线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

工业废水论文8篇

时间:2023-03-22 17:36:49

工业废水论文

工业废水论文篇1

对煤制天然气废水中酚和氨的处理不仅能够减少资源的浪费,而且能够在一定程度上降低之后的处理难度。一般来说,对煤制天然气废水的预处理主要包括脱酚以及脱酸。

1.1脱酚煤制天然气废水中含有一定量的酚类物质,目前使用较多的是溶剂萃取脱酚技术,如果单一的溶剂萃取脱酚技术不能满足要求的话,可以和水蒸气脱酚法相结合。目前国内溶剂萃取脱酚技术采用的原料主要是二异丙基醚或乙酸丁酯等物质,例如如果采用鲁奇加压气化工艺进行煤制天然气的生产,那么相应的,其溶剂萃取脱酚技术使用的脱酚溶剂应该是异丙基醚。实际情况证明,采用异丙基醚对煤制天然气废水进行脱酚,脱酚后废水中酚的含量能够低于0.6g/L。

1.2脱酸除了对煤制天然气废水进行脱酚以外,其预处理工艺还包括脱酸。脱酸简而言之就是对煤制天然气废水中含有的CO2、H2S等酸性物质进行分离。需要注意的是,在实际的脱酸操作中,一定要考虑到CO2、H2S等酸性分子在遇水后会出现弱电离现象,弱电离会导致煤制天然气废水的脱酸效率下降。因此,在实际的脱酸操作中,排放CO2、H2S等酸性气体时尽量做到向上排放,即将其从脱酸塔顶部进行排出,而且还要对脱酸塔顶部的温度进行控制,这样才能把部分游离的氨分子留在酚水中,将酸性气体排出。

2.生化处理技术

所谓的生化处理技术指的是通过对微生物自身存在的新陈代谢作用加以利用,对污染物进行分解并且对其进行转化,使之最后能够成为二氧化碳等物质。目前我国煤化工废水处理,普遍采用改进后的好氧生化处理技术,主要包括两方面工艺,分别是SBR技术以及PACT技术。由于煤化工废水中存在着联苯等比较难降解的有机物,这些有机物在好氧生化处理技术中难以降解,需要采用厌氧生物处理技术进行处理。此外,一些煤化工废水成分十分复杂,可采用厌氧和好氧工艺相结合的方式处理煤化工废水。

2.1SBR工艺SBR工艺的优势,简单来说就是能够保证整个生物反应器中好氧和厌氧环境不断交替。通过两者不断交替,保证整个生物反应器能够获得较为多样化的生物菌群和耐冲击负荷能力。除此之外,SBR工艺还能够保证生物反应器能够处理一些有毒或者高浓度煤制天然气的能力。以我国中部地区某煤化工业废水处理厂为例,该厂采用的就是SBR工艺。通过对整个生物反应器的相关装置(如:曝气、温度、加碱装置)进行改造,从而提升了鲁奇工艺处理煤制天然气废水的能力。

2.2好氧生物膜法相比SBR工艺,很多煤化工业废水处理厂采用更多的是好氧生物膜法。好氧生物膜法的优势在于菌群的生长方式。通过对优势菌群的筛选,可以实现对煤制天然气废水中污染物的降解,特别是对一些传统工艺降解起来较为困难的有机污染物,其效果更加明显。我国西南某煤化工业废水处理厂采用的就是好氧生物膜法,实践证明,好氧生物膜法能够有效做到对煤制天然气废水中COD、酚以及氨氮污染物的去除,而且其具有较高的缓冲能力。2.2.3深度处理技术在对煤化工废水进行生化处理后,废水中仍然存在一些少量难降解污染物,在一定程度上使色度难以达到排放标准,需要采用深度处理技术。当前主要采用方法包括了混凝沉淀法以及高级氧化法等。

