粒的魔数规则,即含有13、55、147…等数量原子的原子团是稳定的,对于富勒烯碳60和碳70存在的几率最大,而对于碳59或碳71等结构体系根本不存在。这就是为什么斯莫利(Smmolley)他们当初能在大量的富勒烯中首先发现碳60和碳70,从而获得了诺贝尔奖。对于一维纳米结构,包括纳米管和纳米线,存在类似的规则。可以模型上认为是由壳层构成的,每个壳层中更精细的结构称为股,每一股是一条原子链,中心为1股包裹壳层为7股的表示为7-1结构,再外壳层为11股的,表示为11-7-1结构,等等,构成最稳定的结构,这是一维纳米结构的魔数规则。对二维纳米膜存在类似的缺陷熔化规则,即不容许存在很多缺陷,一旦超过临界值,缺陷自发产生,完全破坏二维晶态结构。上述这些低维结构特征是完美定律的具体表述,进步普遍表述理论是正在研究中的课题。

完美定律是我们讨论涂层材料的出发点,因为纳米材料有更多的人造品格,是大自然很少存在或者不存在的,需要人工大量制造。在制造过程中,方法简单、产额高、成本低是最有竞争力的。可以想象,制造成本很高的材料和器件能有市场,一定是不计成本的特殊需要,有政治背景或短期的社会需求。因此在我们探索纳米材料制造时,首先考虑的应是满足完美定律的技术,如用甲烷电弧法制备纳米金刚石粉技术[1],电化学沉积法制备金属纳米线阵列技术[19],以及电炉烧结法制造氧化物纳米带技术[20]等等。

3涂层纳米材料将给我们带来什么?

涂层纳米材料是纳米科技领域具有代表的材料,或是低维纳米材料的有序堆积结构,或者是低维纳米材料填充的复合结构。两者都比传统材料有惊人的结构和特性。如新型高效光电池[21]、各向异性结构材料[19]、新型面光源材料[22]等,这里举例介绍基于热电效应的新型纳米热电变换材料。

热电效应器件的代表是热电偶,即利用不同导体接触的温差电现象进行温度测量的器件。基于热电效应可以制成两类器件:热产生电和电产生温差。前者可以用于制造焦电器件,即用热直接发电,如将焦电材料涂于内燃机缸表面,利用缸体温度高于环境几百度的温差发电,将余热变作电能回收。后者可以做成电致冷器件。这类的直接热电变换器件具有无污染,没有活动部件,长寿命,高可靠性等优点,但块体材料制成器件的效率低,限制了它的应用。纳米科技兴起以后,人们探索利用纳米晶或纳米线结构能否解决热电效应的效率问题。认为用量子点超晶格材料有希望显著提高热电器件的效率,这是由于纳米材料显著的能级分裂,有利于载流子的共振输运和降低晶格热传导,从而提高了器件的效率。T.C.Harman等人[23]报告了量子点超晶格结构的热-电效应器件,他们制备了PbSeTe/PbTe量子点超晶格(QDSL)结构,用其制造了热电器件(Thermo-electrics,TE),图2(a)是纳米超晶格TE致冷器件的结构和电路图,(b)电流-温度曲线。将TE超晶格材料,其宽11mm,长5mm,厚0.104mm,n-型的TE片,一端置于热槽,另一端置于冷槽,为了减小冷槽热传导而形成这同结接触,用一根细金属线与热槽连接。当如图2(a)所示加电流源时,将致冷降温。对于这种纳米线超晶格结构,由于量子限制效应,发生间隔很大的能级分裂,从而得到很高的热电转换效率。图2(b)是TE器件的电流-温度曲线,实验点标明为热与冷端温差(T)与电流(I)关系,电流坐标表示相应通过器件的电流。■为热端温度Th与电流I的关系,其温度对于流过器件的电流不敏感。为冷端温度Tc与电流I的关系,其温度对于电流是敏感的。图中A是测得的最大温差,43.7K,B是块体(Bi,Sb)2(Se,Te)3固溶合金TE材料最大温差,30.8K。从图中可以看出,在较大电流时,冷端温度趋于饱和。采用这种致冷器件由室温降至一般冰箱的冷冻温度是可能的。

电热效应的逆过程的应用就是焦电器件,即利用热源与环境的温差发电。对于内燃机、锅炉、致冷器高温热端等设备的热壁,涂上超晶格纳米结构涂层,利用剩余热能发电,将是人们利用纳米材料和组装技术研究的重要课题。

类似面致冷、取暖,面光源,面环境监测等涂层功能材料,将给家电产业带来革命性的影响,将会极大地改变人类的生活方式和观念。

4含铁碳纳米管薄膜场发射

碳纳米管阵列或含碳纳米管涂层场发射被广泛研究,以其为场发射阴极做成了平板显示器。研究结果表明碳管的前端有较强的场发射能力,因此碳管涂层膜中多数碳管是平放在基底上的,场电子发射能力很差。我们制备了含有铁(Fe)纳米粒子的碳纳米管,它的侧向有更大的场发射能力,有利于用涂层法制造平板场发射阴极。图3(a)是含铁粒子碳纳米的TEM像,碳管外形发生显著改变。(b)是碳管场发射I-V特性曲线,I是CVD生长的竖直排列碳纳米管的场发射曲线,II是含铁粒子碳纳米管竖直阵列的场发射曲线,III是含粒子碳纳米管躺在基底上的场发射曲线,有最强的场发射能力。根据此结果,将含铁的碳纳米管用作涂层场发射阴极,有利于研制平板显示器。

5电子强关联体系和软凝聚态物质

上面所讲到的涂层纳米功能材料和器件是当今国际上研究的热门课题,会很快取得重要成果,甚至有新产品进入市场。当我们在讨论这个纳米科技中的重要方向时,不能不考虑更深层的理论问题和更长远的发展前景。这就涉及到物理学的重要理论问题,即电子强关联体系(electronstrongcorrelationsystem)与软凝聚态物质(softcondensationmatter)。

在量子力学出现之前,金属材料电导的来源是个谜,20世纪初量子力学诞生后,解决了金属导电问题。基于Bloch假设:晶体中原子的外层电子,适应晶格周期调整它们的波长,在整个晶体中传播;电子-电子间没有相互作用。这是量子力学的简化模型,没有考虑电子间的相互作用,特别是在局域态电子的强相互作用。2003年又有人提出了金属导电问题,Phillips和他的同事以“难以琢磨的Bose金属”为题重新讨论了金属导电问题[24]。当计入电子间的相互作用时,可能产生的多体态,超导和巨磁阻就是这种状态。晶体中的缺陷破坏了完善导体,导致电子局域化。电子与核作用的等效结果表现为电子间的吸引作用,导致电荷载流子为Cooper对。但这个对的形成,不是超导的充分条件。当所有Cooper对都成为单量子态时,才能观察到超导性。这样,对于费米子由于包利(Paulii)不相容原则,不可能产生宏观上的单量子态。Cooper对的旋转半径小于通常两个电子相互作用的空间,成为Bose子。宏观上呈现单量子态,Bose子的相干防止了局域量子化。在局域化电子范围内,超导性可能认为是玻色-爱因斯坦凝聚,这个观点现今被很多人接受。从20世纪初至今,对于基本粒子的量子统计有两种,一是Fermi统计,遵从Paulii不相容原理,即每个能量量子态上只能容纳自旋不同的2个电子,而Bose子则不受这个限制。在凝聚态物质中有两个基态:即共有化Bose子呈现超导态,局域化Bose子呈现绝缘态。然而,在几个薄合金膜的实验中,观察到金属相,破坏了超导体和绝缘体之间直接转换。经分析认为这是玻色金属态,参与导电的是Bose子。推断这个金属相可能是涡流玻璃态,这个现象在铜氧化物超导体中得到了验证。

