线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

隧道论文8篇

时间:2023-03-21 17:04:11

隧道论文

隧道论文篇1

关键词:地铁隧道水平冻结冻结壁地表变形数值模拟

冻结法由于具有高强、阻水、均匀、灵活、经济等特点,在日本及欧洲各国的城市地铁等市政工程中都有广泛应用。我国在北京、上海地铁施工中也采用过局部冻结技术,但地铁隧道的水平冻结施工在我国还没有先例。北京地铁大北窑车站区间隧道施工首次成功地采用了水平冻结技术,水平冻结长度40余米。工程地处交通枢纽,交通繁忙、建筑众多,隧道上覆多条地下市政管线。冻结施工伴有冻胀和融降现象,过量的冻胀量和融降量将使地下管线及地上的建筑物、道路等受到影响甚至破坏,因此,研究和预测城市地铁隧道水平冻结对地下管线、地表变形的影响规律十分必要。

1工程简介

北京地铁大北窑区间隧道局部水平冻结施工工程距大北窑车站东侧40m,位于建外大街与东三环的交叉处,有多条地下管线,隧道顶部有2m厚的粉细砂层,由于多条管线渗漏,致使粉细砂土饱和。隧道暗挖施工时出现流砂坍塌,为保障地面立交桥的安全畅通,隔断门向西40m隧道采用局部水平冻结法施工。地质情况为:0~-115m为杂填土层,-115~-1015m为轻亚粘土层,-1015~-1215m为粉细砂层,-1215~-1815m为圆砾石层,隧道底部-1815~-2215m为轻亚粘土层。

2FLAC软件及模型的建立

FLAC软件即连续介质快速拉格朗日分析软件,是目前世界上最优秀的岩土力学数值计算软件之一,在模拟支护体方面可提供梁、桩、锚杆、壳体等多种结构单元,非常适合于研究隧道开挖等岩土工程问题。

211施工隧道的数值分析模型

选取冻结法施工隧道的横断面作为开挖模拟的力学几何模型,以现场原型工程为研究对象。考虑问题的对称性,取一半建立模型,待开挖的隧道断面取半径为3m的圆形,上覆盖土层厚12m,隧道底板土层厚度分别取10m和23m,满足大于隧道开挖影响范围3~5倍的要求。力学模型尺寸为23m×28m,按平面应变问题求解,模型底部边界采用固定X、Y方向位移约束,左、右边界都采用固定X方向的位移约束条件。由于原型工程属于浅埋隧道,座落在其上方的东三环立交桥的桩基持力层在隧道底板埋深水平以下,故地表上方不需加载。212隧道分步开挖模型选取工程现场隧道纵断面作为隧道开挖模拟的力学几何模型,隧道纵向长40m,断面高112m,开挖步距2m,上覆土层厚12m,隧道底部范围土层深10m,平面40m×28m,网格划分为1120单元,按平面应变问题求解,模型底部边界采用固定X、Y方向位移约束,左右边界采用固定X方向约束。213模型的有关参数本模型采用摩尔—库仑准则参考有关资料确定模型材料参数如表1。

3隧道开挖过程数值计算结果处理

在修正模型中输入土体初始参数后,计算分析主应力、塑性区发展状况及拱顶和隧道上方地表的垂直位移过程,得到如下结论:

(1)作为施工隧道开挖中承受上覆地压的主要载体冻结壁的拱脚上出现应力集中,应力集中系数可达3~4之多。

(2)冻结壁拱脚冻土体可能会出现塑性屈服区,这正是现场隧道收敛测试中出现的两拱脚之间距离先减小后增大现象的根本原因。

(3)在隧道开挖造成土层损失引起地表下沉的过程中,由于抗压、抗弯强度等力学指标比周围土体大得多的冻结壁减缓了隧道中线及附近的地表下沉,从而减少了地表下沉量。

根据PECK原理作出如下地层地表沉降预测:

2

-x

S=Smax·exp

2i2式中Smax地表最大沉降量;

i沉降槽宽度系数;

x距隧道中心线距离。

取i=0141H(H为开挖深度),绘出按PECK公式计算的地面沉降曲线(见图1)。

图1地表沉降曲线图

比较表明,由模拟得到的地面沉降曲线与PECK公式的曲线相一致。从图1可知,隧道开挖后形成的地表沉降槽在垂直隧道轴线方向上的影响范围为隧道外侧约215倍洞径。将沉降槽近似看成三角形,沉降槽的平均倾斜率ΔT=SmaxΠW=0100075(W为沉降槽的半宽)。根据《建筑地基基础设计规范》(GBJ7—89)的规定,对于高度<60m的多高层建筑,基础的允许倾斜率≤01003,所以隧道水平冻结施工引起的正常地面沉降不会使地面建筑和混凝土路面遭到破坏。

改变冻结壁厚度(018m、112m、115m、118m)得到地表沉降与冻结壁关系曲线见图2。

图2地表沉降与冻结壁厚度的关系

从以上图形可得出如下结论:

(1)冻结壁的厚度参数是隧道水平冻结施工中的一个重要参数,冻结壁对控制地表沉降的作用很明显。地表沉降在冻结壁厚度S=112m时为12mm,S=018m时为16mm(增加60%),S=115m时为10mm(减少了20%)。

(2)对于原型工程,其他条件(开挖步距、台阶工作面长度及掘砌工艺等)不变时,冻结壁厚度可降为018m,此时地表沉降量为16mm,满足北京地铁施工地表沉降量最大允许值30mm的要求,取一倍安全系数,得到合理的冻结壁厚度为115m。

4隧道开挖施工动态数值模拟

采用虚拟支撑力法来模拟开挖断面的空间效应。在正台阶工作面长度为4m、开挖步距2m以及其他条件都与现场相同的情况下,在模拟程序中设置隧道的顺次开挖拱顶及地表监测点,拱顶处从点(i=4,j=17)开始,每隔2m设置一个测点,直至(i=12,j=17),前后共设5个测点;隧道中线垂直上方地表从点(i=1,j=29)开始,每隔2m设置一个测点,直至(i=33,j=29),前后共设17个测点。分析隧道中线垂直上方地表各点、拱顶各监测点的沉降数据得到如下结论:

(1)当掌子面开挖到与测点距离相差110~115倍洞径时,隧道开挖就对地表产生影响,造成一定范围的沉降。

(2)当开挖工作面推进到距离超过测点2~3倍洞径时,变形速率逐渐稳定下来,主要是地层的变形逐渐趋于平缓。

在开挖第5步时,改变开挖步距(L0=2m、3m、4m),得到拱顶测点(i=1,j=17)的位移沉降历史图(图3)。分析表明,在开挖步距L0=4m的情况下,检测点

注:菱形点、方点及三角点分别代表开挖步距为2、3、4m。

(i=1,j=17)地表下沉量约为L0=1m的117倍。在现有施工能力及组织水平的基础上,根据图示的数据比较,考虑选择开挖步距L0=3m是较为合理的。在开挖第5步时,改变台阶工作面长度(L=2m、3m、6m),得到地表测点(i=1,j=43)的沉降历史图(图4)。

注:菱形点、方点及三角点分别代表开挖步距为2、3、4m。分析表明,适当降低台阶工作面长度对地表沉陷及拱顶下沉量的影响不大,但增大台阶工作面长度却能明显地减少地表的沉陷值及隧道的收敛变形值。在北京复—八线采用水平冻结法施工时,台阶工作面的合理优化长度L=5m。

5结论

(1)通过基于原型工程的数值模拟可得到隧道水平冻结法开挖施工中应力场、位移场分布特征。

(2)通过数值计算得到的考虑地表沉降情况下的合理冻结壁厚度为115m。

隧道论文篇2

1.黄土节理对施工的影响黄土沿着各方向上的构造节理都完全发育,多数节理为原生节理并呈X形的成对出现,无限向外延生,产生危险截面。在隧道开挖的过程中,土体容易在危险截面上,顺着节理松弛和断裂。水会顺着裂缝流入土体,使土体的湿度发生改变,随之产生相当大的应力,极易给隧道施工带来预想不到的危险。比如发生较大的坍塌。

2.黄土溶洞与陷穴对施工的影响黄土溶洞与陷穴,是黄土地区常见的不容忽视的不良地质现象。如果将隧道修建在黄土地质的上方,则会有隧道基底下沉的可能。如果将隧道修建在黄土地质的下方,则会有冒顶的可能。若果将隧道修建在黄土地质的附近地区,则会有偏压受力的可能,使得围岩与衬砌处于不利的受力状态。总之,若不采取相应的措施,都将酿成无可挽回的局面。