3.煤化工废水处理存在的不足和展望

由于煤化工废水中含有的有机物的浓度比较低,需要采取有效措施对废水的氨氮加以去除,随着排放标准提高,需要对生化水进行深度处理。由此可见,深度处理已经成为未来十分重要的研究方向,在实际深度处理过程中技术选择有十分重要的意义。当前我国进行产业投资的一个重点就是煤制天然气,但是对于煤制天然气废水处理技术的研究还存在着不足,因此相关的人员要加强对于高浓度废水处理技术的研究力度。

4.结语

工业废水论文篇2

1.1普通工业废水特点

普通工业废水量大、污染物成分复杂,不同行业产生的废水所含污染物成分区别较大,有的废水温度高,容易造成环境的热污染;有些具有明显的酸碱度;有些含有易燃、易爆、有毒物质。针对工业废水中所含的不同成分,选择不同的处理工艺,往往需要物理、化学、生物代谢等多种不同工艺组合处理。

1.2放射性废水特点

具有放射性的重金属元素是放射性废水处理的主要去除对象,而放射性核素只能通过自然衰变来降低其放射性,所有的水处理方法都不能改变其固有的放射性衰变特性。在进行放射性废水处理的时候,我们只有通过各种方法将放射性核素浓缩到较小体积的废物内,降低处理后可排放废水的放射性核素浓度。

2普通工业废水处理方法

为了使工业废水得到净化,一般将废水中所含的污染物分离出来,或将其转化为无害、稳定的物质。我们按照处理原则,将工业废水处理方法中物理化学法分为吸附法、离子交换法、膜分离法、汽提法、吹脱法、萃取法、蒸发法、结晶法等。离子交换法在普通工业废水处理中,主要用以回收贵重金属离子。膜分离技术在70年代后大规模应用到各个工业领域及科研中,发展非常迅速。蒸发法处理多用于酸、碱废液的回收。自然界存在种类繁多的具有氧化分解有机物能力的微生物,这些微生物具有数量巨大、分布范围广、繁殖力强等特点,被广泛应用于制革造纸、炼油化工、印染纺织、食品制药等行业的废水处理中。

3放射性废水的处理方法

放射性核素使用任何水处理方法都改变不了其固定的放射性衰变特性,其处理一般都是遵循以下两个基本原则:①将放射性废水排入水体,通过稀释和扩散达到无害水平。主要适用于极低水平的放射性废水的处理。②将放射性废水浓缩后,将其浓缩产物与人类的生活环境长期隔离,任其自然衰减。对高、中、低水平放射性废水均适用。目前国内外普遍做法是对放射性废水进行浓缩处理后贮存或固化处理。

3.1蒸发法

蒸发浓缩法具有较高的浓缩倍数和去污因子,可用于处理高、中、低放废水。尉凤珍等利用真空蒸发浓缩装置处理中低水平核放射废水,对总α和总β的去污因子能达到104量级,出水满足国内放射性废水排放标准。

3.2化学沉淀法

化学沉淀法主要通过投加合适的絮凝剂,然后与废水中的微量放射性核素发生沉淀后,将放射性核素转移并浓缩到体积量小的沉淀底泥中。在进行化学沉淀法时主要投加铝盐、铁盐、磷酸盐、苏打、石灰等,同时可投加助凝剂,如粘土、活性二氧化硅等加快凝结过程。罗明标等的试验结果显示氢氧化镁处理剂具有良好的除铀效果,特别适合酸溶浸铀后的地下低放射性含铀废水的处理。

3.3离子交换法

目前离子交换主要处理低放废水,包括有机离子和无机离子两种交换体系。此法特点是操作方便、设备简单、去除效率高且减容比高,适用于含盐量低、悬浮物含量少的水体。国内外研究都表明离子交换剂对Cs的有很高的吸附容量。

3.4膜分离技术

膜处理方法是处理放射性废水相对经济、高效、可靠的方法,此法具有出水水质好、物料无相变、低能耗、操作方便和适应性强等特点等特点,膜技术的研究比较广泛。美国、加拿大许多核电站采用反渗透和超滤工艺处理放射性废水。