软凝聚态物质研究的对象是原子、分子间不仅存在短程作用力,而且存在长程作用力,表观上呈现的粘稠物质形态,称为软凝聚态。至今,人类对于晶体和原子存在强相互作用的固体已经知道得相当透彻了,但对软凝聚态的很多科学问题还没有深入研究,21世纪以来,引起了科学家的极大兴趣。软凝聚态物质包括流体、离子液体、复合流体、液晶、固体电解、离子导体、有机粘稠体、有机柔性材料、有机复合体,以及生物活体功能材料等。这其中的液晶由于在显示器件上的很大市场需求,是被研究得相当清楚的一种。其他软凝聚态结构和特性的科学问题和应用前景是目前被关注的研究课题。这其中主要有:微流体阀和泵、纳米模板、纳米阵列透镜、有机半导体、有机陶瓷、流体类导体、表面敏感材料、亲水疏水表面、有机晶体、生物材料(人造骨和牙齿)、柔性集成器件,以及他们的复合,统称为分子调控材料(materialsofmolecularmanipulation)。其主要特征是原子结构的多变性和柔性,研究材料的设计、制造、结构和特性的测量、表征,追求特殊功能;理论上探讨原子结构的稳定体系,光、电、热、机械特性,以及载流子及其输运。关于软凝聚态物质,有些早已为人类所用,电解液、液晶等,但对其理论研究处于初期阶段。科学的发展和应用的需求促进深入的理论研究,判断体系稳定存在的依据是自由能最小,体系自由能可表示为F=E-TS,其中S是熵。对于软凝聚态物质体系,S是重要参量。其中更多的缺陷,原子、分子运动的复杂行为,更多的电子强关联,不再是单粒子统计所能描述,需要研究粒子间存在相互作用的统计理论。多样性是这个体系的突出特征,因此其理论涉及广泛、复杂问题。

物理学是探索物态结构与特性的基础学科,是认识自然和发展科技的基础,其中以原子间有较强作用的稠密物质体系为主要研究对象的凝聚态物理近些年有了迅速进展,研究范围不断扩大,从固体结构、相变、光电磁特性扩展到液晶、复杂流体、聚合物和生物体结构等。几乎每一二十年就有新物质状态被发现,促进了人类对自然的认识和对其规律把握能力,推动了科学和技术的发展。21世纪仍有一些老的科学问题需要深入研究,一些新科学问题已提到人们的面前。特别是低维量子限域体系和极端条件下的基本物理问题。20世纪80年代出现的介观物理,后来发展成为纳米科技所涉及的学科领域。与宏观体系和原子体系相比,低维量子限域体系,还有很多物理问题有待解决,人们熟悉的宏观体系得到的规则和结论有些不再有效,适用于低维量子限域体系的处理方法和理论需要探索,特别是将涉及到多层次多系统问题的描述和表征,将会有更多的新现象、新效应、新规律被发现。在纳米尺度,研究原子、分子组装、测量、表征,涉及有机材料、无机/有机复合材料和生物材料,这将大大的扩展了物理学研究的范围和深度。涉及的重大科学前沿问题和重点发展方向有①强关联和软凝聚态物质,及其他新奇特性凝聚态物质;②低维量子限域体系的结构和量子特性,包括纳米尺度功能材料和器件结构和特性;③粒子物理,描述物质微观结构和基本相互作用的粒子物理标准模型和有关问题,以及复杂系统物理;④极端条件下的物理问题,探索高能过程、核结构、等离子体、新物理现象和核物质新形态等;⑤生命活动中的物理问题,物理学的基本规律、概念、技术引入生命科学中,研究生物大分子体系特征、DNA、蛋白质结构和功能等,其研究关键将在于定量化和系统性,必然是多学科的交叉发展,成为未来科学的重要领域。

6结论

本文讨论了纳米线涂层的结构和特性,重点是纳米线的复合涂层和其电学特性、光电特性。其中包括制造技术新观念,纳米材料的完美定律,纳米涂层的热-电效应,碳纳米管的侧向场发射,以及电子强关联体系和软凝聚态物质,展示了涂层科学与技术的发展前景。

参考文献:

[1]薛增泉,纳米科技探索[M].北京:清华大学出版社,2002.

[2]Pavlova-VerevkinaOB,Kul’kovaNV,PolitovaED,etal.COLLLOIDJ+2003,65(2):226.

[3]DattaMS,TINDIANIMETALS2002,55(6):531.

[4]YamaguchiY,JJPNSOCTRIBOLOGIS2003,48(5):363.

[5]HayashiN,SakamotoI,ToriyamaT,etal.SURFCOATTECH2003,169:540.

[6]PocsikI,VeresM,FuleM,eta1.VACUUM2003,7l(1-2):171.

[7]FanQP,WangX,LiYD,CHINESEJINORGCHEM2003,19(5):521.

[8]ArakiH,FukuokaA,SakamotoY,etal.JMOLCATALA-CHEM2003,199(1-2):95.

[9]BottiS,CiardiR,CHEMPHYSLETT2003,37l(3-4):394.

[10]TianML,WangJU,KurtzJ,etal.NANOLETT2003,3(7):919.

[11]RajeshB,ThampiKR,BonardJM,etal.JPHYSCHEMB2003,107(12):2701.

[12]FuRW,DresselhausMs,DresselhausG,etal.JNONCRYSTSOLIDS2003,318(3):223.

[13]KimTW,KawazoeT,SOLIDSTATECOMMUN2003,127(1):24.

[14]NguyenP,NgHT,KongJ,etal.NANOLETT2003,3(7):925.

[15]LiQ,WangCR,APPLPHYS.LETT2003,83(2):359.

[16]ChenYF,KoHJ,HongSK,YaoT,APPLlEDPHYSICSLETTERS,2000,76(5):559.

[17]JinBJ,BaeSH,LeeSY,ImS,MATERIALSSCIENCEANDENGINEERINGB,2000,(71):301.

[18]T.B.SercombeandG.B.Schaffer,SCIENCE,2003,301:1225.

[19]薛增泉,等.新型纳米功能材料[J].真空,2004,41(1):1-7.

[20]Z.W.Pan,Z.R.Dai,Z.L.Wang,SCIENCE,200l,(291):1947.

[21]W.U.Huynh,J.J.Dittmer,A.P.Alivisatos,SCIENCE,2000,(295):2425.

[22]P.Nguyen,H.T.Kongetal.NANO.LETT.2003,(3):925.

功能材料论文篇3

选择合适的材料是实现有机光敏二极管功能以及提高其性能的第一步。目前研究者们对有机光敏二极管的光敏材料研究涉及紫外、可见、红外光区各个波段。一些已报道的有机光敏二极管的性能如表1所示。