3.水对黄土隧道施工的影响黄土在干燥环境下时十分坚固可靠,承压的能力较高,隧道的施工能得以顺利的进行。但是,在含地下水较丰富的黄土地层,黄土一旦遇水,就会地质松软、不稳定、孔隙大,承载力急剧降低,遇水下沉产生凹陷。最重要的是,黄土的这种湿陷变形是相当突然的,没有征兆的不可挽回的。当黄土被丰富的地下水浸湿后,土体会发生不同程度的湿陷性,从而发生突然性的不均匀沉降,因此隧道开挖后的围岩就会迅速的丧失自稳能力,如果施工中的支护措施不足,就极易给隧道施工带来预想不到的危险。比如发生坍塌。

二、黄土隧道的施工方法

1.黄土地质为隧道施工的正常进行带来了巨大的困难,但是对于隧道施工的建设者们,这是一个不得不克服的难题。在黄土的特性和对隧道施工的影响中,我们可以分析到,在隧道施工中,处理黄土地质问题应该着重从影响其物理性质变化的内在因素和外在因素上共同考虑,通过改变图的力学性质达到处理的目的。但是对于不同的工程,具有不同的施工条件,因此还需要根据不同的情况进行不同的处理。总而言之,黄土地质下隧道施工的要点大致如下:应做好黄土构造节理的产状与分布的调查;根据不同地域的不同水文地质条件选择合理的施工方法,对围岩进行合理的支护,宜采用复合式衬砌;做好洞顶、洞门及洞口的防排水系统工程,并妥善处理陷穴和裂缝;遵循“短开挖、少扰动、强支护、实回填、严治水、勤量测”的施工原则。在黄土地质环境下进行隧道施工时,对于因构造节理切割而形成的不稳定部位,应加强支护措施,以保证施工能安全顺利的进行。同时,开挖方式宜采用短台阶法或分布开挖法,初期支护必须在开挖断面后尽快施作。下面对施工细节进行说明:

2.洞顶陷穴的处理针对黄土的湿陷性,为了保证隧道能安全顺利的施工,在隧道开挖前应对洞顶周围陷穴进行适当的处理,防止水从陷穴和裂缝渗入到隧道内部,侵蚀洞体周围,引起隧道的坍塌。第一步将陷穴中的杂物清除,第二部对陷穴加以加工使之成为较规则的形状,以便于后期的回填,最后夯实陷穴底部。对于较深的陷穴可采用灌浆充填,对于较浅的陷穴可采取素土或灰土分层夯实回填。除上述处理方法之外,也可结合坡顶建筑物地基处理,采用挤密法处理黄土陷穴现象。

3.洞口防护及地表加固根据不同洞口的特点和“自然进洞”的施工原则,借助地表注浆加固等辅助施工措施提前进洞,这样就能有效的解决洞口的工程危害,保护洞口边仰坡稳定,降低洞口的防护成本。常用的防护和加固方法有深孔注浆、地面锚杆、高压喷射注浆等。支护措施黄土地质的围岩开挖后,如果若暴露时间过长,围岩风化至内部岩体加速松弛,进而发生坍方现象。因此,对于支护宜采用复合式衬砌,开挖时少扰动,开挖后以喷射混凝土、锚杆、钢筋网和钢支撑作初期支护,一起构成较强的支护体系,防止因支护措施不当而发生的工程事故。必要时也可采用超前锚杆、管棚支护加固围岩。在初期支护基本稳定后,进行作用永久支护衬砌。衬砌背后尤其是拱顶回填要密实。监控检测监控检测是所有施工过程中不可缺少的环节。在隧道施工的过程中,应定期对围岩支护体系的稳定性进行相关的监测和评价,为初期支护和二次衬砌设计参数的调整提供有利的依据,从而确保施工能安全顺利的进行。

三、结束语

隧道论文篇3

根据设计,SMART将按3种模式运营[2-3],如图3所示。1)模式1。无暴风雨或低降水量情况,没有洪水分流到该系统中,泄洪隧道处于无水状态,公路隧道正常对外开放,见图3(a);2)模式2。在中等洪水情况,即上游Klang/Ampang交汇处的L4雨洪流量站测得流量达到70~150m3/s,通过原有的泄洪设施排泄的流量控制在50m3/s以内,超出的部分则需通过SMART隧道泄洪,但公路隧道区段仅限于隧道的底部空间用于泄洪。公路隧道正常对外开放,见图3(b);3)模式3。大暴雨、特大暴雨情况下,即上游Klang/Ampang交汇处的L4流量站测得流量超过150m3/s,公路隧道关闭交通,隧道内的车辆和人员全部撤离,隧道全断面泄洪,见图3(c)。对模式3而言,在隧道接到泄洪通知后45min内,隧道内的所有车辆及相关人员必须完成撤离,每次过洪后重新恢复道路交通需要52h。对于3km的公路隧道区间,由于隧道需要在干湿2种环境中运营,因此隧道内的照明设备及CCTV系统均按IP68设计,即可以被水淹没。隧道的应急电话系统设计为可快速更换类型。设计最大洪峰泄洪时流速为4.7m/s,所有的机电设备及指示牌尽可能按流线型设计,且设备安装应有足够的刚度与强度。工程按百年一遇的暴雨标准设计。依此标准,一年内绝大部分时间SMART都将按模式1运行,可能会有7~10次按模式2运行,而按模式3运行的频率为每年1次甚至几年1次。

2隧道地质情况与施工方法比选

2.1隧道地质情况

地质调查结果表明,SMART隧道所经历的地层主要是KualaLumpur石灰岩(简称“KL石灰岩”),这种地层将是工程面临的巨大挑战,隧道纵断面见图4(a)。KL石灰岩90%以上的成分为方解石,具有典型的Karst地层特征:1)石灰岩地层出露地面形成陡峭绝壁或深切峡谷,见图4(b);2)长期的水溶作用形成溶洞,溶洞大小可以与隧道掘进机的尺寸相当;3)溶洞往往与地下水相联系,隧道施工过程中的降水活动可能给周边建(构)筑物带来风险;4)在历史上地层出现塌陷的地方往往被松软土层充填,这种松软而不密实的充填物对盾构的掘进施工将存在极大风险;5)施工降水可能引发新的地层塌陷。从施工的角度来看,最为关键的就是岩层的起伏变化以及遭遇大型溶洞。为了准确地确定岩层的起伏变化情况,在2001年利用Mackintosh探钻打了1072个地质探孔。另外,为了解溶洞及上卧层疏松土的松软程度及低密度情况,对2个分岔井间的隧道段,按平行于隧道轴线布置5条线路进行微重力试验。试验结果大致给出了岩石露头的最低点以及大溶洞存在的区域范围。然后又在这些区段进行地质钻孔补测,结果表明微重力试验的结果能大致给出岩层露头的定性而非定量结果。在施工初期又采用电阻物探法进行地层测探,以便获得更多的地层信息。

2.2施工方法比选

基于沿线的地质条件,对明挖法、新奥法以及盾构法等几种常用隧道施工方法进行综合比选,为了减少施工风险以及施工对周边环境的扰动,最终推荐采用盾构施工的方案。在盾构的类型(EPB或泥水平衡)比选方面,一方面泥水盾构较EPB能更好地适应复合地层,而且当时超大断面的泥水平衡盾构已有多个成功案例,而直径大于13m的土压盾构工程还没有先例,因此最终选定2台泥水平衡盾构进行施工。由于水力条件要求,隧道仰拱的标高不能变动,因此隧道掘进施工将不可避免地遭遇软硬并存的复合地层。

