线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

数学建模论文8篇

时间:2023-03-22 17:36:43

数学建模论文

数学建模论文篇1

在过去常规的数学分析教学课程只要以公式推导、定理证明为主要教学内容,却对数学分析的应用思想以及融合贯通少有讲授。这就导致学生们虽熟练掌握这门课程的理论知识,但是学生们将掌握的知识应用于实际问题的解决过程中却存在效果不满意,或无法学以致用。因此学生会形成数学的掌握仅仅是为了考试而学习,无现实意义等错误思想。若在数学分析的教学过程中融合数学建模方式进行教学,利用数学建模思想来熏陶学生,通过通过将数学的意义思想完整的进行介绍,将数学概念与公式的实际源头与应用情况进行宣教,使学生充分了解数学与实际生活之间存在的密切关系。首先,通过利用数学建模思想融入数学分析的教学课程中可有效促进学生数学的行使效果。适当配合数学模型方式糅合数学分析的理论知识与实际方法,可帮助学生迅速理解数学分析的内容概念,全面掌握理论知识与实践能力。其次,利用数学建模思想促进学生的数学学习兴趣,以改善在教学过程中因理论性复杂、定义生涩难懂导致学生学习积极性不高以及枯燥乏味等数学教学问题。因此,在数学分析的教学中融合数学建模教学方式具有巨大的应用价值。

2数学建模思想在概念教学中的渗透

按照大范围来讲,数学分析的内容中包含了函数、导数、积分等数学概念,这类概念均属于实际事物数量表现或空间形式概括而来的数学模型。在数学教学过程我们可以根据概念的具体事物原型或平时生活中易见到的事物进行引用,让学生了解到理论上的概念性知识不仅仅存在与课本中,更与日常生活中具有紧密的关系。对此,老师在教学相关概念知识时,最好联系实际,创造合适的学习环境,为学生在学习过程中通过适当的观察、想象、研究、验证等方式来主导学生的教学活动。例如微积分教学中,刚开始感觉其较为抽象笼统,不过仔细观察其形成过程会发现其实具有较多的基础原型,通过旋转体体积、曲边梯形面积等具体问题紧密联系,应用微元法求解即可得出积分这个较为抽象的概念。通过适当的取材,建立概念模型,引导学生对教学的积极兴趣,可比简单的利用数学符号来描述抽象概念要具体生动得多。

3数学建模思想在定理证明中的渗透

在数学分析课程中存在较多的定理,而怎样在教学过程中让学生熟练掌握带来并应用则成为目前数学分析教学中较为困难的。其实在书本中大部分定理是有着具体的意义,不过在通过笼统的刻印组书本中后导致定理创造者实际想法无法清晰表现在其中,致使学生在接受定理教学中感到茫然。对此,在定理教学过程老师应结合该定理知识的源指出处以及历史渊源,从而促进学生的求知欲取进一步了解该定理的意义与作用。同时应用建模思想将定理作为模型的一类,利用前期设计的特定问题引导学生逐步发现定理定论,通过这种方式让学生在吸收定理知识的过程中体验到研究探索发现的重要性,为学生树立的创新观念。

4数学建模思想在课题中的渗透

数学分析教学中需要讲解大量课题,通过对具有代表性的课题进行讲解以达到促进应用知识解题的能力并巩固。但是在过去传统的课题讲解中,与应用相关的问题教学较少,仅有的少部分也是条件满足解答肯定的情况,这不利于学生创新性思维培养。因此,在课题讲解中尽量选取以具体应用的问题作为例题,设置相应的问题来引导学生发现其中存在的错误,并结合自身知识来解决其错误,通过建立模型的方式来进一步巩固自身知识。

5数学建模思想在考试命题中的渗透

目前数学分析的教学考试中试题的设置普遍以书本课题为主,又或者直接将某些例题设置成选择或填空的答题方式,却缺少开放型的试题或全面考察学生是否掌握数学知识应用解决实际问题的试题。可能目前这种考试设题方式对老师的阅卷提供了便利,但是往往也造成部分学生在课本考试中分数较高,但在解决实际具体问题往往存在不足,对学生思维中形成了为考试而学习,忽略了对数学概念的理解,导致具体问题解决能力不足。对此,可利用数学建模思维去设置一部分开放型试题,利于学生在解题过程中将所学的数学建模方式应用与具体中,以此来观察学生的数学素质以及知识水平并适当修改教学方案。又或者通过命题论文的方式来了解学生综合水平,学生通过将自身所学知识进行适当的总结,探讨自身学习体会,来加强学生对相关知识的进一步理解,深化了数学建模思想的渗透。