1.1可见光光敏二极管材料富勒烯及其衍生物是研究较早也是目前较为热门的一类n型有机半导体材料。研究者正不断地探索该类材料的潜能,Lee等[6]报道了一种多层结构的并五苯/C60器件,该器件在500~690nm的波长范围内都有良好的吸光效率,而在670nm左右,其EQE甚至可以超过100%。P3HT(聚-3-己基噻吩,图2)和PC61BM([6,6]-苯基-碳六十一-丁酸甲酯,图2)也是一组常见的给体、受体材料组合,有报道显示用P3HT∶PC61BM制备的器件在540nm光照,-5V偏压下光响应度可以达到390mA/W,(图3)[7]。近年来,聚芴衍生物及其共聚物也被证明是一类很有前途的有机半导体材料,目前已经报道的聚芴衍生物F8T2(聚(9,9-二辛基芴-二噻吩),图2)为给体,PC61BM为受体,得到的器件光响应度约为625mA/W(460nm,9mW/cm2光照,-10V偏压)[8]。而Park等[9]报道DMQA(N,N-二甲基喹啉并吖啶)∶DCV3T(二氰乙烯基-三联噻吩,图2)材料用于有机光敏二极管,可以得到光响应度超过250mA/W(5mW/cm2光照,-3V偏压),外量子效率超过64%的器件。本课题组在可见光光敏二极管方面也有着一定的研究基础。2009年,基于C60/NPB(N,N''''-二(1-萘基)-N,N''''-二苯基-1,1''''-联苯-4-4''''-二胺,图6)有机异质结,我们报道了一个蓝光敏感的有机光敏二极管[10]。以蓝色OLED(发光波长为462nm)为光源,我们将此有机光敏二极管应用到有机光电耦合(OOC)器件中,实现了0.17%的电流传输效率,这是当时已报道的有机小分子光电耦合器件中的最高值。同时,其截止频率达到了400kHz,并且在1MHz的输入信号下也能表现出极好的跟随特性(如图4)。在此工作基础上,基于C60/m-MTDATA(4,4'''',4″-三(N-3-甲基苯基-N-苯基氨基)三苯胺,图6)有机异质结,其在462nm的OLED光源下的光响应度达到130mA/W,将有机光耦的电流传输效率提高到了1.3%[3]。同时,我们实现了在柔性基底上制备该有机光耦,可以应用于压力传感中。由于其良好的电隔离性能,可将其应用到低压控制电路中,实现了对处于2000V高电势电路的控制(图5)。随着应用需求的增加,对特定颜色选择性吸收的有机光敏二极管也逐渐地为人们所重视,Burn等[11]合成了一种以氧化花青素为核心的树枝状分子(Dendrimers3,图2),以它和PC61BM组成的体异质结有机光敏二极管可以选择性地吸收460~570nm的绿光,而在500nm光照条件下,该器件在0V时的光暗电流比可以达到2.7×104。Park等[12]报道的DMQA/SubPc(二氯硼酞菁,图2)器件也显示出了对绿光较好的选择性,其在560nm光照条件下的比探测率可以达到2.34×1012Jones。红光选择型器件在这方面报道较少,有课题组利用P6T(α,ω-二苯基六噻吩,图2)和BP3T(α,ω-二(联苯-4-基)三噻吩,图2)作为蓝绿光吸收材料来阻止蓝绿光到达传统的CuPc(铜酞菁)/C60结构的器件光敏层,从而得到较好的红光选择性,该器件的比探测率可以达到4.0×1011Jones,EQE达到51.4%[13]。

1.2紫外光光敏二极管材料m-MTDATA是紫外吸收材料里的明星分子,目前报道的基于m-MTDATA∶BPhen(二苯基邻菲咯啉,图6)的器件,在-12V偏压,365nm的光照条件下,其光响应度达到872mA/W[14]。而m-MTDATA搭配Cu(I)配合物CuDD(硼氟酸二[2-(二苯基膦基)苯基]醚•二吡啶并(3,2-a:2'''',3''''-c)吩嗪合铜(Ⅱ),图6)组成的器件在365nm光照条件下,其光响应度可达560mA/W,比探测率达到2.82×1011Jones[15]。NPB也是一种不错的紫外光吸收材料,基于NPB/PBD(2-(4-叔丁基苯基)-5-(4-联苯基)-1,3,4-二唑,图6)的器件光响应度可以达到4.5A/W(3V偏压,350nm,60μW/cm2光照),同时光暗电流比达到了2.4×103[16]。纳米复合材料同样得到了研究者们的青睐,如Huang等将C-TPD(4,4''''-二[(对-三氯代甲硅烷基苯基)苯基氨基]-联苯,图6)和ZnO组成的纳米复合材料与C60用于紫外光敏二极管,得到EQE约400%的高效率器件[17]。然而,以上器件或多或少都会在可见光区有所吸收,这对它们的应用造成了一定的限制,另外,由于ITO对深紫外区光线的吸收也给深紫外区的探测造成了困难,为解决这个问题,有课题组利用在12nm的超薄铝电极上加镀一层TPD(N,N''''-二(3-甲基苯基)-N,N''''-二(苯基)联苯胺,图6)作为可见光吸收材料的方法,得到了紫外区与可见光光响应度比值达到1000左右的器件[18],也有课题组利用PVA(聚乙烯醇)达到了类似的效果。

1.3红外光光敏二极管材料红光-红外区域的探测在光学通信、遥感控制等领域有着无法替代的作用,然而由于有机半导体红外吸收材料较少,使得相关研究目前要落后于紫外和可见光区的研究。Chen等[20]通过在半导体层P3HT和PC61BM间插入Ir-125(4,5-苯并吲哚三碳菁,图7)染料,使得器件的光谱探测上限从650nm提升到1050nm处,在-1.5V偏压下,该器件在800nm处的EQE达到了757%,然而,该器件在可见光区域更加明显的光响应使其并不能被称为一个典型的红外探测器(图8)。Sampietro课题组[21]报道了基于方酸菁类化合物AlkSQ的有机光敏二极管,700nm处的比探测率达到3.41012Jones。此外,基于二硫纶类材料也表现出不错的红外吸收性能,Awaga等[22]报道的以二硫纶类材料BDN(二(4-二甲基氨基二硫代苯偶酰)合镍(Ⅱ),图7)为基础的器件探测范围可以覆盖700~1600nm区域,比探测率达到1.6×1011Jones,带宽约为1.4MHz。曹镛研究组近年来在近红外有机光敏探测器方面做了很好的研究工作,他们报道了两种性能优良的红外光敏材料,即苯并三唑类的高聚物PTZBTTT-BDT(图7)和卟啉类小分子材料DHTBTEZP(图7)[23,24],用它们和PC61BM配合制成的器件在近红外区处的比探测率都可以达到1012Jones以上,是两种很有潜力的红外光敏二极管材料。另外,他们还尝试采用ZnO纳米线作为电子取出层,使得PDDTT(聚(5,7-二(4-癸基-2-噻吩基)-噻吩并(3,4-b)-噻二唑-噻吩-2,5),图7)和PCBM制成的器件可以对400~1450nm的光照产生响应,且在1300~1450nm的红外区比探测率达到109Jones以上[25],这也为提高红外光敏二极管的性能提供了一种有效的方法。

2有机光敏二极管的结构优化与界面修饰

有机光敏二极管依异质结构造方式的不同大致可以分为平面异质结(图9a)、体异质结(图9b)以及混合型(图9c)三类器件。不同结构的器件往往会有很不一样的性能表现。

2.1平面异质结结构平面异质结结构是有机光敏二极管较为常见的结构,其中acceptor和donor分别成层,两者有一个平面界面,形成异质结。如Wang等[27]设计的基于C60/TPBi(1,3,5-(1-苯基-1H-苯并咪唑-2-基)苯,图6)的器件就是基于这一结构,该课题组发现该器件在做成平面异质结结构的时候可以对365和330nm双波长的光线发生响应,而一旦做成体异质结结构则会失去这一特点。在平面异质结的基础上,研究者们也通过不同的优化手段来提高器件的性能,Lee等设计了超薄的并五苯与C60层交替多层的器件(图10a),该器件充分利用了并五苯内单线态激子裂变形成两个三线态激子的特性,将器件EQE提高到了100%以上(670nm光照条件下)[6]。也有一些课题组尝试在给体/受体之间插入一个内联层作为红光吸收材料,有效地提高了红光的利用率,EQE最高超过了7000%[20]。另外,有课题组采用C-TPD等作为阳极缓冲层对平面异质结结构的器件做修饰,C-TPD是一种良好的空穴传输材料,有很低的电子迁移率,另一方面,它较高的LUMO能级也有效地阻挡了C60层电子的注入,因此,它的引入可以使器件的暗电流降低3~4个量级[28]。

2.2体异质结结构体异质结结构的有机光敏二极管近年来发展迅速,有研究人员认为这是比平面异质结更有效率的结构[26]。这主要取决于体异质结结构相比于平面异质结结构具有的更加大的acceptor和donor的接触面积。由于光照产生的空穴电子对的分离主要发生在acceptor和donor界面处,随之迁移到电极中产生光电流,因而体异质结中的空穴电子对能够得到更加有效的分离,进而得到较高的光电转换效率。MEH-PPV(聚[2-甲氧基-5-(2-乙基己氧基)-1,4-亚苯基-亚乙烯基],图2)∶PC61BM组成的体异质结器件暗电流密度可以降到1nA/cm2以下[2]。Gong课题组[29]利用溶液法制备的P3HT∶PCBM体异质结的器件EQE约为80%,比探测率(500nm,0.32mW/cm2光照,-0.5V偏压)超过1×1013Jones,线性动态范围超过120dB,暗电流同样低至nA/cm2量级。研究者也通过表面修饰的方式来提高体异质结结构的器件性能。Leem等[30]以DMQA和DCV3T组成的体异质结为基础,利用TPD/MoOX双层结构作为阳极缓冲层得到的器件在540nm处EQE达到55.2%,而在-3V偏压下的暗电流降低到6.41nA/cm2。其他还有利用PEIE(聚乙烯亚胺)作为PBDTT-C(图2)和PC70BM组成的体异质结结构器件的阳极缓冲层,最终得到的器件在-2V偏压下暗电流为2nA/cm2,比探测率(680nm光照,-2V偏压)可达1013Jones,带宽为12kHz。