3.5生物处理法

生物处理法包括植物修复法、微生物法。微生物治理低放射性废水是20世纪60年代开始研究的新工艺,国内外都有人开展研究微生物富集铀的工作。美国研究人员发现一种名为Geobactersulfurreducens的细菌能够去除地下水中溶解的铀,Geobacter能够还原金属离子,从而降低金属在水中的溶解度,使金属以固体形式沉淀下来,因此,这种细菌有可能被用于放射性金属的生物处理。生物法处理流程复杂,处理周期长,运行管理难度大,国内核电厂还未采用生物法处理放射性废水。

4放射性废水和普通工业废水处理方法比较

工业废水中污染物成分复杂多样,我们采用单一的处理方法很难达到完全净化的效果,因此需要我们寻找适合的工艺进行处理。其中废水处理工艺的组成需要遵循先易后难的原则,先除去大块垃圾和漂浮物质,然后依次去除悬浮固体、胶体物质及溶解性物质。放射性废水与普通工业废水处理的一个根本区别是:能够用物理、化学或者生物方法将普通工业废水的一些有毒物分解破坏,转化为无毒物质,例如六价铬、氰、有机磷等;而用这些方法无法破坏放射性核素,不能改变其衰变辐射的固有特性,只能靠其自然衰变来降低直至消失其放射性。物理、化学或物理化学方法一般是普通工业废水处理中的预处理或深度处理方法,主要处理方法采用生物处理法。而物理化学法是目前放射性废水处理的主要方法。有些处理方法只适用于处理普通工业废水,而较难应用于处理放射性废水。

5结论

工业废水论文篇3

关键环节一:根据制革废水的上述水质,可以看出,其悬浮物浓度相当高。主要是动物皮屑、毛、泥砂等。首先,其处理采用以生化为主,并辅以物化处理是正确的,因其生化性较好,B/C=0.4~0.5,宜采用生化处理作为制革废水的主处理工艺。此处的物化处理是指在生化处理之前的预处理,这一点对制革工业废水处理至关重要。在无极县部分制革工业企业中,其皮革工业废水治理初始阶段,工艺设计中,忽略了预处理环节,导致运行失败。由于在生化处理单元前没有设足够停留时间的沉淀池或气浮池,使原水中的高悬浮物随同原水一并进入生化处理单元,从而严重地影响了生化处理效果。

当废水中含有较高的悬浮物时,悬浮物会隔离微生物与废水中有机污染物的接触,从而影响微生物对水中BOD的吸附和降解,进一步造成生化处理效率下降。因此,制革工业废水(包括皮革、裘皮、羊绒加工等废水)的处理,必须强化生化处理单元之前的物化预处理,这是很重要的一个处理环节。关键环节二:如前所述,皮革工业废水含盐量较高,特别是Ca2+浓度,这是皮革废水另一个特点。

皮革废水的生化处理单元是采用活性污泥法还是采用生物膜法,这也是一个关键环节,在这里存在一个误区。活性污泥法常应用于市政污水处理,而生物膜法则常应用于工业废水处理,特别是生物接触氧化法。生物接触氧化处理工艺具有如下优点:(1)使水力停留时间HRT与污泥停留时间SRT完全分离,虽其水力停留时间HRT相对较短,生活污水HRT约2h~4h,但污泥停留时间SRT却很长,可以达到30d,甚至更长至60d。(2)BOD(或COD)容积负荷率比活性污泥法高得多,因此生物接触氧化法单位容积的生物量比活性污泥法大得多。一般活性污泥法VSS为3.0kg/m3~3.5kg/m3,而生物接触氧化法VSS为7kg/m3~12kg/m3,因此,其负荷率为活性污泥法的2~3倍,相应其容积占地面积生物接触氧化法要比活性污泥法小得多。(3)生物接触氧化法既适合低浓度有机废水处理也适合高浓度有机废水处理,而活性污泥法,对低浓度有机废水处理效果甚微。实践证明,当废水COD及BOD浓度较低时,COD<100mg/L,BOD<50mg/L时,微生物会因食料不足,而形不成菌胶团,只能成单体状态存在于水中。基于上述优点,生物接触氧化法在工业废水处理中得到了广泛的应用,如印染废水、焦化废水、食品废水、淀粉废水、啤酒废水等。根据上述生物接触氧化法的优点,制革工业废水采用生物接触氧化法是顺理成章的事,但运行实践证明这是一个误区。