6结语

数学建模论文篇2

关键词:数学建模;应用能力;发展

一、开展数学建模活动及竞赛的意义

全国大学生数学建模竞赛问题涉及面广,不仅对学生数学知识要求高,对学生综合能力方面要求更高。通过比赛的方式,可以有效地检验一个学校学生综合素质能力及创新能力等方面是否过硬,从而可以侧面反映出该学校教学过程中存在哪些问题,对学校教学方面改革发展具有重要作用。从2004年开始,我院积极组织号召学生参加全国大学生数学建模竞赛,该项赛事组织以来,在我院得到快速发展,并且取得了骄人的成绩,其中获得国家奖项6项,省级奖项70余项,培养了许多创新能力、应用能力强的优秀毕业生。学生各方面能力提升的同时,更重要的一点,这对于我院数学教学方面改革指明方向,教学中如何有效促进数学教学。数学建模竞赛作为一个学习交流平台,对培养学生数学知识运用及创新方面起到很好的作用,而将建模活动贯穿于整个数学教学过程中,无形中提升学生综合能力,十分符合我院实行项目化教学的要求,也符合社会上用人单位对学生基本能力的要求。通过对我院参加建模竞赛活动学生调查问卷追踪并进行访谈得出,82%的学生认为,通过建模活动,自身综合能力得到极大地提高,工作后查阅资料等方面学习能力进一步提升;14%的学生认为一般,并不是说数学建模不好,主要在于自己学习能力弱,压根不想学新知识,有份工作就好;4%的学生表示不关心,没兴趣,工作中很难遇到相关数学问题。根据调查结果及数学建模指导教师长期经验,本文得出一些结论值得肯定:(1)数学建模竞赛及活动有利于学生数学应用意识及能力的提高;(2)数学建模竞赛及活动有利于学生以后小组合作能力及交往能力的提高;(3)数学建模竞赛及活动有利于学生探索、创新能力的提高;(4)数学建模竞赛及活动有利于学生自身自学能力的提高。

二、开展课堂有效数学建模活动,提高学生综合能力策略

(一)课堂教学采取建模竞赛活动方式使学生

学习观念转变,提升兴趣高等职业学校学生数学基础明显欠缺,且高等数学课程体系已成,传统的围绕定义、定理、公式等理论填鸭式教学方式已不再适合学生学习,即使学生被认为掌握了非常重要的数学知识,却难以在实际生活中应用或根本不会应用,导致学习兴趣降低或毫无兴趣。课堂开展数学建模活动,则可以为数学和实际问题架起一座桥梁,通过该活动,可以促进学生想方设法将实际问题归纳、整理并转化成数学问题,并加以解决,这样学生也感到有成功感。让学生学会知识的同时,更感受到数学真的有用,无处不在。因而,利用数学建模活动教学方式,激发学生兴趣是很有必要的。

(二)数学建模活动可以促进学生创造力培养

全国大学生数学建模竞赛题目多是从工程技术、农业、管理等方面遇到的实际问题提炼而成,而建立模型求解的过程就是对这些问题进行合理解决。针对实际问题从分析开始,到建立模型、求解模型及最后对结果分析,这一系列过程没有固定的方法可用,也没有相同模式遵循,求解过程主要依赖学生知识掌握的功底及充满想象力的思路和方法,这就要求学生必须具有良好的独立思考的能力,极大地发挥自己创造力的能力。所以,教师在实际的教学过程中,利用数学建模竞赛活动教学方式对学生创造力培养具有很好的效果。不断地重复引导学生分析问题、收集资料、建立模型,逐步使学生学会用所学数学知识有针对性地、创造性地解决问题,这样,既拓展学生视野,又能促进学生创造力的培养。

(三)数学建模活动可以促进学生自学能力

既然大学生数学建模题目从工学、农学、社会科学等实际问题提炼而成,那么学生要想真正意义上解决一个实际问题,就必须了解掌握该问题的相关背景,进而必须查阅行业相关资料,自学并掌握行业相关方面知识,这样才可以做到游刃有余。这一过程,学生不知不觉中自学能力得到较大提高,其综合能力潜移默化中得到增强,因此,数学建模活动教学方式对学生自学能力培养很有必要。

(四)数学建模活动可以促进学生之间互相合作

从参加该项赛事开始,我院积极鼓励学生参与,吸引不同专业数学爱好者参加,并成立数学建模协会。针对数学建模的特点,我们数学教师利用暑期对学生进行培训,并根据学生特长优势,将其三人分组,进行实战性训练,有效发挥学生所学。数学建模竞赛解决的是一个综合性问题,相关背景、明确问题、建立模型等涉及学科方面很广,一个人很难完成,这就要求小组成员互相合作,充分信任,取长补短,并得出相对完善结论。通过这一系列活动,既增加了学生间感情,更让他们体会到团队合作的重要性。