2.3其他结构还有一些器件采用给体/体异质结/受体这样的三层混合结构。如Ma等[32]发现他们构建的ITO/红荧烯(Rubrene)/红荧烯∶C60/C60/Al结构的器件的带宽比普通的平面异质结器件有显著的提高,达到15.6MHz,比探测率(405nm光照条件下)在较低的-2V偏压下就高达5×1012Jones,此时暗电流仅为1.5nA/cm2。另外,该器件在同一电压下入射光强改变约5个量级的范围内,光电流都与光强成线性关系。该课题组还采用TAPC(1,1-双[(二-4-甲苯基氨基)苯基]环己烷,图2)和C70这一组材料,器件结构也是平面-体异质结混合的结构(图10b),同样取得了很好的器件性能,其比探测率达到2.5×1013Jones,EQE为62%,在同一电压下,光电流可以和入射光强在6个量级的范围内呈线性关系[33]。近年来也有一些无机纳米棒、纳米等与有机半导体材料相结合的新型异质结组合,Xie等[34]报道的TiO2纳米棒与Spiro-MeOTAD组成的器件即是这样的结构(图11),Ogale研究组[35]报道的ZnO(N)纳米棒-Spiro-MeOTAD杂交光敏二极管也是类似的结构,此类器件往往有自供电的特性,即可以在0V偏压下表现出光响应性,符合未来社会节能环保化的倾向。

2.4界面机理研究对有机光敏二极管器件的电子空穴传输机理的研究有利于人们通过设计器件结构得到最优化的器件性能。目前,有机光敏二极管的机理研究多集中在界面处。Hayden课题组[36]利用TSC(热激发电流分析)研究有机光敏二极管内的界面陷阱状态,他们发现在低光强下,有机光敏二极管的带宽受到界面陷阱的影响,而当光强足够高时,体陷阱的影响居主导地位。Wang等[37]研究了有机光敏二极管在光照下的性能衰退现象,最终他们将引起光电流降低的原因定位在了界面处的光解现象上,并提出合适的缓冲层有利于器件性能的提高。本课题组通过调节C60/NPB异质结中半导体薄膜的厚度,建立了OPD界面中关于耗尽区形成的定量模型,并提供了一个普遍适用的方法来探究有机半导体界面的信息。该模型描述了暗电流和开路电压与C60和NPB薄膜厚度的关系。界面处的相关电子结构信息,如内建电场、电荷密度、耗尽区完全形成的最小厚度和异质结每一侧上的能级弯曲,都可以从这个拟合模型中得到(图12)。该模型的拟合结果显示,有光照和无光照情况下,半导体耗尽区的厚度分别是5nm(C60)/70nm(NPB)和8nm(C60)/60nm(NPB)。器件的性能优化结果验证了拟合模型的合理性。以此为基础,对有机光敏二极管(OPD)进行了结构优化,并与有机发光二极管(OLED)组装成OOC。测试表明该OOC的电流传输比、信噪比、截止频率、跟随频率分别为0.58%、3×104、400kHz、1.25MHz[38]。

2.5光强分布的计算有机薄膜器件中由于光在薄膜内的反射与干涉现象,光场强度在薄膜内层波浪状分布(图13),研究器件内部光强分布对于器件光敏性能的优化有指导性的意义。O''''connor研究组在光伏器件中引进了一个Cap层,通过转移矩阵法计算了不同Cap层厚度下异质结界面处的光强分布,他们发现当器件界面处光强分布达到最大时,器件的光电流也达到最大值[40]。Hung等同样用器件内部光场强度的变化来解释改变器件厚度时,器件光电流的变化[41]。本课题组发展了利用光强分布预测光电流的方法,将器件薄膜厚度对器件内部的光场和电场分布的影响同时列入考虑,提出了一个模型,可以预测mMTDATA/C60器件光电流随厚度变化的趋势,并指导器件结构的优化,使器件光敏性能得到了显著提高。该方法也可用于其他材料体系[42]。

2.6有机光敏二极管的稳定性有机光敏二极管的稳定性也是一个非常重要的性能指标。器件在使用过程中,通常会受到来自环境中水、氧的侵蚀,还会出现由光和电引起的材料老化或降解,这些都会导致器件性能的衰减,影响器件使用寿命。通常情况下,我们可以使用高功函的电极,如Au、Ag等,作为光敏二极管的阴极,这样可以降低电极氧化的几率,在一定程度上对器件起到保护的作用,以提高其稳定性。但这对器件内部的能级匹配提出了较为严格的要求和限制。Wang课题组在电极和有机层界面处引入界面修饰层LiF和Li-acac(乙酰丙酮合锂),通过其和无界面修饰层器件的瞬态光电流谱的对比,得出了电极/有机层界面在光生激子的衰减方面起着十分重要的作用。并且在界面处引入界面修饰层可以有效地降低光生激子的衰减,从而得到较稳定的器件性能。Simonato课题组通过在Ag电极和光敏层之间引入缓冲层聚乙烯亚胺(PEIE),使得该器件在环境条件下放置100天之后,性能仍没有出现明显的衰减,如图14所示。这些研究对制备高稳定、高效率的光敏二极管器件起到十分有效的指导作用。

3未来发展方向

功能材料论文篇4

功能材料课程涉及范围广、教学内容多、更新速度快,传统的教学方法难以满足本课程的教学需求。根据功能材料课程的特点,我们提出了专题教学与主题探讨相结合、学生讲授与教师总结相结合、理论教学与实验教学相结合、生活认知与教学内容相结合、基础知识与最新进展相结合等“五个结合”教学方法,以促进本课程教学质量的提高。

关键词:

功能材料;教学方法;教学探索

材料是具有一定性能,可以用来制作器件、构件、工具、装置等物品的物质,是人类一切生产和生活活动的物质基础。一种新材料的出现,常常引起生产力大发展,推动社会进步。材料科学是一门研究领域十分宽广的学科,涉及结构材料和功能材料两大类。功能材料是指具有特定的电、磁、声、光、热、湿、气、生物等特性的一大类材料,涉及的面宽、用途广,主要用于制造信息、能源、电工、电子、通讯、计算机、仪器、仪表、航空航天、生物医疗等领域的功能元器件,可以实现对能量和信号的吸收、存储、传感、控制、处理、转换、传送和发射等功能[1]。《功能材料》是我校金属材料工程专业发展平台重要课程。学生通过该课程的学习,开阔视野、拓展思路,同时,本课程突破了传统专业教学内容的局限。但由于该课程理论难度大、覆盖范围广、课时量有限,教学的方式方法面临挑战,本文结合教学实际,提出“五个结合”的教学方法,并进行了有益的探索与实践。