由于皮革废水中含盐量较高,其中Ca2+含量也很高,如采用填料式生物接触氧化法,会使填料上逐渐结成矿化物垢,而且逐渐增厚,此种矿物垢对生物膜起到抑制作用。而这种矿物垢人工无法清除,从而使废水处理效果愈来愈差,甚至填料上的生物膜完全脱落。近期的两例革园区污水处理,由于上述原因而导致运行失败。综上所述,皮革废水的生化处理,应采用活性污泥法,切忌采用填料式生物膜法。

二、结论

1.制革工业废水应强化预处理,用混凝沉淀或混凝气浮法将悬浮物予以去除,以免影响生化处理效率。

工业废水论文篇4

水源是造纸厂第二大消耗工质,废水是造纸厂最大污染源,与其他产业相比,造纸废水的排放量和COD含量均为各产业之首。因此要解决全国工业废水污染问题,首先要解决造纸企业废水污染问题,通过各种方法实现造纸废水处理达标排放。但是目前部分老旧造纸企业并未进行相应废水处理设施扩建改造,废水污染治理形式仍然十分严峻。

2制浆造纸废水的治理

2.1制浆造纸行业水污染物产生来源制浆造纸工业的整个过程,包括从备料到成纸、化学品回收、纸张的加工等都需要大量的水,用于输送、洗涤、分散物料及冷却设备等,虽然生产过程中也有回收、再用,但仍有大量的废水排入水体,造成水环境的严重污染。主要水污染来源于化学法制浆产生的蒸煮废液、洗浆漂白过程中产生的中段废水及抄纸工序中产生的白水,本文以中段废水污染治理为主进行介绍。

2.2制浆中段废水的产生在提取黑夜之后,纸浆要进行清洗、筛选和漂白,从而得到合格纸浆,同时形成携带生片、木节、粗纤维素及非纤维素细胞、砂砾、金属屑的中段废水。中段废水颜色呈深黄色,主要污染物有木质素、悬浮物、硫化物、有机物等,可生化性较差,有机物难降解,处理难度大。

2.3制浆中段废水的治理中段废水处理方法主要有化学氧化法、物化法、生物法、电子束法、电化学法、物理法等,其中以生物法最成熟,应用最广泛,下面以生物法为主进行介绍。生物法是利用微生物分解氧化有机物的功能,采取一定的人工措施,创造适于微生物生长和繁殖的环境,获得大量具有高生物活性的微生物,以提高其氧化分解有机物的效率的一种污水处理方法,是目前应用最多、技术最为成熟的污水处理方法。根据微生物需要氧的情况,可分为好氧法、厌氧法和生物酶法等。好氧法是在有氧条件下利用好氧微生物降解代谢处理废水的方法,常用的人工好氧生物处理方法有活性污泥法和生物膜法两种,好氧法具有工艺成熟、运行稳定,有机物去除效率高等优点,但是也有耐冲击负荷低,占地面积大、电耗大、基建费用高等缺点,通常应用于进水水质稳定而处理程度要求较高的大型污水处理工程。厌氧法又叫厌氧消化或厌氧发酵,是在无氧的条件下,通过厌氧和兼性微生物共同作用将废水分解为甲烷和二氧化碳的过程。厌氧法具有占地少、耗能少、剩余污泥少、应用范围广等优点,系统复杂、环境影响大、易产生臭味和腐蚀性气体等缺点明显,最大的缺点是出水水质波动较大,容易产生出水不达标的情况。因此在生产实践上通常将好氧法和厌氧法联合使用。有关专家针对草浆造纸中段废水,进行了厌氧折流板反应器(AnaerobicBaffledReactor,ABR)、序批式反应器(SequencingBatchReactor,SBR)及ABR—SBR组合处理工艺的研究,结果表明:ABR的水力停留时间(HRT)为6h时,废水可生化性由0.2~0.25增加到0.4~0.5;SBR最佳HRT为8h,单独运行,COD去除率65%左右;ABR—SBR组合工艺中SBR处理效果明显提高,COD去除率达80%左右,且组合工艺处理效果好,COD和BOD5去除率达90%左右,抗冲击负荷能力强。生物酶处理有机废水是近年兴起的一种先进处理工艺。生物酶具有很高的活性和催化能力,可以加速废水有机物降解的速度,而且环境条件要求宽松,对进水水质要求低,可以重复使用等优点,特别是固化酶技术研究与开发,为生物酶技术在废水处理工程大规模推广奠定坚实基础。在生产实践中基本上是综合各种技术优缺点,根据进水水质的不同,选择最佳组合作为生产工艺。利用水解—好氧工艺处理山东某制浆造纸厂产生的中段废水,经现场采样监测,处理后出水水质良好,COD去除率达98%以上。