数学建模论文篇3

随着我国高等教育的发展,高校招生规模越来越大,而生源质量较低,特别是独立学院院校。就我校而言,绝大多数专业都开设了数学类课程。但在教学中,普遍认为理论性太强,与实际脱节严重,不能引起学生的学习兴趣。并且,传统教学忽视了学生用数学解决实际问题的能力,所以,进行数学教学改革势在必行。数学建模可培养学生利用数学知识解决实际问题的能力,通过数模方法对实际问题进行巧妙处理,让学生体会到数学不仅能传播理论知识和求解一些数学问题,还可将其应用到实际问题中,让学生看到一些实际模型的来龙去脉,提高学生的学习积极性。数学建模是培养学生综合科学素质和创新能力的一个极好载体,而且能充分考验学生的洞察能力、创新能力、联想能力、使用当代科技最新成果的能力等。学生们同舟共济的团队合作精神和协调组织能力,以及诚信意识和自律精神的塑造,都能得到很好的培养。技能技术的掌握和团队合作精神对于独立学院学生将来进入社会十分重要,这也是衡量独立学院办学成功与否的一个方面。因此,独立学院的人才培养目标定位,既要达到本科生应具备的理论基础,又要有相对突出的专业技能,应培养“应用型本科”人才。因而,独立学院的数学课堂上应该多方面渗透数学模型的思想。

二、数学模型融入数学课堂教学的必要性

(一)人才培养创新的需要

根据独立学院人才培养目标和实际情况,有针对性的加大基础课和实践环节教学的比重,侧重于实践能力的培养,在专业课程体系中适当增加实验、实践教学内容,加强与社会实体的联系。力求培养出具有实际操作能力的高素质大学生。数学建模是将一个实际问题,对其作出一些必要的简化与假设,将其转化成一个数学问题,借助数学工具和数学方法精确或近似地解决该问题,并用数学结果解释客观现象、回答实际问题并接受客观实际的检验。数学建模能弥补传统数学教学在实际应用方面的不足,促进数学教师在现代化教学手段、教学模式方面的更新。数学建模有助于调动学生的学习兴趣,在计算机应用能力、实践能力和创新意识的培养方面都有着非常大的作用,以便学生将来能更好地适应工作岗位。

(二)高校教学改革的需要

当今社会信息高度发达,竞争日益激烈,必须具备一定的创新意识和创新能力,否则很难适应社会信息时代的要求。传统的教学模式是以课堂理论讲授为主,学生绝大部分时间都集中学习书本知识,很少有机会接触社会,也难做到学以致用。绝大多数课程都是教师的一言堂,考试也是以教师讲课内容为主。学生忙于记录和背诵而闲置其聪慧的头脑。长期的灌输式教学导致学生明显缺乏学习的主动性,会听从而不会质疑,更不会形成开创性的观点,很难适应企事业单位动态的工作环境。数学作为一门传统基础学科,对独立学院的学生来说,学习上有一定的难度。我们的教学应以“必需,够用”为度。数学建模从形式到内容,都与毕业后工作时的条件非常相近,是一次非常好的锻炼,学生通过自主的学习,把实际的问题转化为数学理论解决,有助于学生创新能力的培养动手能力的提高,这也正是独立学院院校应用型本科人才培养的方向。

(三)学生参加数学建模竞赛的需要

独立学院学生思维活跃,且比较注重个人能力素质的提高。很多学生愿意在学校参加一些竞赛来提高自己。全国大学生数学建模竞赛尤其受学生重视,但仍有很多大学生不了解这类竞赛,因此,在数学课堂上引入数学建模思想,学生既了解了数学建模,又对数学公式提起了兴趣,还有助于独立学院学生在全国大学生数学建模竞赛中取得优异成绩。

三、结语

数学建模论文篇4

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。

工具/原料

调查收集的原始数据资料

Word公式编辑器

步骤/方法

数学建模建模理念为:

一、应用意识:要解决实际问题,结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。

二、数学建模:用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。

三、创新意识:建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。

当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的。事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。建模论文主要包括以下几个部分:

一、摘要800字,简明扼要(要求用一两字左右,简明扼要(字左右句话说明题目中解决的问题是什么、用什句话说明题目中解决的问题是什么、么模型解决的、求解方法是什么、么模型解决的、求解方法是什么、结果如何、有无改进和推广)。有无改进和推广)。

二、问题的重述简要叙述问题,对原题高度压缩,切记不要把原题重述一遍。

三、假设1.合理性:每一条假设,要符合实际情况,要合理;2.全面性:应有的假设必须要有,否则对解决问题不利,可有可无的假设可不要,有些假设完全是多余的,不要写上去。