一功能材料课程的教学思路

功能材料课程是学生已经学习了《材料科学基础》等专业基础课的基础上开设的,学生已经对材料的组成、结构、制备、性能和应用及其相互之间的关系有了一定的认识,本门课程调动学生的学习积极性应该从知识活、内容新上下功夫,以此认识功能材料功能应用的机理,阐明材料组成、结构与性能之间的关系,挖掘功能材料在生产、生活中的应用,甚至反过来,从应用中的功能材料的功能性的表象进行总结,测试分析其成分、组织和结构,再对其功能性进行解释和探讨。随着时代的进步及科学技术的发展,功能材料已经被应用到各行各业中,功能材料种类繁多,且在不断完善和更新,功能材料的授课,必须关注生活、关注学术前沿,将生活中见到的新产品、科研上的新方法、研究获得的新成果扩展到教学内容中,才能激起学生的学习共鸣[2]。功能材料课程信息量大、系统性不强、更新速度快,由于学时有限,不可能面面俱到。在保证完成基础理论知识教学的情况下,开拓学生视野、扩大学生知识面,根据我校金属材料工程专业面向地方培养应用技术人才的目标及专业前期课程开设情况,我们重点选取超导材料、储氢合金、形状记忆合金、磁性材料、非晶态合金、半导体材料、微电子器件材料、光学材料、精细功能陶瓷、纳米材料、功能转换材料等专题的内容进行讲述。为改善教学效果,从功能材料的角度培养学生提出分析、分析问题和解决问题的能力,我们提出将专题教学与主题探讨相结合、学生讲授与教师总结相结合、基础理论与实验教学相结合、生活认知与教学内容相结合、基础知识与最新进展相结合。

二功能材料课程的教学探索

(一)专题教学与主题探讨相结合

功能材料课程最适合专题讲座式教学,每一类功能材料均可以做一个专题进行讲解,从该功能材料的机理、分类、结构、应用及进展等进行阐述,层次清楚、脉络清晰,学生很容易从宏观上把握该种功能材料,但是核心内容却容易忽略。由于本课程涉及的功能材料在我们的日常生活中、影视资料中或多或少都能接触到,结合教材提供的资料,基本上所有的同学都能参与到讨论中。如:在学习“超导材料”一章时,一个班42名学生,分成6组,每组7人,分别讨论了“什么样的材料是超导材料?”、“为什么这些材料具有超导电性?”“超导材料有用吗?”,同学之间、师生之间通过一节课的讨论和探究,相互启发、相互帮助、相互影响和相互补充,答案已经十分清楚,教师再加以梳理,并对学生理解不透的地方进行系统阐述,完全可以让学生对超导材料有深入的认识。

(二)学生讲授与教师总结相结合

学生通过小组组队自学学习自己感兴趣的专题或其中的小节,然后将自己所学、理解的内容讲授给其他同学,这是一种有效的学习方式。学习功能材料课程的学生为大三学生,已经具备材料科学相关基础的知识,并具有一定的自学能力,能够通过查找、阅读文献创造性地将当前研究的热点、出现的新材料或自己感兴趣的方向进行总结,在教师指导下制作成演示文稿,小组选出一人在课堂上为其他同学做报告。从而使学生达到在亲身体验中对外部信息的收集、整理、加工、反馈、调整和内化,加深学生对所学知识、理论的理解,搭建合理有效的认知结构,且学生通过自己的努力了解了该领域的最新发展动态和国际前沿,得到教师和同学的肯定了激发学生的兴趣。此外,学生参与讲授的教学方法有利于学生解开思维定势、条条框框的枷锁,能够比较自由的进行思维和表达,为学生提供了培养创新意识的环境和机会,《功能材料》这门课程涉及知识面广,学生发挥空间大,能有效的满足学生的好奇心、表现欲和成就感。最后,学生参与讲授的教学方法丰富了学生的情感、精神体验,教学过程容易形成师生共鸣的局面,通过讲授后对其他同学问题的解答、讨论及教师的补充和总结,有利于激起学习的热情,在民主、平等的氛围中学生更愿意提出自己的想法和观点,能从学习中体验到兴奋和快乐,容易使其他学生受到感染,能够增强参与意识,体会到合作的乐趣,增加师生、生生之间的友情。

(三)理论教学与实验教学相结合

《功能材料》是一门理论性与实践性都很强的课程,每一种功能材料的功能特性都基于自身的理论基础,学习功能材料的基础理论困难且不易理解。结合理论课程的学习,穿插实验教学环节,可以让学生从现象出发,逐步深入认识功能材料其功能应用的机理。我们结合现有的仪器设备,根据课程内容、学生认识的需要,有针对性的进行了实验项目的开发设计。开发的实验项目,如:储氢合金的吸释氢性能实验、新型合金材料的设计与制备实验、活性氧化铝对溶液中氟离子的选择性吸附实验、材料成型及热电材料的温度检测等实验项目。另外,对于没有条件开设的实验项目,采用观看视频的形式观看实验过程及现象。通过实验教学,学生加深了对基础理论的理解和认识。

(四)生活认知与教学内容相结合

功能材料是物理、化学、电子、生物等科学的交叉学科,涉及范围广,教学内容多。按材料成分分类,包括:金属材料、无机非金属材料、高分子材料及复合功能材料;按功能特性分类,包括:物理功能材料(如:光学材料、电子材料、磁性材料、声光材料、热电材料等)、化学功能材料(如:感光材料、催化材料、储能材料、可降解材料等)、生物材料(如:生物医药材料、仿生材料等)和核功能材料等。虽然课程内容多,但是每一种功能材料几乎都能在实际生活中找到相应的应用实例,例如:学习光学材料时,以日常生活中经常见到的日光灯、眼镜、光纤、荧光粉、液晶等学生经常看到的材料来进行讲解,而学习磁性材料时,则以硅钢片、磁盘、磁带等为突破口着手进行学习[3]。将课程中每类功能材料的“制备—结构—性能—应用”等各个方面的学习,融入到对日常生活材料的认识、解释及设计,不仅能有效提高学生的学习兴趣,同时改变学生对学习课程知识无用的观念。

(五)基础知识与最新进展相结合

到目前为止,功能材料层出不穷,已经得到了突破性的进展,而且功能材料一直材料科学与工程领域最为活跃的部分,教材更新的速度远远跟不上功能材料发展的速度。因此,在学习某类功能材料时,这就要求将这类功能材料的基础知识与目前的最新的前沿动态紧密结合起来,把最新的科研成果带到课堂中,让学生第一时间了解本课程的进展情况,提高学生的学习兴趣。例如,在储氢合金研究方面,我校教师在稀土系AB3~3.5型无镁合金、金属铝氢化物贮氢材料动力学及电化学性能方面的研究成果比较突出,相关结果成果已经发表在“JournalofRareEarths”等期刊上,将这些内容带入课堂,使学生零距离接触科研最新前沿动态。此外,功能材料的研究并非一帆风顺、一蹴而就的,这是一个逐渐被认识和完善的过程,例如,在学习储氢材料时,从对“单壁碳纳米管储氢”的提出、实验、分析、讨论、再实验、理论否认等历史事件中认识功能材料研究的历程。

三结语

功能材料课程教学过程中,需要教师自身及时补充新知识,准确把握该领域的研究前沿,提升自身素质。根据课程特点进行教学方法的改革是高等教育教学改革的重要组成部分,而提高学生的课堂参与性、互动性是教学方法改革的主要方向。充分发挥以上“五个结合”的教学方法,不仅可以顺利完成本课程规定的教学要求,而且能使学生充分的参与到课程的教学过程中,形成正确的学习态度,实现良好的教学效果。

参考文献

[1] 殷景华,王雅珍,鞠刚等.功能材料概论.哈尔滨工业大学出版社,2009.

[2] 雷艳秋,赵文芝,田福利等.功能材料课程教学探索与实践.广州化工,2013,41(22):174-175,184.