3SMART隧道设计

3.1结构设计

根据隧道排洪与公路交通多功能的需要,与常规的交通隧道或泄洪隧道相比,沿线的结构布置、隧道的断面形式以及整条隧道的防灾减灾系统均需要有特殊的考虑和安排。在3km公路隧道的南、北两端各设1座分岔井,作为车辆出入口与洪水入口的分叉点。公路隧道的出入口分别设在KampongPandan环形岔路口和KL/Seremban高速公路的立交处与既有线路衔接。2个分岔井还兼作公路隧道的通风井与隧道泄洪的调压井。另外,3km段交通隧道每隔1km布设1座中间风井。作为防灾措施之一,每250m左右设1座联络通道连接上下层隧道。SMART主体隧道采用盾构法掘进施工,隧道结构采用管片衬砌。综合考虑隧道的泄洪能力以及公路隧道的布置需要,隧道内径设为11.83m。管片设计除了要平衡衬砌厚度与含钢量间的关系外,还考虑管片的正常处置状态(如拼装、翻身等)的受力情况、在高强度石灰岩层中掘进时千斤顶反力集中对管片的作用以及在松软地层中管片的受扭不利工况等。管片采用C50混凝土,厚度为500mm,含钢量为90kg/m3。管片环宽为1.7m,1环包括9块管片,即6块标准块、2块临块和1块封顶块,每块标准块的质量为10.3t,1环的总质量为82t。管片的环向和纵向均采用M25高强度螺栓连接。根据隧道线路布置,最小转弯半径仅250m,管片最大楔形量为110mm。管片不设直线环,直线环由左曲环和右曲环交替拼装而成。中间3.0km公路段,采用双层结构布置,由2道横隔板将隧道分成3部分空间,上部为向南的车道,中间空间为向北的车道。底部的空间用于运营模式2和模式3情况下泄洪。每层各提供3个车道,包括2个宽3.35m的正常车道和1个应急车道。受空间限制,隧道内只能通过高度不超过2.55m的小型车辆。隧道内的设计限速为60km/h,实际显示的限速为50km/h。隧道的内部结构布置见图6。

3.2防水设计

对SMART隧道工程而言,由于兼具排洪和公路交通的双重功能,因此对隧道的防水设计也提出了特殊要求,内部结构的防水要求较常规交通隧道要高得多。盾构隧道管片的防水通过在管片上预留密封沟槽安装EPDM橡胶密封实现,最大压力水头按32m考虑。中间3km的公路隧道段在运营模式2情况下,底部的空间水流按有压流考虑,而中部和上部均为无水环境下的公路交通,因此必须要防止水从底部渗漏到中上部空间,这是SMART隧道防水设计的关键与难点所在。为了最大限度减少水从底部渗漏到下隔板,所有施工缝的钢筋都全部连通,并在接缝处预留压浆管。隔板和竖墙的配筋要足够,以防止混凝土施工的早期裂缝。在C40混凝土配合比设计中选用低水化热的PFA水泥,混凝土浇筑的温度严格限制在60℃以内,对浇筑的隔板采取蓄水养护。为防止水通过管片环缝渗入上隔板,在环缝处设“T”形止水带。另外,在隧道管片衬砌与内衬之间预留压浆管。

3.3防灾减灾设计

SMART隧道工程设计开始于2001年,恰逢欧洲勃朗峰隧道火灾(1999年)和阿尔卑斯山隧道火灾(2000年)不久,因此公路隧道的防灾减灾设计尤为受到关注,为此咨询公司专门开展了火灾的数值模拟分析。假定隧道的下层道路发生2~3辆小汽车相撞产生10MW的大火燃烧60min。采用一维数值模拟分析了中间隔板底部的导热情况,通过分析不同深度混凝土结构的温度来推测混凝土剥落的情况。分析结果表明大火情况下混凝土剥落现象仅限于30mm深度范围,混凝土内部的钢筋不致发生软化现象。另外,作为防灾减灾措施的通风系统也十分重要。3km长的公路隧道按1km间隔共设4座风井,每座风井安装8套通风扇和增压风扇为上下层交通隧道供风,增压风扇主要作用是阻止火灾情况下烟雾进络通道,隧道通风模型见图8。在隧道的出入口设置轴流式风机进行新风补充。通风系统的操作系统与隧道SCAVADA系统相连。用于监测隧道内CO浓度与可视度的仪器安装在联络通道附近,整个通风系统根据监测的结果自动调节风量与风速。3km公路隧道沿线每250~300m间隔设联络通道用于连接上层与下层隧道,具置则根据具体地质情况与施工条件确定。一旦发生火灾,在无事故的隧道层则供增压风,以阻止烟雾进入非事故隧道。电气开关房布置在联络通道的中间,见图9。在联络通道与隧道的连接处设水密门,确保泄洪期间水不进络通道。根据地质条件的不同,联络通道采用马蹄形开挖断面+现浇混凝土衬砌和椭圆形开挖断面+喷射混凝土衬砌2种形式。

3.4洪水监测与预警系统

由于SMART工程主要的功能是泄洪,并且还要实现泄洪与公路交通不同运营模式之间的转换,因此洪水的监测与预报系统(FloodDetectionSystem简称FDS)必不可少。该系统除了为公路隧道区间不同运营模式间的转换提供水情预报外,还对SMART工程中各个子系统运营状态进行监测与预警。这些系统包括通信系统、预警系统、隧道内安设的传感器、公路隧道出入口的水密门以及蓄洪池的闸门等。更重要的是在公路隧道按模式2或模式3运行时,该系统将为SMART工程中控室和交通管理中心提供实时完整的信息。洪水监测系统安装在SMART工程中控室,包括7个子系统:1)产流区域监测系统。28个遥感水文站,对河流与产流区域的流量进行实时监测,为FDS系统模型提供输入;2)预报模型系统。带有自动模拟与数据信息处置能力的水文与水动力学模型,可以对所选的地点进行长达2h的流量过程预报;3)预警系统。设置在关键位置的警报站;4)监测与控制系统。对各子系统信息进行整合与智能管理的软件系统;5)CCTV系统。设置在重要位置的摄像头和照相机等,以便对现场进行实时监督;6)SCADA系统。包括FDS与MCC系统的界面,用以SMART系统信息与传播的SCX系统;7)无线与光纤通讯系统。包括无线网络、电话以及光纤通讯系统等。

4主体隧道工程施工情况

4.1盾构设备选型

针对地下水位高、复合地层以及Karst地层特点,盾构选型的准则与依据如下:1)马来西亚土地(包括地下)属于私有财产,根据土地征用的具体要求,隧道的线路尽可能落在地面公路的土地使用范围内,盾构设备必须满足最小半径250m的急转弯情况;2)覆土厚度范围10~20m,因此盾构设备必须满足浅覆土施工的工况条件;3)为提供开挖面正面平衡精度,防止施工过程中开挖面前方坍塌,盾构采用泥水-气平衡系统;4)盾构绝大部分都是在石灰岩中进行掘进,部分区域会遭遇溶洞或岩石露头的突变等情况,盾构必须具备在复合地层中掘进施工的能力。经综合比选,SMART隧道采用2台外径13.21m的泥水平衡盾构进行施工。所采用盾构由德国Herrenknecht公司提供,第1台在合同签订后12个月供货,第2台的到货时间滞后2个月。刀盘的配置必须满足在复合地层掘进的需要,值得一提的是盾构采用了球形主轴承,这样允许刀盘与主轴承间以小于90°的夹角进行切削以满足急曲线转弯的超挖需要,同时也减小了作用在隧道管片上千斤顶的行程差,这样可以实现最大的超挖量达到400mm。这一特性还可以满足在岩石地层条件下,将刀盘缩回为查刀与换刀提供一定空间。为满足不间断地进行气压条件下对刀盘上的刀具进行更换,盾构配备了2个气闸室和1个小一些的材料闸室。盾构还配备了2套超前钻探设备和1套振动探测系统以供对开挖面前方的地层进行超前探测。

4.2隧道主体施工情况

隧道的掘进施工始于2003年11月25日。采用2台直径13.2m的泥水平衡盾构从北侧风井始发朝相反的2个方向始发掘进,盾构TUAH用于北侧隧道掘进施工,盾构GEMILANG则朝南掘进。盾构TUAH于2004年6月从北侧风井始发,经过24周的掘进,于2004年11月,到达北侧分岔井,共掘进了737m。2005年1月底,盾构TUAH从北侧分岔井重新始发开始第2段区间隧道的掘进施工,掘进的长度为4550m。SMART北侧盾构隧道的部分参数见表2。工程经过多次延误后,公路隧道段于2007年5月14日下午3:00正式通车,而泄洪隧道段最终于2007年7月底竣工。就在公路隧道通车后的几个星期内,隧道就进入运营模式3泄洪。截至2010年7月18日,SMART系统对7次灾难性的暴雨洪水成功实施分流,从而使吉隆坡市中心免遭内涝之灾。