四、建模与求解(60~70分)1.应有建模过程的分析,如线性规划、非线模型中目标函数的推导过程,每一个约束条件的推导过程,切记不要一开始就抬出模型,显得很突然。2.数学符号的定义要确切,集中放在显要位置,以便查找。3.模型要正确、注意完整性。4.模型的先进性,创造性。5.叙述清楚求解的步骤。6.自编程序主要部分放在附录中(所用数学自编程序主要部分放在附录中。7.结果应放在显要的位置,不要让评卷人到处查找。

五、稳定性分析、误差分析、1、微分方程模型稳定性讨论很重要。2、统计模型的误差分析、灵敏度分析很重要。

六、优缺点的讨论1.优点要充分的表现出来,不要谦虚,有多少写多少2.对于缺点适当分析,注意写作技巧,要避重就轻。大事化小,小事化了。

七、推广和改进这是得高奖很重要的一环,如有创新思想即使不能完全完成也不要放弃,要保留下来。

八、文字叙述要简明扼要、条理清楚、步骤完整,语言表达能力要强。

九、对题目中的数据进行处理问题对题目中数据不要任意改动,因问题求解需要可以进行处理。如何处理,应注意合理性。1.先按题给条件作一次。2.发表自己见解,合理修改题目。

注意事项

数学建模论文篇5

目前对电磁铁的分析方法有限元法、磁路法以及试验法等[3-4],本文采用磁路法对图1所示的电磁铁进行等效磁路分析。从图1中可以看出,由于该结构为圆柱对称形结构,所以采用二维简化的等效磁路数学模型对电磁铁的静特性进行分析,忽略绕组漏磁通和铁芯涡流的影响,则该电磁铁即可用图2所示的等效磁路来表示。图2中,F代表电磁铁绕组输入总磁势,准为匝链绕组总磁通,Λ1和Λ2、Λ3分别为电磁铁磁路分段磁阻。具体含义以及计算公式如下:磁路分析过程中,该电磁铁机械尺寸的具体数值如图3所示。等效电路中磁阻Λ1计算公式见式(1),是动铁芯与上部铁轭之间的计算磁导。

2、Ansoft仿真结果

有限元分析是根据数学理论变分的原理,采用剖分插值的微元划分法,建立各微剖分区间的相互关系。有限元法的计算步骤包括建立所求解结构的几何模型、定义其几何边界条件、定义材料属性、加载荷、设定计算参数以及后处理等。电磁铁结构的材料属性如表1所示。在Ansoft仿真后处理程序中得出的普通电磁铁二维求解场域的磁力线分布如图4所示。从图4中可以看出,在工作气隙区域有2个磁分路。根据计算结果可以分析电磁铁绕组自感特性,即通电绕组电感随动铁位置和相应电流变化而变化的规律。自感的计算公式为:L(i,x)=ψ(i,x)/i(7)根据式(7)和磁链特性可计算出动铁芯在整个行程中动铁位置与绕组自感特性曲线(见图5)。从图5可以得出如下结论:绕组电流不变时,动铁芯离极靴越远气隙越大,自感变小;气隙越小,在不饱和的情况下,自感越大。具体到该电磁铁,当绕组电流在0.2A以下范围时,由于电流较小,电磁铁内磁场尚处于线性区,自感特性仅是动铁位置的函数,而与电流无关,因此在电流0.2A以下自感特性曲线基本重叠;当电流逐渐增加时磁场逐渐饱和,相同动铁芯位置,电流越大自感越小。以上仿真结果与理论分析和数学解析结果一致。方形极靴时,采用有限元法计算解出的电磁铁电磁力与动铁芯位置的关系曲线见图6。从图6可以看出,电磁铁方形极靴电磁力特性比较陡峭一些,由于磁路的非线性,导致随着位移的变化电磁力呈非线性变化。

3、结语

数学建模论文篇6

2对数学建模在培养学生能力方面的认识

数学建模是一种微小的科研活动,它对学生今后的学习和工作无疑会有深远的影响,同时它对学生的能力也提出了更高的要求[2]。数学建模思想的普及,既能提高学生应用数学的能力,培养学生的创造性思维和合作意识,也能促进高校课程建设和教学改革,激发学生的创造欲和创新精神。数学建模教学着眼于培养大学生具有如下能力:

2.1培养“表达”的能力,即用数学语言表达出通过一定抽象和简化后的实际问题,以形成数学模型(即数学建模的过程)。然后应用数学的方法进行推演或计算得到结果,并用较通俗的语言表达出结果。