功能材料论文篇5

关键词:《功能材料》;教学改革;创新教育

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)51-0083-02

研究生教育是我国高等教育的重要组成部分,创新能力培养是研究生教育的核心。教育部早在2003年就开始制定实施“研究生教育创新计划”,加强研究生培养体系、课程教学和教材等建设工作,逐步建立有利于培养研究生创新精神、研究能力的机制,提高研究生培养质量[1]。近年来,高校也在深入开展以提高研究生创新能力为核心的研究生教育教学改革。

课程学习是我国研究生培养过程的重要环节。教育部的《关于改进和加强研究生课程建设的意见》,强调要更好地发挥课程学习在研究生培养中的作用,研究生课程体系应以能力培养为核心,以创新能力培养为重点。因此,从培养研究生的创新能力出发,课程教学必须注重研究生创新能力的培养[2]。作为一名研究生课程授课教师,应更新教育观念和教学内容,开展教学方法改革,探索研究生课程教学的新思路[3]。本文基于研究生专业课程《功能材料》的教学实践,分别从教学内容、教学模式及考核方式等方面进行探索。

一、优化教学内容,注重创新能力培养

《功能材料》是材料科学与工程专业研究生的专业必修课之一。《功能材料》内容涵盖面广,多学科交叉融合,包括电子材料、磁性材料、声学材料、光学材料、生物材料及各种功能转换材料。高校材料类本科专业基本上会开设功能材料及相关专业课程,教学内容包括各类功能材料的组成、结构、性能及应用这条主线,但以掌握基本知识、基本理论为教学目标。目前,很多高校开设的研究生《功能材料》课程的教学大纲及教学内容,绝大部分是按照金属功能材料、无机功能材料和功能高分子材料三大类,来讲授各类功能材料的组成、结构、性能及应用等内容,只是应用部分的比重略有增加,这在教学内容上容易与本科教学内容造成重复,缺乏研究生创新能力的培养。因此,优化教学内容,讲授近年来迅速发展的新型功能材料,结合科研成果案例教学,将有助于研究生创新能力的培养。

1.由于本课程的学生是材料专业的硕士研究生,在前期已经学过如《材料科学基础》、《现代材料分析方法》、《材料结构与性能》等专业基础课程,了解和掌握有关功能材料的组成、结构、性能等基本知识。因此,研究生《功能材料》课程的教学内容应将金属功能材料、无机功能材料和功能高分子材料中的经典功能材料与当前研究热点的功能材料相结合,在简要介绍组成、结构、性能方面的基本知识的基础上,重点介绍材料选择与设计、制备技术与功能材料的性能及应用间的相互关系,强调材料的选择、设计和制备技术对功能材料实际应用的重要性。这样,课程教学内容既可引导学生把握功能材料领域的学术研究前沿,提高创新意识,同时也会兼顾功能材料的基本知识的巩固。

2.由于本课程教学课时只有32学时,在教学内容的安排上,针对当前研究热点,结合本校材料专业的研究方向,主要聚焦在新能源材料、环境材料、生物医用材料等,所以重点把新能源材料、环境材料、生物医用材料等专题分别设章进行介绍,将各专题的最新科研成果和最新进展充实到教学内容中,使学生了解科技前沿,激发学生科研创新兴趣。例如,石墨烯,由于独特的高导电、高导热、高强度、轻质等特性,在新能源、环境、生物医学等领域,有重要的应用潜力。此外,功能材料的3D打印,也是目前的研究热点。因此,在讲授石墨烯材料时,结合3D打印技术,对最新发表的关于3D打印石墨烯及器件制备的文献进行介绍,引导学生讨论石墨烯3D打印技术在电池、电容器等储能器件制造上的前景及研究思路,有助于培养学生的科研兴趣和创新能力。

二、融合多元化教学模式,启发创新思维

教学方法和手段的改革,是研究生创新能力培养的关键。良好的教学效果,不仅与教师的讲授技巧有关,更重要的是需要在教学方法和手段上进行多元化融合,激发学生学习兴趣。通过讲授功能材料领域的最新科技前沿,将学生学习功能材料的思维推向应用,把新方法、新技术、新热点、新问题等加入课程教学中,引导学生积极思考和探讨,以启发思维、训练能力。因此,为了有效达到教学目的,本课程将多种教学方法和手段进行融合探索。

1.通过科研与教学的有机结合,培养学生的创新思维和科研能力。本课程的教学团队都是科研第一线的教师,从事功能材料领域的不同研究方向的科研工作。因此,每位教师分别讲授各自擅长领域的教学内容,将各自的最新研究成果作为科研案例,穿插在教学中,丰富教学内容。而且,本校每个学期都设有材料创新讲坛,邀请国内外在功能材料领域的知名学者来校讲座。根据讲座内容,将1~2场材料创新讲座纳入本课程的教学内容,鼓励学生积极交流与讨论。将科研与教学实现有机结合,通过展示教师的科研创新成果,交流如何提出科研创新课题等,不仅会使学生接触到功能材料领域的研究前沿和热点,而且也会激发学生的科研兴趣,引导他们在学习过程中勤于思考,启发科研创新思维,为创新能力和科研能力的培养创造良好氛围。

2.开展以研究热点为主题的课堂讨论。通常,学生对热点问题和最新研究成果比较关注和感兴趣。教师在讲授每个专题时,都要适当引入本专题方向的研究热点和最新研究成果,进行课堂讨论。教师在上一堂课结束时,将讨论主题布置给学生,让学生对讨论主题提前搜寻资料,有所准备,训练学生的自主学习能力。通过专题的课堂讨论,培养学生独立思考、分析问题及交流、表达等能力。

3.培养学生自学能力及文献综述能力。自学能力的培养,对提高学生独立思考和创新能力非常重要。研究生可以通过课程学习、导师指导等环节提高分析、解决问题的能力,但在独立开展科研及学习新知识时,往往需要自学。由于本课程的教学内容安排是在课堂教学过程中,重点讲授材料选择与设计、制备技术与应用的相互关系及最新科研成果,其他关于材料结构和性能等知识需要通过自学完成。此外,类似专题的课堂讨论等教学互动环节,需要学生通过课后进行文献检索和自学文献、资料等来完成。文献综述能力是研究生创新思维和科研能力培养的重要方面。通过文献综述,学生可以全面了解和掌握某个研究领域或研究方向的现状,思考发展趋势,是开展科学研究最为重要的一步。因此,本课程在学期末设置文献综述环节,布置文献综述任务,要求学生通过文献查找、阅读、总结、撰写等完成综述小论文,培养自学与文献综述能力。

4.全英语教学,培养学生外语学术交流能力。目前,教育部积极鼓励教师开展双语和全英语教学活动,培养学生运用外语的能力,提高国际化教学质量[4]。研究生是开展创新研究的主体之一,了解与把握研究领域的发展,需要通过阅读大量外文文献和资料,而且,国际学术交流也是提高科研创新能力的途径之一。

在国内研究生的培养过程中,学生在外语读写方面的训练较多,而听说能力相对较弱。因此,为培养学生的全英语学术交流与表达能力,本课程采用全英语教学。全部制作英语PPT课件,讲授过程中采取预先发给学生课件和外文资料,让学生能够课前预习,熟悉课堂教学内容及生疏的专业词汇,避免学生在课堂上跟不上教师全英语讲授的节奏。但对比较难理解的知识点,适当辅以中文讲解。在课堂提问及课堂讨论环节,鼓励学生采用英语回答和讨论,训练英语表达能力,培养学生的英语学术交流能力。

三、完善课程教学考核方式,引导学生创新能力的培养

本课程比较注重学生创新思维和创新能力的培养,传统的闭卷考核方式显然不适合研究生的培养。为此,课程教学考核方式应将教学过程中的提问、专题讨论等过程性评价与期末文献综述评价相结合,把撰写文献综述、汇报答辩与交流讨论作为考核的重要形式。特别是期末文献综述评价,在教学过程中,列出若干热点问题,由学生自主进行文献检索、阅读资料,撰写综述。期末采用英语多媒体答辩方式对文献综述进行汇报,全面训练文献查阅、归纳总结、文字与口头表达及英语学术交流能力,加强学生的创新能力培养。

忽视课程教学环节中研究生创新意识与创新能力的训练,是导致研究生创新能力不足的一个重要原因。专业课教学是创新人才培养的主渠道之一,对创新能力的培养至关重要。因此,本课程在教学内容、教学模式和教学评价方式等方面进行探索,以引导学生自主学习,加强创新意识和创新能力的培养。同时,提高课程教学质量,教师要不断学习,提高自身创新能力,在科研第一线开展创新科学研究,让科研反哺教学。

参考文献:

[1]张来斌.认清形势,把握关键,大力推进研究生教育改革创新[J].学位与研究生教育,2010,(1):58-60.