4.3施工的主要挑战与应对策略

盾构掘进施工中潜在的风险与挑战主要包括:地层沉降或坍塌、Karst溶洞或坑穴以及泥水逃逸导致地表坍塌隆起、开挖面坍塌和泥水溢出地面等。为了防止所述风险并尽量减少泥水损失,施工中采用了一系列的技术措施与方法:1)针对溶洞的位置、大小、地层特点等信息,基于Mohkam模型对开挖面的平衡压力进行计算分析;2)根据地层特点将掘进分为均质地层中掘进、复合地层(掘进断面中含岩石和沉积土)中掘进、交界面中掘进以及在Karst溶洞中掘进等工况,针对不同的工况条件制定相应的盾构掘进施工参数体系;3)对地表沉降进行实时监测,通过监测数据及时反馈给盾构操作人员以降低地表隆沉与冒浆的风险。施工中采用的一些其他措施还包括:1)根据不同的地层情况及泥浆的损失情况及时调整泥浆的组成成分并补充泥浆量;2)在敏感环境区域采用补偿注浆、压密注浆和岩石裂隙注浆3种方法从地表对开挖面前方地层进行注浆加固。根据不同的具体情况选择不同的注浆方法与浆液配比。当地面不具备条件时,也可以从盾构内部进行注浆加固。

5结论与讨论

隧道论文篇4

控制爆破技术主要有:

①微差爆破

微差爆破就是利用毫秒延时雷管达到延时爆破的爆破技术。它的主要优点就是可以降低爆破地震效益所导致的冲击作用;实现岩石碎块的均匀度,使得爆破岩石碎片集中化,便于清理;降低爆破次数、提高爆破效果。

②挤压爆破

挤压爆破技术就是在爆区自由面前方人为预留岩渣,以此提高炸药能量的利用率和改变破碎质量。它的主要优点就是增加了工时的利用率,降低了爆破频率;通过挤压爆破可以使岩石在挤压过程中发生二次冲击,提高了岩石破碎率,降低了二次爆破的工作量。

③光面爆破

就是在开挖的岩石中保证其表面光滑而且不受明显破坏的爆破技术。光面爆破技术可以有效的保护开挖岩体的稳定性,降低施工成本。光面爆破的原理就是采取在开挖岩体表面布置密集的小直径炮眼,在这些炮眼中不耦合装药或者部分孔不装,同时起爆形成平整的光面。

④预裂爆破

就是人为开挖制造一条裂缝,这条裂缝是保留围岩与爆区的分裂线,有效的保护围岩,降低爆破地震危害的控制爆破技术。预裂爆破的炮孔直径一般越小,孔痕率就会越高,对爆破的效果就会产生巨大的影响。

2隧道控制爆破技术

为了更加准确地说明隧道控制爆破技术,本文选用“高石河隧道施工”实例对隧道控制爆破技术进行综合分析:

2.1高石河隧道爆破施工方案

高石河隧道工程以娟云母千枚岩为主,千枚岩遇水后会迅速的软化,而且其地形非常复杂,经过多方论证,最后采取地表注浆加固形式对滑坡进行处理后进行进洞施工。基于高石河隧道地形比较复杂,隧道开挖面积要达到110m2,因此根据施工现场的环境以及施工设备可以采取上、下台阶法开挖,选择2#的岩石乳化炸药,钻孔的直径为42mm,采取并联分段毫秒导爆管。上断面开挖44m2,下断面开挖56m2,它们都采取水平炮孔开挖方式。

2.2爆破参数的确定

根据以往的工作经验以及爆破原理,本工程沟槽采取楔形沟槽法,炮孔则采取掏槽眼、辅助眼、周边眼等多种布孔的方式,并且利用不同段别的毫秒雷管实现对光面控制爆破。

2.2.1炮孔的数量以及炮孔直径

根据工程的实际环境以及岩石的坚硬程度,并且结合爆破技术的原理,来确定在工程的掌子面确定炮孔的数量,一般我们在确定炮孔数量时选择的公式是:N=3.3(f•s2)13根据公式我们可以准确的计算出该工程的炮孔数量应该为160个,其中:N———炮孔的数量(个);s———掘进断面积(m2);f———岩石坚固性系数。

2.2.2装药量的计算及分配

装药量的多少对爆破效果会产生重要的影响,药量不足与过多都会影响工程的质量,因此要合理的确定具体的装药容量,合理的药量要根据炸药的性能和质量等多方面进行确定,但是由于施工环境具有很多的不可计算的因素,因此我们在确定炸药容量时多根据以下公式进行计算:Q=qV。在公式中:Q———爆破循环需要的炸药量;q———爆破每立方米所需要的炸药的消耗量(kg/m3);V———一个循环近尺所爆落岩石的总体积,即V=IS,m3。

2.2.3炮眼直径对工程的影响

众所周知,增加炮眼的直径,加大装药量可以使爆破的威力更大,可以使爆破的效果发挥到最大程度,但是如果一味的增加炮眼的直径就会造成凿岩的下降速度,并且对岩石的碎片质量以及围岩的平整度产生巨大的负面影响,比如增加炮眼的直径可能就会增加爆破的瞬间威力,但是岩石的碎片破碎程度就会下降,碎片的均匀程度也会出现巨大的反差,因此在设定炮眼时必须要根据施工环境以及施工设备、炸药的性能等综合因素进行分析,科学的确定炮眼的孔径。根据我们的工作经验,再结合本工程的实际情况,我们将炮眼的直径确定为32mm-50mm之间,药卷与眼壁之间的间隙为炮眼直径的10%左右,基于此要求,上下断面的开挖爆破应该选用钻头为38mm的风动凿岩机。

2.3爆破施工设计

2.3.1上台阶施工设计

①炮眼布置

炮眼的布置要严格按照控制爆破震动原理进行布置,首先从距底板的50cm处开始,沿隧道的中心线两侧对称布置4对垂直楔形掏槽孔,它们的排列顺序是:头排的辅助孔与掏槽孔的距离要保持40cm,中间辅助孔的距离也为40cm,最外排的辅助孔与边墙的距离为85cm左右;在隧道的拱部布置4排崩落孔,他们之间的排距为60cm,最外层的崩落孔与隧道边界要保持65-80cm的相距距离;周边的炮孔要与开挖边界保持20cm,并且炮孔钻眼要向外倾斜5°左右,底板孔直接布置在底部边界上,并且向下倾斜10°左右进行钻孔,并且要保持孔距之间达到85cm。

②装药结构与单孔装药量的确定

在确定好炮眼的数量以及大小位置后,就需要根据具体的工程要求科学的对炸药使用量进行确定,一般根据工程建设经验,除了在周围孔选择轴向间隔装药外,其余的炮孔需要采取连续装药的结构,不同的位置选择的炸药是不相同的,在拱部周围孔之间要采取直径为25mm、长20cm、重100g的卷装乳化炸药;底板孔则使用直径为32mm、长20cm、重200g的乳化炸药;其余的则选用直径为32mm、长20cm、重150g的卷状2#岩石炸药。

③起爆顺序与方法

为了降低施工成本,实现爆破的预期效果,应该将爆破所引起地表振动的速度控制在2cm/s内,并且要尽量使各个炮孔同时起爆,具体的起爆顺序是:掏槽孔、辅助孔、崩落孔、边墙周边孔、底板孔和拱部孔。起爆的方法是采取非电导爆管以此点火,孔内毫秒延时起爆,采取并联方式连接,主传导爆管用电雷管引爆。

2.3.2下台阶施工设计

①炮孔布置

下断面横截面上应该布置3排主爆孔,其中3个头排爆孔的抵抗线为1.1m,随后再布置2排主爆孔,其间距为0.8m左右,并且要保证每排要布置4个炮孔,孔距的间距为1.0m,同样两侧的边墙也要布置4个周边孔,孔距为0.7m。

②装药结构与单孔装药量

下端面的装药结构与上断面的装药结构是相同的,除了底板孔使用单卷的重量为200g的乳化炸药外,其余都是用单卷为150g的2的岩石炸药。各炮孔的单孔装药量。半台阶炮孔示意图

3结束语

隧道论文篇5

施工图变更设计

2009年6月底,由于工期紧迫,施工单位提出将隧道原设计厚40cm初衬模筑混凝土变更为厚30cm喷射混凝土,混凝土强度参数不变,且挂钢筋网,初期支护钢拱架型号Ⅰ16变为Ⅰ20b,增强施工灵活性,较大程度地加快施工进度。业主、监理同意,并依据2009年6月25日土工实验报告中的数据,设计单位同意变更上述隧道初期支护相关施工图。