2.2培养对已知的数学方法和思想进行综合应用的能力,形成各种知识的灵活运用与创造性的“链接”。

2.3培养对实际问题的联想与归类能力。因为对于不少完全不同的实际问题,在一定的简化与抽象后,具有相同或相似的数学模型,这正是数学应用广泛性的表现。

2.4逐渐发展形成洞察力,也就是说一眼抓住(或部分抓住)要点的能力。

3有关数学建模思想融入医学生高等数学教学的几个事例3.1在关于导数定义的教学中融入数学建模思想

在讲导数的概念时,给出引例:求变速直线运动的瞬时速度[3,4],在求解过程中融入建模思想,与学生一起体会模型的建立过程及解决问题的思想方法。通过师生共同分析讨论,有如下模型建立过程:

3.1.1建立时刻t与位移s之间的函数关系:s=s(t)。

3.1.2平均速度近似代替瞬时速度。根据已有知识,仅能解决匀速运动瞬时速度的问题,但可以考虑用某段时间中的平均速度来近似代替这段时间中某时刻的瞬时速度。对于匀速运动,平均速度υ是一常数,且为任意时刻的速度,于是问题转化为:考虑变速直线运动中瞬时速度和平均速度之间的关系。我们先得到平均速度。当时间由t0变到t0+Δt时,路程由s0=s(t0)变化到s0+Δs=s(t0+Δt),路程的增量为:Δs=s(t0+Δt)-s(t0)。质点M在时间段Δt内,平均速度为:

υ=Δs/Δt=s(t0+Δt)-s(t0)/Δt(1)

当Δt变化时,平均速度也随之变化。

3.1.3引入极限思想,建立模型。质点M作变速运动,由式(1)可知,当|Δt|较小时,平均速度υ可近似看作质点在时刻t0的“瞬时速度”。显然,当|Δt|愈小,其近似程度愈好,引入极限的思想来表示|Δt|愈小,即:Δt0。当Δt0时,若趋于确定值(即极限存在),该值就是质点M在时刻t0的瞬时速度υ,于是得出如下数学模型:

υ=limΔt0υ=limΔt0Δs/Δt=limΔt0s(t0+Δt)-s(t0)/Δt

要求解这个模型,对于简单的函数还比较容易计算,而对于复杂的函数,极限值很难求出。但观察到,当抛开其实际意义仅从数学结构上看,这个数学模型实际上表示函数的增量与自变量增量比值、在自变量增量趋近于零时的极限值,我们把这种形式的极限定义为函数的导数。有了导数的定义,再结合导数的运算法则和相关的求导法则,前面的这个模型就从求复杂函数的极限转化为单纯求导数的问题,从而很容易求解。

3.2在定积分定义及其应用教学中融入数学建模思想对于理解与掌握定积分定义及其在几何、物理、医学和经济学等方面的应用,关键在于对“微元法”的讲解。而要掌握这个数学模型,就一定要理解“以不变代变”的思想。以单位时间内流过血管截面的血流量为例,我们来具体看看这个模型的建立与解决实际问题的整个思想与过程。

假设有一段长为l、半径为R的血管,一端血压为P1,另一端血压为P2(P1>P2)。已知血管截面上距离血管中心为γ处的血液流速为

V(r)=P1-P2/4ηl(R2-r2)

式中η为血液粘滞系数,求在单位时间内流过该截面的血流量[3,4](如图1(a))。

图1

Fig.1

要解决这个问题,我们采用数学模型:微元法。

因为血液是有粘性的,当血液在血管内流动时,在血管壁处受到摩擦阻力,故血管中心流速比管壁附近流速大。为此,将血管截面分成许多圆环来讨论。

建立如图1(b)坐标系,取血管半径γ为积分变量,γ∈[0,R]于是有如下建模过程:

①分割:在其上取一个小区间[r,r+dr],则对应一个小圆环。

②以“不变代变”(近似):由于dr很小,环面上各点的流速变化不大,可近似看作不变,所以可用半径为r处圆周上流速V(r)来近似代替。此圆环的面积也可以近似看作以圆环周长2πr为长,dr为宽的矩形面积2πrdr,则该圆环内的血流量可近似为:ΔQ≈V(r)2πrdr,则血流量微元为:dQ=V(r)2πrdr

③求定积分:单位时间内流过该截面的血流量为定积分:Q=R0V(r)2πrdr。

以上实例,体现了微元法先分割,再近似,然后求和,最后取极限的建模过程,并成功把所求量表示成了定积分的形式,最终可以应用高等数学的知识求出所求量的建模思想。

4结语

高等数学课的中心内容并不是建立数学模型,我们只是通过数学建模强化学生的数学理论知识的应用意识,激发学生学习高等数学的积极性和主动性。所以在授课时应从简洁、直观、结合实际入手,达到既有助于理解教学内容,又可以通过对实际问题的抽象、归纳、思考,用所学的数学知识给予解决。所选的模型,最好尽可能结合医学实际问题,且具一定的趣味性,从而使学生体会到数学来源于生活实际,又应用于生活实际之中,以激发学生学好数学的决心,提高他们应用数学解决实际问题的能力[5]。

总之,高等数学教学的目的是提高学生的数学素质,为进一步学习其专业课打下良好的数学基础。教学中融入数学建模思想,可使学生的想象力、洞察力和创造力得到培养和提高的同时,也提高学生应用数学思想、知识、方法解决实际问题的能力。

【参考文献】

[1]洪永成,李晓彬.搞好数学建模教学提高学生素质[J].上海金融学院学报,2004,3:(总63)6.