3造纸工业废水处理实例

工业废水论文篇5

污水处理站的设计水量为450m3/d。根据废水的水质及企业的要求,采取将生活污水和其余工业废水分开处理的思路,其中生活污水处理至企业标准后部分用于企业回用,而工业废水经处理达标后排放。工业废水经处理后执行GB8978—2002《污水综合排放标准》中的一级标准。而生活污水处理标准执行企业制定的中水回用水质标准。

2工艺选择与设计

2.1工艺选择

工业废水的处理主要考虑COD及氟离子等指标。而生活污水的处理主要考虑COD、氨氮等指标,而中水回用则主要针对COD,氯离子等指标有要求。废水除氟的技术主要有化学沉淀法、混凝沉淀法、吸附法、离子交换法、电凝聚法和反渗透法等。而对于高浓度氟离子废水多采用多级反应沉淀法进行处理,该方法会使废水的盐分和钙离子浓度升高。因此本项目的工业废水在去除氟离子之后,若再经过深度处理进行回用,则处理成本会很高。而生活废水主要通过生化作用进行降解,原水中氯离子浓度低,经深度处理后能够达到水质要求。因此采取两股废水分开处理的工艺流程,工业废水经处理后直接排放,而生活废水经处理后部分用于企业中水回用。

2.2工艺流程及说明

煤气化废水经过氧化预处理后与制冷剂废水、氟化工废水进入调节池进行均质调节(见图1)。调节池1内的废水泵入三级反应池加入药剂进行三级反应除氟,其中一、二级反应池加入盐酸、电石渣进行反应沉淀,第三级反应池加入氯化钙、PAC及PAM进行混凝反应。三级反应池的出水流入沉淀池进行泥水分离,沉淀池的出水采用fenton氧化后通过沉淀、过滤后达标排放。生活污水经过隔油沉淀预处理后流入A/O池进行生化处理,生化出水采用fenton氧化-沉淀-过滤的工艺进行深度处理。深度处理的出水部分用于企业生产回用,部分直接排放。

2.3主要构筑物

2.3.1调节池

1座,地下式钢筋混凝土结构,池内壁防腐。池内分为生活污水调节池和工业废水调节池,有效容积分别为:50m3和130m3,水力停留时间分别为:15h和8h。池内分别设置潜水搅拌机和穿孔曝气管进行搅拌。

2.3.2一、二、三级反应池及污泥池

一、二、三级反应池采用企业的化工反应器改造而成,共5只,单只有效容积为6m3,反应时间共计2h,池内分别设置搅拌机和药剂管。不同池内分别加入盐酸、电石渣、氯化钙、PAC及PAM等药剂进行反应沉淀除氟。所有反应池均放置在污泥池顶部,下部设有排空管,定期将池内的沉渣排入污泥池内。污泥池的有效容积100m3,并配套100m2厢式压滤机进行污泥脱水。

2.3.3工业废水沉淀池

第三级反应池的出水流入沉淀池通过沉淀去除废水中氟离子。沉淀池为1座,为半地上式钢筋混凝土结构。设计尺寸?7.0m×3.5m,表面负荷为0.52m3/(m2•h)。池内设置中心传动刮泥机,并配套排泥泵。