隧道坍塌及分析

隧道初期支护坍塌施工单位由隧道出口方向进行洞身开挖施工。2009年8月3日晚,当施工至K1+043时,K1+077—K1+043段发生洞顶塌方,地表出现不同程度沉陷。塌方时,正值工人休息,掌子面没有施工人员,无伤亡。原因分析a)据现场踏勘,从工程施工的角度出发,该隧道为小导管注单液浆超前支护,施工中小导管注浆压力不足,未能形成拱顶的环效应,另外施工虽采用上下台阶法施工,但上台阶设置的临时仰拱未能及时跟进或施工质量不高,从而使初期支护形不成封闭环,加之上台阶工字钢落脚处地质条件差,随着围岩应力的释放以及变形的积累,极易产生初期支护下沉变形,造成坍塌。b)补充地质勘察报告《阳城县北留镇隧道工程土体物理力学性质检测报告》(2009.8)认为勘探深度范围内地基土沉积时代成因类型主要为第四系中更新统红色粉质黏土。地下水埋藏深度距地表19.0~25.0m,水位标高652.46~657.67m,为孔隙潜水类型,来源为大气降水。场地环境类别为Ⅲ类,场地土对混凝土结构及钢筋混凝土结构中的钢筋均不具腐蚀性;场地土体无膨胀性,竖向收缩率0.40~4.05。坍塌前一周出现过强降水,经土质分析,含水量随深度的增加而增大,最小含水量7.3%,位于最上部;最大含水量为26.4%;地层中含水量较大,致使土体的抗压和抗剪性降低,是造成隧道洞顶塌方的又一重要因素(见图2)。

处治方案及施工措施

综合分析隧道洞顶坍塌各种因素,并根据补充钻探资料及现场观测,通过深入研究和仔细论证,本着处理措施应安全、经济、可行的原则,提出隧道塌方段地表和洞内注浆加固的综合处治方案。初衬已封闭的段落对初衬已封闭的段落,马上做好二次衬砌,进一步保证隧道的安全。对作了拱部初期支护,但未作仰拱的段落,拱脚用φ42、长4.0m的锁脚锚管进行注浆加固,以免造成更大的损失。锁脚锚管注水泥—水玻璃双液浆,注浆压力不小于1.0MPa;双液浆参数为水泥∶水玻璃=1∶0.5,水泥浆水灰比为1∶1,水泥标号为42.5。隧道塌方段地表塌陷处理a)先在洞内既有掌子面插φ42×6和φ89×7花管,长6.0m,外插角分别为10°、20°,水平搭接不小于1.0m,并注双液浆,间距1.0m,呈梅花型布置,把隧道内塌落土体整体加固。b)对隧道山顶水厂道路下土体进行注浆加固,并采取足够的支撑措施以保证道路和施工的安全。c)在塌陷处适当放缓边坡开挖至距地表深约8m处,做矢跨比为1/12的土牛;开挖时一定要注意边坡的稳定,必要时要对边坡进行加固。d)在土牛上,做厚为70cm的钢筋混凝土防护罩,防护罩四边要坐在开挖面四周没有扰动的原状土上。防护罩采用C30现浇钢筋混凝土,从北向南分段连续施工,每次进度沿路线方向长6.0m。e)防护罩四周沿路线方向每5.0m预留一个直径10cm的孔,以便隧道顶部塌陷土层有空洞时注入粉煤灰等轻质材料填充密实。f)防护罩四周脚部按梅花型设置φ42、长5.0m、纵向间距0.5m的锁脚锚管,并双液注浆,端部伸入防护罩中不小于0.5m。注浆后与防护罩中钢筋焊接,最后在防护罩四脚处回填高1.0m的浆砌片石,顶紧以稳定四周土体。g)紧靠山顶水厂道路一侧的防护罩一定要坐于道路下原状土上,并且在防护罩上砌石顶紧道路下土体。图2K1+040处勘探孔含水量变化曲线5.3隧道内塌方段处理a)在掌子面固结的土体,保留中部坡道,不对称开挖两侧土体,新开挖出的掌子面用蛇皮袋装土分两层台阶垒防护墙,台阶宽度要不小于1.0m。b)垒好防护墙后,不对称施作K1+077—K1+083段已作拱部支护而未塌落的两侧边墙和仰拱。仰拱采用C25模筑现浇混凝土,拱脚混凝土底部基础要扩大,以增加接触面积,并增设支撑垫板来增强拱脚承载力,减少拱顶下沉。墙角用φ42、长4.0m的锁脚锚管,每处2根。c)在离隧道洞顶塌方段较近时,停止前进。施作该段二次衬砌仰拱混凝土,预留两侧钢筋,并施作片石混凝土回填至排水沟底部。d)对于K0+965—K1+077未开挖和塌陷段落,采用双侧壁导坑上下微台阶先墙后拱开挖法。并辅以超前中、小导管及锁脚锚管等措施,按照“管超前、短进尺、少扰动;强支护、早封闭、快成环;勤量测、紧衬砌”的原则,各道工序紧密衔接,环环相扣,随挖随支,保证隧道初期支护的结构稳定与施工安全(见表1)。隧道二次衬砌配筋二次衬砌配筋根据不同情况分为4段进行:K0+965—K1+030段、K1+030—K1+083隧道冒顶段、K1+083—K1+088二衬加强段、K1+088—K1+120段。其中K0+965—K1+030、K1+030—K1+083两段,二次衬砌为全封闭式配筋;K1+083—K1+088、K1+088—K1+120两段,由于隧道底部现已片石混凝土回填接近路面标高,所以仅在片石混凝土回填顶面以上二次衬砌配筋,并且在墙脚设置φ42、长4.0m的锁脚锚管。

监控量测

隧道论文篇6

为了对GPS高程拟合精度进行客观的评论,需要对所有的GPS点进行水准联测,在全网上均匀分布起算点,选择其他点作为检核点。在内符合精度方面,根据参与拟合计算已知点高程异常与拟合出高程异常求拟合残差;在外符合精度方面,根据检核点高程异常与拟合出高程异常间差值,计算GPS高程拟合的外符合精度M;GPS水准精度评定,根据检核点与已知点距离L计算检核点拟合残差限值评定GPS拟合高程达到的精度。

2数据介绍

隧道主要应用GPS进行控制网布设进行高程传递。对于控制点来说,由于需要进行拟合处理,在这种情况下需要的数据比较少。以某一桥梁为例,采用20个公共点对三次样条模型和移动曲面进行拟合分析,根据需要数据前四位省略,见表1所示。在数据类别方面,根据GPS高程拟合原理,可以将其分为起算数据、检核数据。其中,起算数据中的点一方面包含大地高,另一方面包含正常高,同时以此为计算拟合模型中的参数。检核数据是已知大地高,高程异常通过应用拟合模型进行计算,进一步获得正常高。本文中将11个数据点作为起算数据,9个数据点作为检核数据,具体分配方案为起算数据13个,分别为1、3、5、6、7、9、11、14、16、18、20点,检核数据9个,分别为2、4、8、10、12、13、15、17、19。

3数据解算结果及分析

分别对三次样条拟合和移动曲面拟合两种模型根据分配好方案进行数据拟合,三次样条拟合法比移动曲面拟合法效果更好一些,两种方法得到拟合结果值与已知各点高程异常值关系如图1。当多跨桥梁长度、隧道长度分别小于3000m、6000m时,通过移动曲面拟合法可以满足精度要求。对于三次样条曲线拟合,在应用过程中,需要注意X分量、Y分量对拟合结果产生的影响,在某些情况下,三次样条拟合出高程异常面会出现失真现象。对于多跨桥梁、隧道来说,当其长度分别超过3000m、6000m时,在这种情况下,通过移动曲面拟合法获取高程数据,在精度方面早已不能满足要求。对测区内一块宽1000m,长5000m区域采用三次样条拟合法和移动曲面拟合法进行高程异常拟合,结果如图2所示。通过对比分析两种拟合方法所得结果及拟合图形,同时结合三次样条和移动曲面拟合原理,可知三次样条拟合法存在一定的局限性,三次样条法拟合法与X分量或者Y分量密切相关,拟合结果受X分量、Y分量的影响,进而影响拟合结果的可靠性。

4结论

隧道论文篇7

关键词:道路桥梁工程实例

一、采用成熟的先进技术

西方传媒和学术著作都称欧洲隧道为人类工程史上的一个伟业。这不仅因为它总长踞世界之冠,为它投入了巨额资金,而且工程量宏大,从欧洲隧道中挖出的土石方计750多万立方米,相当3座埃及大金字塔的体积;隧道衬砌中用的钢材,仅法国一边就相当于3座埃弗尔铁塔,更重要的是它成功地解决了许多工程技术上的难题。它在技术上的方针是要求可靠、先进。可靠与先进之间不总是统一的,所以它几乎‘排除了为隧道工程进行专门的创新设计的可能性’,而是‘采取经过试验的成熟技术’,‘在各个部分精心选取欧美不同国家的标准设计,以确保其高质量和可靠性’。将成熟的先进技术在复杂的工程中成功地加以综合应用,本身就是一种创造,这样做大大减小了工程风险。这种技术方针和观念,在我国对高、新技术的呼声十分高涨和普遍的情况下是有借鉴意义的。如何在权衡技术的先进性与可靠性以及资金、时间的限制之间,找到一个合适的‘度’,是各种项目决策中值得认真研究的。