[2]姜启源.数学模型[M].北京:高等教育出版社,1993,6.

[3]梅挺,邓丽洪.高等数学[M].北京:中国水利水电出版社,2007,8.

[4]梅挺,贾其锋,张明,等.高等数学学习指导[M].北京:中国水利水电出版社,2007,8.

[5]蔡文荣.数学建模与应用型人才培养[J].闽江学院学报(自然科学版),27(2),2006,4.

数学建模论文篇7

论文摘要:为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中学生数学建模能力的调查分析,发现学生数学应用及数学建模方面存在的问题,并针对问题提出了关于高中进行数学建模教学的几点意见。

数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自进入21世纪的知识经济时代以来,数学科学的地位发生了巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理论与方法的不断扩充使得数学已成为当代高科技的一个重要组成部分,数学已成为一种能够普遍实施的技术。培养学生应用数学的意识和能力也成为数学教学的一个重要方面。

目前国际数学界普遍赞同通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。美国、德国、日本等发达国家普遍都十分重视数学建模教学,把数学建模活动从大学生向中学生转移是近年国际数学教育发展的一种趋势。“我国的数学教育在很长一段时间内对于数学与实际、数学与其它学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。”我国普通高中新的数学教学大纲中也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因此我们的数学教学不仅要使学生知道许多重要的数学概念、方法和结论,而且要提高学生的思维能力,培养学生自觉地运用数学知识去处理和解决日常生活中所遇到的问题,从而形成良好的思维品质。而数学建模通过"从实际情境中抽象出数学问题,求解数学模型,回到现实中进行检验,必要时修改模型使之更切合实际"这一过程,促使学生围绕实际问题查阅资料、收集信息、整理加工、获取新知识,从而拓宽了学生的知识面和能力。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一,是改善学生学习方式的突破口。因此有计划地开展数学建模活动,将有效地培养学生的能力,提高学生的综合素质。

数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性";"数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。由此,在高中数学教学中渗透数学建模知识是很有必要的。

那么当前我国高中学生的数学建模意识和建模能力如何呢?下面是节自有关人士对某次竞赛中的一道建模题目学生的作答情况所作的抽样调查。题目内容如下:

某市教育局组织了一项竞赛,聘请了来自不同学校的数名教师做评委组成评判组。本次竞赛制定四条评分规则,内容如下:

(1)评委对本校选手不打分。

(2)每位评委对每位参赛选手(除本校选手外)都必须打分,且所打分数不相同。

(3)评委打分方法为:倒数第一名记1分,倒数第二名记2分,依次类推。

(4)比赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。

本次比赛中,选手甲所在学校有一名评委,这位评委将不参加对选手甲的评分,其他选手所在学校无人担任评委。

(Ⅰ)公布评分规则后,其他选手觉得这种评分规则对甲更有利,请问这种看法是否有道理?(请说明理由)

(Ⅱ)能否给这次比赛制定更公平的评分规则?若能,请你给出一个更公平的评分规则,并说明理由。

本题是一道开放性很强的好题,给学生留有很大的发挥空间,不少学生都有精彩的表现,例如关于评分规则的修正,就有下列几种方案:

方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数第二名记2+,…依次类推;(评分标准)

方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;

方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;

然而也有不少学生为空白,究其原因可能除了时间因素,学生对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。同时,一些学生由于不能正确理解规则(3),得出选手甲的平均得分为,其他选手的平均得分为,从而得出错误结论.不少学生出现“甲所在学校的评委会故意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。有些学生在正确理解题意的基础上,提出了“规则对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。以上各种想法都有道理,遗憾的是大部分学生仅仅停留在这些感性认识和文字说明上,没能进一步引进数学模型和数学符号去进行理性的分析。如何衡量规则的公平性是本题的关键,也是建模的原则。很少有学生能够明确提出这个原则,有些学生在第2问评分规则的修正中,提出“将甲所在学校的评委从评判组中剔除掉”,这种办法违背实际的要求。有些学生被生活中一些现象误导,提出“去掉最高分和最低分”的评分规则修正方法,而不去从数学的角度分析和研究。

通过对这道高中数学知识应用竞赛题解答情况的分析,我们了解到学生数学建模意识和建模能力的现状不容乐观。学生在数学应用能力上存在的一些问题:(1)数学阅读能力差,误解题意。(2)数学建模方法需要提高。(3)数学应用意识不尽人意数学建模意识很有待加强。新课程标准给数学建模提出了更高的要求,也为中学数学建模的发展提供了很好的契机,相信随着新课程的实施,我们高中生的数学建模意识和建模能力会有大的提高!