[2]朱钰方,朱敏,何星.研究生“生物材料学”课程教学改革初探[J].上海理工大学学报(社会科学版),2014,36(4):387-390.

功能材料论文篇6

关键词:功能梯度材料板,高阶剪切变形和法向变形板理论,有限单元法,Mori-Tanaka模型

引言:

功能梯度材料是一种新型复合材料,是由两相或两相以上颗粒复合材料合成且沿着一个或多个方向每种组分不断变化的预制构件,具有变化的微观结构和连续变化的力学或热学性能。传统的复合材料是分层离散的材料组合,并伴随着界面的产生和材料热力、机械和物理特性的突变。由于非完全粘结、残余应力等因素,通常这些界面都包含一定的缺陷。即使没有,这种材料性质的不匹配会导致应力集中,使得界面变成一个在正常工作状态下容易开裂、脱粘和层裂的温床。而功能梯度材料则根据具体要求,选择使用两种或两种以上具有不同性能的材料,通过连续的改变材料的组成和结构,使其内部界面消失,从而得到功能相应于组成和结构的变化而渐变的非均质材料,以减小和克服结合部位的性能不匹配因素[1]。

目前,国内外已有大量对于功能梯度材料结构的研究工作。由于功能梯度材料的材料参数变化的,所以问题的控制方程是变系数偏微分方程,即使对于简单问题也难以求得解析解。现有的研究主要的分析方法有直接将考虑剪切变形的的板壳理论套用到功能梯度材料结构当中[2-4];层合模型法[5-7],将功能梯度材料结构沿材料变化方向分为若干层,每一层近似看做均质材料,然后加上界面处的连续条件;渐进解法[8,9]等。而对于数值计算方法而言,如有限元法,由于材料不均匀,利用常规实体元对功能梯度材料进行三维分析,需要划分大量的单元。所以针对这种材料特点,需要新的有限单元与计算格式,有人提出了梯度有限元方法[10,11]。本文作者将采用同时考虑了剪切变形和层间变形的高阶板理论(a higher order shear and normal deformable plate theory)[12]构造了一种新的有限板单元,并该单元对功能梯度板进行分析,并通过算例说明了这种单元的可行性。

HOSNDPT板理论与控制方程的建立

如图1所示,考虑一材料参数沿板厚Z方向变化的功能梯度板。其中未变形的板的在直角坐标系中的域为。板的中面为坐标平面OXY记为S,沿x, y, z轴的位移分别记为u, v, w。

图1

将位移场函数展开为的级数:

其中为定义在上单位正交化的次勒让德多项式,即满足:

为狄拉克函数。因为勒让德多项式为正交完备化的函数系,所以当时,该级数收敛于位移场函数。

在小变形的情况下,根据应变与位移的关系可得:

是关于的次多项式。可以写成:

有限元计算格式的推导

功能梯度板所占的域记为,四边边界面记为,上下表面分别记为与。板所受的体力为,在上的位移边界条件为:,在上的应力边界条件为,在上下表面受面力。

问题的静力平衡方程可以写成:

由板的受力条件与自然边界条件,可求的板的总位能:

设为形函数,其中为单元节点数,令

其中为单元广义节点位移,则单元内任意一点位移可表示为:

单元节点基本未知量:

单元节点位移向量:

为单元的阶形函数矩阵。

将式代入几何方程中,可得单元应变与节点基本未知量的关系式:

为单元的阶应变矩阵。

计算算例与结果

4.1两相复合材料的有效模量

功能梯度材料是由两种不同材料混合而成,通常其材料颗粒的精确分布则无法获得,所以其有效材料模量只能基于材料的体积分量和分散相的大致形状来估算。目前,已有几种以从微观力学观点得出计算复合材料宏观模量的模型,本文选择比较流行的Mori-Tanaka模型[13]。

Mori-Tanaka模型适用于计算微观结构为一种材料构成连续的基质和另一种材料以离散的颗粒包裹于其中的复合材料有效模量。基质相材料1的体积模量、剪切模量和体积分量记为、和,颗粒相材料2的体积模量、剪切模量和体积分量记为、和,显然有。

4.2模型参数

假定是由陶瓷(SiC)和铝(Al)组成的功能梯度板,其板厚。

对于Al:弹性模量,泊松比,对于SiC:弹性模量,泊松比。体积模量和剪切模量与弹性模量和泊松比的关系式为和,其材料组分沿厚度方向的变化函数为

和分别是陶瓷相在板的上下表面的体积分量。并令金属相(Al)为基质相,陶瓷相(SiC)为颗粒相,则有和。

4.3计算结果对比与分析

假定板四边简支,即在上;,在上。则在有限元模型中,对于广义自由度有,在上;,在上。在板的上表面施加大小为的分布正应力,对于本例,取。将该单元划分为个四边形版单元,则可令表示单元划分密度。将计算结果无量纲化,令

图3、图4、图5分别为单元密度为,材料参数,,时用本文方法求得的对于不同的长厚比的功能梯度板板中心挠度、板中心上表面正应力和板边缘中点处的剪应力的数值解与Vel和Batra[13]求得的相应的精确解的对比。从2到40,可以看出本文方法不论对于厚板还是薄板,都取得令人满意的结果。

图3 图4

图5图六

图6为,,,长厚比时,本文方法求得的功能梯度板板中心沿截面的挠度、正应力分布和板边缘中点沿截面的剪应力分布的数值解与Vel和Batra[13]求得的精确解的误差随网格密度增加,即计算自由度的增加的误差的变化趋势。可以看出随着自由度增加数值解趋向于精确解,当误差不大于,当时,数值计算结果已趋于稳定,且误差不大于。

结论

功能材料论文篇7

关键词:新型建筑材料,发展状况

 

1.引言

新型建筑材料是相对于传统建筑材料而言的,它主要包括新型墙体材料、保温隔热材料、防水密封材料和装饰装修材料,具有传统建筑材料无法比拟的功能。

建筑材料费用在基本建设总费用中占50%以上,具有相当大的比例;而且建筑材料的品种和质量水平制约着建筑与结构形式和施工方法。此外,建筑材料直接影响土木和建筑工程的安全可靠性、耐久性及适用性(经济适用、美观、节能)等各种性能。因此,新型建筑材料的开发、生产和使用,对于促进社会进步、发展国民经济具有重要意义。

2.新型建筑材料概述

新型建筑材料及其制品工业是建立在技术进步、保护环境和资源综合利用基础上的新兴产业。一般来说,新型建筑材料应具有一下特点:

(1)复合化。随着现代科学技术的发展,人们对材料的要求越来越高,单一材料往往难以满足要求。因此,利用符合技术制备的复合材料应运而生。论文参考,新型建筑材料。论文参考,新型建筑材料。所为复合技术是将有机与有机。有机与无机、无机与无机材料,在一定条件下,按适当的比例复合。然后,经过一定的工艺条件有效地将集中材料的优良性能结合起来,从而得到性能优良的复合材料。据专家预测,21世纪复合材料的比例将达到50%以上。

(2)多功能化。随着人民生活水平的提高和建筑技术的发展,对材料功能的要求将越来越高,要求新型材料从单一功能向多功能方向发展。即要求材料不仅要满足一般的使用要求,还要求兼具呼吸、电磁屏蔽、防菌、灭菌、抗静电、防射线、防水、防霉、防火、自洁、智能等功能。

(3)节能化、绿色化。随着我国墙体材料革新和建筑节能力度的逐步加大,建筑保温、防水、装饰装修标准的提高及居住条件的改善,对新型建筑材料的需求不仅仅是数量的增加,更重要的是质量的提高,即参评质量与档次的提高及产品的更新换代。随着人们生活水平和文化素质的提高,以及自我保护意识的增强,人们对材料功能的要求日益提高,要求材料不但具有良好的使用功能,还要求材料无毒、对人体健康无害、对环境不会产生不良影响,即新型建筑材料应是所谓的“生态建筑材料”或“绿色建筑材料”。