在欧洲隧道的建设中比较突出的工程技术成就如下(当然不限于这些):

1.充分的地质工作和正确的判断

地质钻探工作从58年做到87年,重要的钻孔达94个。浅层勘探在海底以下150m之内,考虑隧道布置的范围;深层勘探在海底以下800m之内,主要为评价地震风险提供数据。海底钻探曾采用大型北海石油钻机,每个钻孔平均费用约为50万英镑。勘探发现海底有一层泥灰质白垩岩(ChalkMarl),厚度约30m,饱和容重约23KN/m3,抗压强度6~9MPa,变形模量800~1600MPa,蠕变系数φ=1.5,渗透系数(1~2)×10-7m/s。该岩层抗渗性好,硬度不大,裂隙也较少,易于掘进,隧道线路就布置在它的下部,距海底25~40m。由于岩层的起伏,而隧道要求一定的运行坡度,所以隧道轴线在平面和立面上均呈平坦的W形。工程专家们认为,充分的地质资料和正确的判断,使欧洲隧道找到了理想的岩层。

2.精心、合理的安全设计

海底隧道的规划设计把施工和运行安全放在极重要的地位。之所以不采用一条大跨度双线铁路共用隧洞,是为了减小海底施工的风险和提高运行、维护的可靠性。在两条单线铁路洞之间是后勤服务洞,每间距375m设置直径为3.3m的横向通道与两个主洞连接,连接处有防火撤离门。后勤服务洞的主要功能是在隧道全长范围内提供正常维护和紧急撤离的通道。在接到命令后,它可在90分钟内将全部人员从隧道和列车中撤到地面。它还是向主洞提供新鲜空气的通道,并保持其气压始终高于主洞,使主洞中的烟气在任何情况下都不能侵入后勤服务洞。后勤服务洞在施工期是领先掘进的,这为主洞的掘进提供了详尽的地质资料,对保证安全施工有重要意义。此外,隧道的运输、供电、照明、供水、冷却、排水、通风、通讯、防火等系统都充分考虑了紧急备用的要求。

3.较好地解决了某些特殊的工程技术问题

列车在很长的隧洞中高速行驶时会产生压差和空气动力阻抗。特别是欧洲隧道列车的阻塞比(列车与隧道断面之比)很高,如果没有卸压管,列车的驱动力需要增加很多。为此隧道沿线每250m设一个2m直径的卸压管,从后勤服务洞的顶上跨过,把两个铁路主洞连接起来。在设计阶段对卸压管的作用做了许多模型研究,使其有较好的空气动力效应,并避免在管中产生气流冲击。

铁路隧道和列车要承受车辆震动的长期反复荷载。为此铁道路轨采用了一种称作‘松那飞’(Sonneville)的系统。一系列连续焊接的铁轨下面设弹性减振装置,使车辆在轨道上行驶非常平稳。该系统的部件要经过多种性能测试,包括经历1000万次荷载周期的疲劳试验,以确保系统的可靠性。

该隧道还采用一种由铁路控制中心操纵的‘司机台信号系统’(CabSignal)。这种信号不是在机车外面或轨道旁边,而是显示在司机台的屏幕上。一旦司机对信号没有作出反应,自动列车保护装置就会使列车减速,直到停止,保证列车安全行驶。

长隧洞掘进时的通风往往是施工中的一个难题。欧洲隧道对空气循环的途径和风机的布置都作了详细的规划和研究。不仅设置通风管,而且也利用隧洞本身作为通风通道,使开挖面的风量达到13.5m3/s,符合社会保障与安全组织和地下工程协会规定的通风标准。

4.掘进机发挥重要作用

隧道施工的主要设备是隧道掘进机(TunnelBoringMachines),具有不同的型号、尺寸和性能,出自欧洲、北美和日本的不同厂家。它们从英国海岸的莎士比亚崖和法国海岸的桑洁滩两个掘进基地开始,分别沿三条隧洞的两个方向开挖,共有12个开挖面,其中6个面向陆地方向掘进,另6个面向海峡方向掘进。开敞式掘进机适用于透水性较小的地层;封闭式掘进机适用于透水性较强的地层,其掘进头能承受11bar(1巴=0.9869标准大气压)的静水压力。最大的一台掘进机直径8.78m,全长约250m,重达1200T,(合同运行寿命2万小时),价值超过1000万英镑。它能完成掘进、钢筋砼衬砌块的安装、灌浆以及施工轨道敷设等一连串工序,实际就象一条自动化作业线。最高掘进纪录为428m/周,英国一边的6台掘进机平均掘进速度为150m/周。整个掘进工作按计划完成,只用了三年半时间。由于欧洲隧道工程每延误一天工期,仅贷款利息就要支付约200万英镑,因而施工速度至关重要。当工期对经济效益有重大影响而掘进工作面又受限制的情况下,采用隧道掘进机能发挥很好的作用。

二、欧洲一体化进程的产物和推动力

在英、法两国之间穿过海峡建立固定通道的想法,可以追溯到19世纪初的拿破仑一世时代。今天欧洲隧道竣工,尽管在工程技术上取得了重大的成功,然而‘200年来对是否建造英吉利海峡隧道的决策始终不是取决于科技方面,而是取决于围绕这个计划的政治环境’。长期以来英国方面反对建设海峡隧道的主要原因是考虑到军事上的风险,他们希望利用海峡作为抵御来自欧洲大陆军事入侵的天然屏障。随着国际局势的变化,上述顾虑逐渐消退。后来,英国加入了欧洲共同体,预期会有一个统一的欧洲市场,因而在英国和欧洲大陆之间建立更为方便、快捷的通道成了显而易见的需求。在1972-1992年的20年间,跨越英吉利海峡的客、货运交通量实际上增长了1倍。1992年英国与欧洲大陆的贸易占全部对外贸易的60%。

本世纪70年代以来,建设英吉利海峡隧道的决策主要受到欧洲一体化进程的影响。1987年12月隧道工程得以破土动工,是由于当时英、法两国政府对欧洲一体化都持比较积极的态度。英国首相、保守党领袖撒切尔夫人,支持把1975年曾被工党政府下令停止的隧道工程重新提上议事日程。‘法国总统密特朗则把这项工程视为国家强大的象征’。这次欧洲隧道得以竣工建成,两国首脑的推动,排除各种障碍,起了至关重要的作用。也就在欧洲隧道举行正式通车仪式的前一年(1993年秋),包括英、法在内的欧共体十二国签订了马斯切克条约,并将欧共体改名为欧洲联盟(EuropeanUnion)。从欧盟有关国家政府的观点来看,还有两个因素与隧道建设有关:一是运输政策,即通过建设高速铁路网,以利于节约能源和保护环境。这将大大扩展海峡隧道的影响范围和增加它的长期效益。二是地区政策,英、法两国希望通过隧道带动海峡两岸地区的繁荣。现在隧道连接地区(TransmanchRegion)已成为一个专门名称,包括英国的Kent和法国的Nord-PasdeCalais地区;后来把比利时的一些地区也包括进来,称作欧洲专区(Euroregion)。通过地区性的合作,一个称作TDP(TransfrontierDevelopmentProgram)的金融发展计划已经起动。这些‘从政治角度看显然有重大意义,对欧盟的发展,欧洲单一市场的形成和国际经济、文化合作交流,都会有重大促进。’但近期还不大可能对经济产生直接的重大影响。

实际上近20年来欧洲隧道项目的演变既是欧洲一体化进程的产物,又是它的一个推动力,两者相辅相成,几乎是平行发展的。如果有朝一日我们考虑台湾隧道问题时,则也必然要与祖国和和平统一的大业紧密联系再一起。

三、项目的特点和成败的关键

1.高度重视环境影响

在建造英吉利海峡铁路隧道的决策中有一个举足轻重的影响因素,就是‘欧洲委员会制订了一个长期的运输战略’,即发展电气化铁路网以减小汽车对环境的污染。‘欧洲铁路委员会还提出了2000年欧洲高速铁路系统的建议’,在这个计划中欧洲隧道的一端连接英国的各大城市,另一端连接包括法国、比利时、瑞士、荷兰、西班牙、意大利等国在内的大陆铁路网。这样欧洲隧道的影响和效应就大大超出了英吉利海峡两岸地区的范围。尽管人们对欧洲高速铁路系统的计划能否在2000年实现还存有疑虑,不过这至少说明欧洲的老牌工业化国家在大型基础设施的规划和决策中,已把汽车对环境的污染问题放到了一个十分重要的地位。对于刚刚起步准备大力发展汽车工业的中国,在研究决策汽车工业和建设铁路网的优先次序和投资比例时,也应把环境影响作为一个重要因素考虑进去?