2.3.4工业废水组合池

该组合池内主要包括fenton氧化池,混凝沉淀池,中间水池及清水池组成。各个单元的水力停留时间分别为:3,0.7,1,7h。废水在氧化池内与酸、双氧水及硫酸亚铁进行氧化反应。氧化池出水流入混凝池,与液碱及PAM进行混凝反应。反应池出水流入后续沉淀池进行泥水分离。沉淀池出水流入中间水池,通过水泵流入机械过滤器进行过滤。过滤出水流入清水池后排放。

2.3.5工业废水沉淀池

2对fenton氧化-混凝反应池的出水进行沉淀以降解废水中的COD及SS。沉淀池为1座,为半地上式钢筋混凝土结构。设计尺寸?7.0m×3.5m,表面负荷为0.52m3/(m2•h)。池内设置中心传动刮泥机,并配套排泥泵。

2.3.6机械过滤器

1处理能力为20m3/h,对废水进行过滤,以确保废水的氟离子及SS等指标达标。

2.3.7生活污水组合池

1座,池体为半地上式钢筋混凝土结构。组合池内包括隔油沉淀池、A/O-二沉池、氧化-混凝-沉淀池、中间水池及清水池。其中隔油沉淀池的表面负荷为0.33m3/(m2•h),池内设置斜管及油水分离机,沉淀池底部的污泥定期排入污泥池,上部的浮油通过油水分离机分离后收集到废油桶内。A/O生化池的停留时间为37.5h,其中A池设置潜水搅拌机进行水力搅拌,O池内设置微孔曝气盘进行好氧曝气。O池出水流入二沉池进行泥水分离。A/O池内部设置混合液回流进行反硝化脱氮,二沉池内的部分污泥回流到A/O池。二沉池出水在氧化池-混凝池内与fenton试剂及混凝药剂进行氧化-混凝反应以去除COD,氧化反应及混凝反应的时间分别为:5.5h和1h。反应池出水在沉淀池进行泥水分离,出水流入中间水池,通过泵提升至机械过滤器、活性炭过滤器,经过滤后流入清水池。池内清水部分用于回用,部分排放。

2.3.8煤气化废水氧化池

由于该股废水水量小,因此采用间歇氧化的方式进行处理。反应池采用碳钢衬塑的设备,有效容积为6m3。在曝气搅拌下,废水分别与NaClO,PAC,PAM进行氧化-混凝反应。反应池出水流入工业废水调节池。

3运行效果

该工程于2012年5月完成施工、调试。目前系统运行正常,出水水质稳定并达到相应设计要求。

4效益分析

工业废水论文篇6

配置浓度为0.1mg/L、0.2mg/L、0.4mg/L、0.8mg/L、1.2mg/L、1.6mg/L、2mg/L、5mg/L、10mg/L、20mg/L、30mg/L、50mg/L的标准溶液,共计12个浓度点,经过0.45μm水系针头过滤器过滤,然后自动进样分析。通过工作站软件,采用峰面积进行曲线的拟合,线性参数如表1所示,相关系数为0.999999,如图1所示。

2精密度和准确度

2.1精密度对环境标准样品研究所的氨氮标样200542(1.50±0.07)重复9次测定,氨氮保留时间在4.98~4.99min之间,保留时间的RSD为0.1%,氨氮测定结果的RSD为1%.标样分析结果统计如表2所示。

2.2准确度加标试验使用氨氮标液,分别进行3次加标,每次加标测定4次,回收率结果如表3所示。对环境标准样品研究所的氨氮标样200542(1.50±0.07)进行测定,其测定结果均在标准值要求范围内,具体结果如表3所示。

3定量范围

参考EPASW-846,测定9次空白加标试验,加标量为估计浓度的3~5倍。计算测定结果的标准偏差,采用98%的置信度,查临界值表t为2.896,方法的检出限为t值与标准偏差的乘积,方法的检测限为4倍的检出限,结果统计如表4所示。采用离子色谱法可直接对浓度在0.04~50mg/L范围内的样品进行分析,操作简便,满足《污水综合排放标准》(GB8978—1996)中的二级最低标准要求(50mg/L)。