那么高中的数学建模教学应如何进行呢?数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。不同于传统的教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。

(一)在教学中传授学生初步的数学建模知识。

中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。

例如在学习了二次函数的最值问题后,通过下面的应用题让学生懂得如何用数学建模的方法来解决实际问题。例:客房的定价问题。一个星级旅馆有150个客房,经过一段时间的经营实践,旅馆经理得到了一些数据:每间客房定价为160元时,住房率为55%,每间客房定价为140元时,住房率为65%,

每间客房定价为120元时,住房率为75%,每间客房定价为100元时,住房率为85%。欲使旅馆每天收入最高,每间客房应如何定价?

[简化假设]

(1)每间客房最高定价为160元;

(2)设随着房价的下降,住房率呈线性增长;

(3)设旅馆每间客房定价相等。

[建立模型]

设y表示旅馆一天的总收入,与160元相比每间客房降低的房价为x元。由假设(2)可得,每降价1元,住房率就增加。因此由可知于是问题转化为:当时,y的最大值是多少?

[求解模型]

利用二次函数求最值可得到当x=25即住房定价为135元时,y取最大值13668.75(元),

[讨论与验证]

(1)容易验证此收入在各种已知定价对应的收入中是最大的。如果为了便于管理,定价为140元也是可以的,因为此时它与最高收入只差18.75元。

(2)如果定价为180元,住房率应为45%,相应的收入只有12150元,因此假设(1)是合理的。

(二)培养学生的数学应用意识,增强数学建模意识。

首先,学生的应用意识体现在以下两个方面:一是面对实际问题,能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,学习者在学习的过程中能够认识到数学是有用的。二是认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用:生活中处处有数学,数学就在他的身边。其次,关于如何培养学生的应用意识:在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。数学是一种“世界通用语言”它能够准确、清楚、间接地刻画和描述日常生活中的许多现象。应让学生养成运用数学语言进行交流的习惯。例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。鼓励学生运用数学建模解决实际问题。首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。通过教师的潜移默化,经常渗透数学建模意识,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。

(三)在教学中注意联系相关学科加以运用

在数学建模教学中应该重视选用数学与物理、化学、生物、美学等知识相结合的跨学科问题和大量与日常生活相联系(如投资买卖、银行储蓄、测量、乘车、运动等方面)的数学问题,从其它学科中选择应用题,通过构建模型,培养学生应用数学工具解决该学科难题的能力。例如,高中生物学科以描述性的语言为主,有的学生往往以为学好生物学是与数学没有关系的。他们尚未树立理科意识,缺乏理科思维。比如:他们不会用数学上的排列与组合来分析减数分裂过程配子的基因组成;也不会用数学上的概率的相加、相乘原理来解决一些遗传病机率的计算等等。这些需要教师在平时相应的课堂内容教学中引导学生进行数学建模。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。又例如教了正弦函数后,可引导学生用模型函数写出物理中振动图象或交流图象的数学表达式。

最后,为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。中学教师只有通过对数学建模的系统学习和研究,才能准确地的把握数学建模问题的深度和难度,更好地推动中学数学建模教学的发展。

参考文献:

1.《问题解决的数学模型方法》北京师范大学出版社,1999.8

2.普通高中数学课程标准(实验),人民教育出版社,2003.4

数学建模论文篇8

关键词:经济学数学模型应用

在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统(根据厂家各种资源、产品工艺流程、生产成本及客户需求等数据进行数学经济建模)与客户进行商业谈判。

一、数学经济模型及其重要性

数学经济模型可以按变量的性质分成两类,即概率型和确定型。概率型的模型处理具有随机性情况的模型,确定型的模型则能基于一定的假设和法则,精确地对一种特定情况的结果做出判断。由于数学分支很多,加之相互交叉渗透,又派生出许多分支,所以一个给定的经济问题有时能用一种以上的数学方法去对它进行描述和解释。具体建立什么类型的模型,既要视问题而定,又要因人而异。要看自己比较熟悉精通哪门学科,充分发挥自己的特长。

数学并不能直接处理经济领域的客观情况。为了能用数学解决经济领域中的问题,就必须建立数学模型。数学建模是为了解决经济领域中的问题而作的一个抽象的、简化的结构的数学刻划。或者说,数学经济建模就是为了经济目的,用字母、数字及其他数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构的刻划。而现代世界发展史证实其经济发展速度与数学经济建模的密切关系。数学经济建模促进经济学的发展;带来了现实的生产效率。在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统与客户进行商业谈判。