欧洲隧道在建设过程中,终端车站施工尽量避免因开挖附近的土地而影响当地环境。铁路经过村庄的地段都做了遮档视线和隔音的屏障,以保护居民生活。车站以及周围进行了绿化,种上草皮。施工期间有专人对环境进行监测,并由公共关系部门和环保部门共同处理环境问题的投诉,如道路泥泞、尘土、噪音等。车站的建筑高度都不超过四层,创造与环境协调的建筑风格。英国国家环境研究院甚至还在施工之前对车站附近蝴蝶的数量进行了统计调查,结果证明施工没有对其数量产生影响。

2.利用私人资本建设大型基础设施的尝试

建造英吉利海峡通道,财务问题成了实施的关键。1981年9月11日英国首相撒切尔和法国总统密特朗在伦敦举行首脑会读后宣布,这个通道必须由私人部门来出资建设和经营。1985年3月2日法、英两国政府发出对海峡通道工程出资、建设和经营的招标邀请。此后收到过四种不同方案的投标。1986年1月两国政府宣布选中CTG-FM(ChannelTunnelGroup-FranceMancheS.A.)提出的双洞铁路隧道方案。CTG-FM是一个由两国建筑公司、金融机构、运输企业、工程公司和其它专业机构联合的商业集团。它在1985年已分为两个组成部分,一个是TML(TransmancheLink)联营体,负责施工、安装、测试和移交运行,作为总承包商;另一个是欧洲隧道公司(Eurotunnel),负责运行和经营,作为业主。1986年3月英、法政府与欧洲隧道公司正式签订协议,授权该公司建设和经营欧洲隧道55年,后来延长到65年,从1987年算起。到期后,该隧道归还两国政府的联合业主。协议还规定两国政府将为欧洲隧道公司提供必要的基础设施,并且该公司有权执行自己的商业政策,包括收费定价。

1994年5月6日英、法两国首脑参加了欧洲隧道正式开通仪式。撒切尔首相把它‘看作私人部门有能力建设这样大规模工程的标志’,认为是政府‘树立的一个样板项目,来引导私人企业投资基础设施建设’;担人们对这一点是有疑议的。某些著作中的基调观点,是整体上肯定,也指出它存在的问题,认为“这个工程比任何其它工程都明显地表现了‘自由市场’投资于交通基础设施项目的成功。主要是私人企业按市场方式运作和政府部门的行政管理难以协调。

对这个‘样板’项目持否定态度的也大有人在。由于这个工程的预算从1987年估计的48亿英镑,上升到建成时的106亿英镑;全面营运的时间从原来计划的1993年初,推迟到1995年,使欧洲隧道公司的财务状况极端困难,自然大大损害了这个‘样板’的形象。有专家估计隧道公司至少每年要亏损2亿英镑,资金流肯定会出现负值,公司将不得不寻求新的贷款,然而谁会愿意再贷款呢?

据该公司的一位高层经理透露,1995年该公司的营业收入约3亿英镑。仅为预测值的60%。不过这位经理解释说,这是因为95年隧道还没有正常运行,平均每月隧道的客运量仅100万人次,预期今后每年有5%的增长。这位经理本人也是隧道公司的一个股东,他说他是在为儿孙们投资。

从政府角度看,利用私人资本建设欧洲隧道的尝试是基本成功的。英国政府已计划就连接欧洲隧道终端与伦敦之间的铁路,与私人公司签订一个新的期限为999年的建造和经营特许合同。然而,从私人资本的角度如何评价,最终将取决于欧洲隧道公司能否在今后几年内渡过它的财务危机。

3.项目管理——以合作和协调克服分歧和对抗

隧道公司高层管理人员认为,‘工程技术问题相对来说解决得比较顺利,主要教训来自组织机构、合同和财务方面’。该项目涉及众多的‘干系人’(stakeholders)和‘当事人’(parties),包括英、法两国和当地政府的有关部门,欧、美、日本等220家贷款银行,70多万个股东,许多建筑公司和供货厂商,管理的复杂性给合作和协调带来了困难。

合同是合作的基础。掘进工程采用的目标费用合同(targetcostcontract)是比较合理的,因而掘进工程基本上按计划完成。隧道列车的采购采用成本加酬金合同(costplusfeecontract),由于无激励因素带来较多延误和超支。固定设备工程采用总价合同(lumpsumcontract)并不是一个好办法。由于欧洲隧道是以设计、施工总包方式和快速推进(fast-track)方法建设的,在签订合同时还没有详细的设计,这就在合同执行过程中潜伏了分歧、争议和索赔。因而,总价合同决不意味着固定价!合同各方的对抗曾经引起欧洲隧道的多次危机。例如,1989年总承包商(TML)的费用增加,导致了90年初业主(欧洲隧道公司)的资金告罄。于是银行财团、业主合成包商各方产生了尖锐的矛盾,几乎到了项目吹台的边缘,经过艰难的谈判,各方才接受了一个拆衷办法,英、法两国以政府机构名义参与贷款来代替政府的直接支持,从而暂时渡过了这次危机。

如果中国要想建造台湾海峡隧道,也必然会面临海峡两岸、国内、国际等多方面的复杂关系。认真研究,签好协议,建立并保持良好的合作关系,将是至关重要的。

4.项目‘孵化’是项目成败的一个关键

项目孵化是指从提出项目设想到论证、立项和组建主办机构的过程。欧洲隧道经历和面临的危机,其原因可追溯到它的孵化期。

项目在论证阶段曾聘请多方面的独立咨询的交通专家进行预测。普遍认为92年之后的15-20年内跨海峡的交通需求可能会翻一番。91年英、法、比利时之间的跨海峡旅客市场已达到3130万人次(包括飞机、水路和火车轮渡)。预测2003年会达到5830万人次,其中3930万将通过隧道旅行。单实际情况表明当初对效益的预测偏于乐观。

欧洲隧道在组织结构上有明显缺陷。参加过隧道建设的人也认为:如果现在开始干的话,不能让发起人(指英法隧道集团CTG-FM)又作为建设方,允许自己的合作伙伴(指总承包商TML和牵头银行)与他们自己(指欧洲隧道公司)签订合同。隧道公司财务主说:‘财务上最致命的教训是必须有一个强硬的、独立的业主,来对建设和贷款问题进行谈判。’承包商TML是一个庞大的集团,一家总包,削弱了投标的竞争性,也是导致造价高昂的一个因素。捕捉立项时机是项目孵化的核心内容。欧洲隧道立项再过去至少被放弃或中断了26次,这次是不是最佳的时机呢?有人说:如果70年代隧道工程不中断,造价不会象现在那样高昂,财务上的困难会小得多。这种说法有待推敲。不过欧洲隧道几起几伏的演变至少说明重要项目的论证不能只进行一次;昨天不可行的,今天也许变成可行,错过机遇,明天又可能成为不可行;这需要保持一个小组,进行长期的可行性预测和跟踪,捕捉立项的最佳时机。

尽管欧洲隧道在孵化期带来某些先天不足,目前项目业主又负债累累,但它的银行财团负责人摩登仍宣称‘这个赌注的结果要看本世纪末欧洲隧道的所有权掌握在谁的手里。’他认为能够在下世纪初度过平衡点(breakevenpoint),开始盈利。

对英吉利海峡隧道工程做全面评价,目前还为时过早。不过回顾一下世界上以往一些大型土木工程的建造历史,也许不无好处。‘苏彝士和巴拿马运河的实际费用都超过预算50倍以上。再近一点,连接日本本土和北部岛屿北海道的Seikan单洞铁路隧道24年才建成,比原计划整整超过了14年。相比之下欧洲隧道的命运就算不错的了。无论如何这些伟大的工程都在地球上发挥着重大的作用。

四、台湾海峡隧道的构想

英吉利海峡隧道激发了人们更多的想象。白令海峡隧道、直布罗陀海峡隧道都已开始了方案研究和论证。中国人能不能在21世纪有自己的台湾海峡隧道呢?