(4)轻质高强化。轻质主要是指材料多孔、体积密度小。如空心砖、加气混凝土砌块轻质材料的使用,可大大减轻建筑物的自重,满足建筑向空间发展的要求。高强主要是指材料的强度不小于60MPa。高强材料在承重结构中的应用,可以减小材料截面面积提高建筑物的稳定性及灵活性。

(5)工业化生产。工业化生产主要是指应用先进施工技术,采用工业化生产方式,产品规范化、系列化。论文参考,新型建筑材料。这样,材料才能具有巨大市场潜力和良好发展情景,如涂料、防水卷材、塑料地板等建筑材料的生产。

3.国内外新型建筑材料发展状况

我国新型建筑材料工业是伴随着改革开放的不断深入而发展起来的,我国新型建筑材料工业基本完成了从无到有、从小到大的发展过程,在全国范围内形成了一个新兴的行业,成为建筑材料工业中重要产品门类和新的经济增长点。

1) 新型墙体材料

墙体材料是指在建筑中起承重、围护或分隔作用的材料。新型墙体材料品种较多,主要包括各种空心砖、新型实心砖、砌块、墙板等,如黏土空心砖、掺废料的粘土砖、非粘土砖、建筑砌块、加气混凝土、轻质板材、复合板材等,其主要特点是节能、利废、省土、环保、减轻劳动强度和提高施工效率。我国墙体材料改革“十五”规划和2015年发展规划中明确提出,重点开发和推广全煤矸石空心砖、高掺量粉煤灰空心砖生态建筑材料产品。但目前在总的墙体材料中所占比例仍然偏小,因此很难满足当前对环境资源保护的要求。只有促使各种新型墙体材料因地制宜快速发展,才能改变墙体材料不合理的产品结构,达到节能、保护耕地、利用工业废渣、促进建筑技术的目的。

2) 新型建筑涂料

新型建筑涂料是指涂敷于物体表面能形成连续性涂膜,装饰、保护或使物体具有某种特殊功能的材料。近年来,无机高分子涂料受到各国重视,日本将其列为低公害产品加以发展,欧美国家也大力推广。新型高档涂料不断出现,如氟树脂涂料等,国外还相继出现了抗菌涂料、抗静电涂料及防海水侵蚀等功能涂料。

3) 新型建筑塑料

建筑塑料是以高分子材料为主要成分,添加各种改性剂及助剂,为适合建筑工程各部位的特点和要求而生产出用于各类建筑工程的塑料制品。论文参考,新型建筑材料。近几年来,在建筑工程中,塑料制品将不断取代金属制品。主要体现在塑料管道、覆面材料和门窗,以及室外装修、防水保温材料的产量和需求量日益增大。我国塑料建筑材料行业加快了研发和推广应用步伐,行业生产规模不断扩大,技术水平稳步提高,尤其是塑料型材、管材已经进入稳定成熟的增长时期,是塑料建筑材料中最成熟的品种,目前生产仍在稳定增长中,并成为应用最好的塑料建筑材料。论文参考,新型建筑材料。

4) 新型装饰材料

装饰材料是指建筑物内外墙面、地面、顶棚的饰面材料。我国建筑装饰装修材料的发展,起步较晚,与国外相比,我国装饰材料的生产企业规模偏小,产品质量不稳定,款色旧,档次低,配套性差,市场竞争能力弱;科研开发力量不足,产品更新换代能力弱,不能适应市场需求;产品结构不合理,中、低档产品比例大,高档材料比重低。不能满足高档建筑装饰装修的需求。由于装修材料的应用,使民用建筑室内环境污染问题日益突出,有专家认为继“煤烟型污染”和“光化学烟雾型污染”之后,人们已经进入以“室内空气污染”为标志的第三污染时期。所以,必须对装饰装修材料有害物质进行限量;对建筑室内污染进行控制等,降低室内污染,大力发展绿色建筑材料。论文参考,新型建筑材料。

5) 新型防水、密封材料

防水材料是指有效防止雨水或地下水向建筑物内部渗漏的防水薄膜材料,是建筑业及其他有关行业所需要的重要功能材料。我国建筑防水、密封材料经过几十多年的努力,获得了较大发展,到目前为止已基本上发展成为门类较为齐全、产品规格档次多样、工艺装备开发已初具规模的防水材料工业体系。

参考文献:

[1]梁美.浅析新型建筑材料的趋势与发展[J].文学与艺术,2009(12):233-233

[2]张光磊.新型建筑材料[M].北京:中国电力出版社,2008

[3]迟建生.浅谈新型建筑材料的使用与发展趋势[J].林业科技情报,2009(3):144-145

功能材料论文篇8

那么,有什么秘诀可以避免这种尴尬的局面出现呢?行之有效的办法就是处理好论点与论据的关系,即在写作议论文时,选用的论据材料与原来提供的材料(或从中提炼出来的论点)具有同质性。

所谓同质性,即要求所选论据材料的要素与原材料(或论点)所具备的要素相同、一致。那么,应该怎样做,作文论据材料才与所供材料(或论点)同质呢?

一、弱水三千只取一瓢――紧扣论点要素筛选材料作论据

可作论据的材料成千上万,也千姿百态。筛选论据材料不能被材料的万紫千红所迷惑,一定要弄清材料的实质,紧扣论点,按论点的要素去筛选与原材料(或论点)同质的论据材料。

例如,要论证“勤能补拙”这一论点,那么在筛选论据材料时,就必须针对这一论点所限定的以下三个要素:1.要有“拙”;2.要有“勤”;3.要有“勤”补了“拙”,出了成果,取得了成功。此三要素缺少其中任何一个,就是不符合该论点所限定的要素,论据材料就难以证明论点。

有学生选了这样一个论据材料:“王羲之经常在自己的衣服上写字,将衣服划破,终于成为一个有名的书法家。”这个论据材料中,王羲之确实“勤”,也取得了成功,但与补拙毫不沾边,因为王羲之并不拙。那么,这个论据材料的要素与论点的要素就不一致,选用它用来论证论点是不恰当的。

不妨换个例子看看:“古雅典的德摩斯梯尼小时候口吃,为了弥补这一缺陷,他坚持每天早上含沙练唱,最终改掉了口吃的毛病,成为一位驰名世界的古雅典最具雄辩力的演说家。”德摩斯梯尼天天口含沙粒练习是“勤”,有口吃的毛病是“拙”,经过刻苦努力最终改掉了毛病,取得了事业的成功,是“勤”补了“拙”。与论点的要素相同,很好地体现了同质性的要求,能有力地论证论点。

二、到什么山唱什么歌――有侧重点地叙述用作论据的材料

筛选出具备同质性的论据材料后,接下来就是如何叙述这个论据材料了。那么,该怎样叙述才能体现同质性呢?总的原则就是到什么山唱什么歌。

再以上面的例子来说,下面的一则论据材料就叙述得很好:“传说古时候有个叫德摩斯梯尼的演说家,因小时候口吃,所以登台演讲时常被雄辩的对手压倒(写拙)。可是他毫不气馁,为了克服此弱点,他每天口含石子,面朝大海朗诵,不管春夏秋冬,坚持五十年如一日,连爬山跑步也都坚持演说(写勤)。最后,他终于成为全希腊最有名气的大演说家(写勤补了拙)。”这段话中的第一句叙其“拙”,第二句叙其“勤奋苦练”,第三句叙其“勤”补了“拙”,取得了成功。论据材料的叙述完全针对着“勤能补拙”这一论点所限定的要素,体现出同质性,因此,有力地论证了论点。

而另一个学生在论证“勤能补拙”这一论点时,这样写到:“勤能补拙,就是说,做任何事情都要刻苦勤奋,只有这样才能取得好的成绩,达到理想的彼岸,事实不也正是如此吗?大发明家爱迪生为了寻找一种能作为灯丝的物质,经常夜以继日地工作,进行了上千次的试验,经过无数次的失败后,他仍锲而不舍地探索,终于发现了能使灯泡持续发光的物质――钨丝。”

推荐期刊