二、构建经济数学模型的一般步骤

1.了解熟悉实际问题,以及与问题有关的背景知识。2.通过假设把所要研究的实际问题简化、抽象,明确模型中诸多的影响因素,用数量和参数来表示这些因素。运用数学知识和技巧来描述问题中变量参数之问的关系。一般情况下用数学表达式来表示,构架出一个初步的数学模型。然后,再通过不断地调整假设使建立的模型尽可能地接近实际,从而得到比较满意的结论。3.使用已知数据,观测数据或者实际问题的有关背景知识对所建模型中的参数给出估计值。4.运行所得到的模型。把模型的结果与实际观测进行分析比较。如果模型结果与实际情况基本一致,表明模型是符合实际问题的。我们可以将它用于对实际问题进一步的分析或者预测;如果模型的结果与实际观测不一致,不能将所得的模型应用于所研究的实际问题。此时需要回头检查模型的组建是否有问题。问题的假使是否恰当,是否忽略了不应该忽略的因素或者还保留着不应该保留的因素。并对模型进行必要的调整修正。重复前面的建模过程,直到建立出一个经检验符合实际问题的模型为止。一个较好的数学模型是从实际中得来,又能够应用到实际问题中去的。

三、应用实例

商品提价问题的数学模型:

1.问题

商场经营者即要考虑商品的销售额、销售量。同时也要考虑如何在短期内获得最大利润。这个问题与商场经营的商品的定价有直接关系。定价低、销售量大、但利润小;定价高、利润大但销售量减少。下面研究在销售总收入有限制的情况下.商品的最高定价问题。

2.实例分析

某商场销售某种商品单价25元。每年可销售3万件。设该商品每件提价1元。销售量减少0.1万件。要使总销售收入不少于75万元。求该商品的最高提价。

解:设最高提价为X元。提价后的商品单价为(25+x)元

提价后的销售量为(30000-1000X/1)件

则(25+x)(30000-1000X/1)≥750000

(25+x)(30-x)≥750[摘要]本文从数学与经济学的关系出发,介绍了数学经济模型及其重要性,讨论了经济数学模型建立的一般步骤,分析了数学在经济学中应用的局限性,这对在研充经济学时有很好的借鉴作用。即提价最高不能超过5元。

四、数学在经济学中应用的局限性

经济学不是数学,重要的是经济思想。数学只是一种分析工具数学作为工具和方法必须在经济理论的合理框架中才能真正发挥其应有作用,而不能将之替代经济学,在经济思想和理论的研究过程中,如果本末倒置,过度地依靠数学,不加限制地“数学化很可能经济学的本质,以至损害经济思想,甚至会导致我们走入幻想,误入歧途。因为:

1.经济学不是数学概念和模型的简单汇集。不是去开拓数学前沿而是借助它来分析、解析经济现象,数学只是一种应用工具。经济学作为社会科学的分支学科,它是人类活动中有关经济现象和经济行为的理论。而人类活动受道德的、历史的、社会的、文化的、制度诸因素的影响,不可能像自然界一样是完全可以通过数学公式推导出来。把经济学变为系列抽象假定、复杂公式的科学。实际上忽视了经济学作为一门社会科学的特性,失去经济学作为社会科学的人文性和真正的科学性。

2.经济理论的发展要从自身独有的研究视角出发,去研究、分析现实经济活动内在的本质和规律。经济学中运用的任何数学方法,离不开一定的假设条件,它不是无条件地适用于任何场所,而是有条件适用于特定的领域在实际生活中社会的历史的心理的等非制度因素很可能被忽视而漏掉。这将会导致理论指导现实的失败。

3.数学计量分析方法只是执行经济理论方法的工具之一,而不是惟一的工具。经济学过分对数学的依赖会导致经济研究的资源误置和经济研究向度的单一化,从而不利于经济学的发展。

4.数学经济建模应用非常广泛,为决策者提供参考依据并对许多部门的具体工作进行指导,如节省开支,降低成本,提高利润等。尤其是对未来可以预测和估计,对促进科学技术和经济的蓬勃发展起了很大的推动作用。但目前尚没有一个具有普遍意义的建模方法和技巧。这既是我们今后应该努力发展的方向,又是我们不可推卸的责任。因此,我们要以自己的辛勤劳动,多实践、多体会,使数学经济建模为我国经济腾飞作出应有的贡献。

推荐期刊
  • 数学
    刊号:42-1163/O1
    级别:北大期刊
  • 数学研究
    刊号:35-1177/O1
    级别:省级期刊
  • 数学进展
    刊号:11-2312/O1
    级别:北大期刊
  • 中等数学
    刊号:12-1121/O1
    级别:省级期刊