1.愿望和需求

密切台湾和中国大陆的联系是海峡两岸以及海内外炎黄子孙长期的共同愿望。建设台湾海峡隧道必将促进海峡两岸的来往,有利于中华民族的共同繁荣和富强。

目前台湾资本在大陆的投资已初具规模,95年投资额达60亿美元。海峡两岸经济互补、互利,共同繁荣的前景是乐观的。台湾的经济辐射自然会带动福建的发展。隧道两端地区会成为新的经济增长点。台湾海峡经济区与长江三角洲、珠江三角洲连成一个高效的交通网,必将促进地区和整个中国经济的增长。预计该海峡隧道的交通需求将是巨大的。台湾2100万人口,即使每年有1/3到大陆探亲、观光一次,往返就是1400万人次。中国12亿人口,即使在60年内每人到祖国宝岛旅游一次,每年往返就是4000万人次。如果考虑大陆民工可能去台湾做劳务,以及商务与国际旅客,估计每年会达到6000万人次,这将近是目前跨英吉利海峡客运总量的2倍。自然,还会有其它货运业务。

2.地理与线路

台湾海峡最窄的地段是从福建福州市附近的平潭到台北市附近的新竹,直线距离约120km,海峡深度普遍在80m之内。计及隧道在两岸的延伸总长可能达150km。这条线路的两端均靠近台湾和福建的政治、经济、文化中心。此外,从福建的厦门经金门、膨湖到台湾的台南以北,也是一个可供选择的方案。好处是中间有几个岛屿,不过线路要长得多。

3.困难和问题

显然,最大的困难是台湾海峡两岸的长期阻隔。然而,加强海峡两岸的联系,建立贸易和通讯关系,密切科技与文化的交流,毕竟是历史的潮流。建设海峡隧道正好提供了一种合作极好机会。台湾海峡地层处于较新的地质活动年代,而且地震比较频繁。这需要对其工程地质作充分的勘测和论证。台湾海峡隧道很长,约为欧洲隧道的3倍,在通风设计、施工掘进方面也会提出一些需要专门研究的工程技术问题。

建造如此宏大的工程,按目前价格就可能需要数千亿人民币。台湾海峡两岸近十多年来经济增长率均较高。预期到2010年,中国大陆和台湾的国内生产总值有望达到英、法两国当前的总和。那时中国会有更强的经济实力。不过筹集巨额资金仍将是一个难题。是否借鉴欧洲隧道的做法,采用建设—经营—转让(BOT)方式,发行股票,向国际金融市场筹资等,都需要做深入的研究。

4.准备和时机

隧道论文篇8

对于隧道工程与水环境两者之间的相互作用链,主要涵盖的是两方面的内容:其一是水环境对隧道工程的影响;其二是隧道工程对水环境的反作用影响。水环境对隧道工程的影响体现在隧洞涌、漏水方面,当然还包括承受水压。在含水层开挖隧道中,因为其洞顶具有一些地下水,导致隧道洞会呈现涌水或者突水的现象,进一步进行的隧道衬砌在很大程度上承受了水的静水压力。另外,隧道工程对水环境的反作用影响,便会导致隧道洞顶环境产生损害情况。隧道的涌排水让地下水慢慢排空,水文地质条件变得越来越差,与此同时地下水位呈现的是渐渐减弱的趋势,在地下漏斗慢慢变大的现象下,会让洞顶的地表水资源引发枯竭,如果水环境遭遇严重破坏现象,便会出现生态环境恶化情况,甚至还可能引发诸多不堪设想的自然灾害。

2基于地下水的影响作用分析

在隧道工程运营阶段中,由于地下水产生的影响作用重点表现在衬砌渗漏水方面。渗漏水无论是在隧道的稳定方面,还是在隧道设施与行车的安全方面均会造成极大的不良影响。渗漏水促使衬砌风化及腐蚀,同时也使衬砌结构受到破坏。另外,还对设备的正常使用造成极大的影响,并在很大程度上对行车安全造成严重影响。造成渗漏水的原因主要体现在两大方面:其一为排水不够顺畅,其二为防水设施劣质。

2.1排水过程不具顺畅性

对于隧道的设计施工,将新奥法原理理论作为参考依据,在设计过程中,把隧道周边岩体渗水经过衬砌之后的倒水设备,进一步往集水沟引入,继尔往隧道排除。如果存在某些排水设备系统不能够正常运行,将水往隧道排出,便会基于衬砌后期形成难以解决的集水现象。在此位置的水充满空隙的状况下,衬砌会受到和地下水位高度相同静水的压力,而并不是基于设计当中的无水压,也不是折减水压。同时,在渗流的动水压力的影响下,衬砌承受的压力会在在很大程度上高于此前设计标准,进而造成衬砌涌水开裂的破损情况。因为隧道铺地基面长期浸泡在积水当中,到列车动力的催动之下,便会引发底部吊空现象,列车经过时产生呼吸作用把碎石排空,也把砂子排空,知识行车产生限速,并且会引发断轨等诸多情况。在排水系统不够顺畅的情况下,便会进一步造成雨季积水等不良状况。

2.2防水设施劣质

在隧道和外部水环境之间,防水层是极其重要的部件,能够在隧道与外部水环境分隔中发挥重要作用。基于隧道工程当中,具备两种防水层:其一是柔性防水层;其二为刚性防水层。对于柔性防水层来说,其效果与材质及施工质量存在很大的联系。若防水材料劣质,没有足够的耐久性,便非常容易在运营一段时间后,将防水能力丧失。对于刚性防水层,由于它的功能和混凝土的性能之间具备一定的联系性,如果防水混凝土的衬砌施工质量比较差,在收缩大的作用下便会呈现孔隙及裂缝等一系列情况,进而使得防水层的防水能力大大降低。

3隧道工程影响作用分析

3.1案例分析

隧道工程在建设过程中,也会对水环境构成极大的影响。隧道工程将地下水渗流原有拥有的平衡破坏,在长期疏干的作用之下,使渗流场产生了极大的变化,进而对地下水正常循环造成了非常大的影响,最后恶化了自然生态环境。以某隧道工程作为案例,该隧道工程全长为15.365千米,洞顶埋深为100米~910米,洞中部属于斑古坳地区,地表面植被非常茂密,年平均气温维持在20摄氏度,年均降雨量为1500mm。此隧道的主要问题是渗漏水现象严重,通过多次整治之后,问题仍旧没有得到有效解决。在长期排水的作用下,致使地下水位呈现下降的现象,井水干涸,并且正常的农业灌溉也受到了非常大的影响。另外,因为地面沉降致使房屋产生变形及开裂情况,使当地农业及生活均无法正常开展,该地区居民只能外迁,从而损失了很大一笔经济费用。对于此隧道工程,对地下水环境的主要影响包括两方面的内容:一方面为疏干地下水;另一方面为渗流场变化使岩土应力发生变化。

3.2疏干地下水

造成自然环境灾害最主要的原因为隧道长期排水。隧道挖掘之后,把水循环系统破坏,例如知识地下水资源被很大程度的流失。在隧道积水与汇水的作用下,使形成地下水运动的方向发生较为的改变。在长期排水的情况下,位于隧道中的地下水系统渐渐将地下水排出。将有关理论当作参考标准,地下水的补给量不能让其排水量得到充分满足,于是其水位便会发生持续下降的现象。在地下水位慢慢减弱的状况下,地下水和地表水径流间都会产生一定程度的变化,以直接的方式导致岩溶泉发生出水量极少的情况。与此同时,也可能造成地表的取水井水位下降及水井干涸等现象,进一步知识居民生活用水尤为匮乏。另外,地下水位下降会知识原农田土壤的含水量大大减退,尤其对水稻区域的影响更为严峻,可能引发无法继续种植的情况,最终对农业的正常运作产生了非常大的影响。

3.3渗流场变化使岩土应力发生变化

首先,由于隧道让许多地下水疏干,进一步让水位产生下降情况,而饱和岩土层当中空隙的水压力则会呈现减弱的趋势,不饱和区域负水压力区变大,在总应力不发生变化的状况之下,有效的应力便会得到进一步的上升。其次,应渗流场发生明显改变,地下水渗流的方向也会随着发生改变,变成在新水力梯度的状况下,便可能朝着隧道中心发生流动,此时方向为向下方向。另外,应渗流方向发生明显变化,地下水的渗流力也会随之发生变化,从而让竖直向下应力加大,最终导致总应力提升。在此状况下,岩土便会产生新的沉降,直至达到新的动态平衡状态为止。土体沉陷则会让隧址区的房屋产生倾斜现象,也会产生开裂现象,进而导致不能继续应用,在土体沉陷对农田造成严重影响的状况之下,便在很大程度上增加了农业耕种的难度。

4结语

推荐期刊