4钠氏试剂分光光度法和离子色谱法的比较

采集样品7组,分别采用《钠氏试剂分光光度法》和《离子色谱法》进行测定,结果统计如表5所示。分别对7组样品的测定结果对比、分析、统计,标准偏差范围为0.8%~3.7%,结果均满足质控小于5%的要求。因此,此方法可用于工业废水中氨氮的测定。

5干扰及消除方法

样品中钠和铵质量比超过10000∶1会影响分离,对此,可通过调整淋洗液浓度、采用梯度淋洗或加入调节剂来消除影响。对于样品中金属离子的干扰,可通过在分离柱前加装预处理柱消除干扰。样品在进样前,可通过0.45μm水系针头过滤器过滤来消除颗粒物对仪器系统的影响。

6结束语

工业废水论文篇7

论文关键词:印染废水,深度处理,回用

 

苏州某印染企业排放的废水约5000m3/d,主要包括浆料浓水、浆料清洗水、印染浓水、印染清洗水。废水具有有机污染物含量高、色度深等特点,属于难处理的工业废水。该废水经过曝气调节池 混凝沉淀池 水解酸化池 接触氧化池 沉淀池 混凝沉淀池处理后,达到了国家排放标准,但排水中仍含有大量难降解处理的大分子有机物环境保护论文,污染物浓度和色度较高,不能够满足生产用水的要求中国学术期刊网。

为响应国家提出的节约水资源、保护环境、发展循环经济、建设环境友好型社会的号召,并降低企业生产用水成本,企业兴建了一套处理规模为5000m3/d的中水回用工程,实现废水的资源利用。

1、工艺流程及特点

针对该废水的水质特点,在试验的基础上,本公司确定了以砂滤、臭氧、曝气生物滤池为主的组合工艺对其进行深度处理和回用。工艺流程见图1。

图1 废水回用处理工艺

Fig.1.Technology diagram of wastewater reuse

污水站处理后的废水直接流入回用调节池,由提升泵入石英砂过滤器以去除前段处理工序残留的微小絮凝体,然后自流流入臭氧氧化池,最后经曝气生物滤池(BAF)处理后回用。臭氧氧化池利用臭氧氧化废水中残余的难以生物降解的有机物环境保护论文,将其转化为可生物降解的有机物,从而显著提高了印染废水的可生化性[1],

2、主要构筑物设计及运行参数

2.1 回用调节池和回用水池

回用调节池和回用水池共壁合建,半地下室,钢砼结构,有效容积均为200m3。

2.2 砂滤器

采用4台外形尺寸为φ3000mm×4000mm的砂滤器,滤料采用0.5~1mm的均质石英砂中国学术期刊网。设计滤速为V=8m/h,反冲洗周期为24h。反冲强度为10~12 L/(m2s),反冲洗历时10~15min。冲洗方式为先采用空气冲洗,然后气水联合冲洗环境保护论文,最后用水反冲洗,

2.3 臭氧氧化池

臭氧氧化池为钢砼结构,设2座。为了提高臭氧的溶解效率,将臭氧池设计成多格串联式,接触时间为30min。臭氧发生器为青岛国林实业有限公司生产,单台臭氧产量为600g/h,臭氧通过设在池底的刚玉微孔曝气器分散成微小气泡后进入废水中,臭氧投加量控制在(12±2)mg/L。在臭氧池后加设停留槽,减少残留的臭氧对后续BAF的生物处理效果的影响中国学术期刊网。

2.4 BAF

BAF为钢砼结构,共设8座环境保护论文,并联运行,COD容积负荷约1.0kg/(m3d),下降式运行,流速为2.0m/h,填料层高度为2m,接触时间为30min,采用水槽堰板均匀布水,底部出水。填料采用比表面积大、表面粗糙、易挂膜的陶粒填料。

BAF池能耗低、氧转移率高、抗击负荷能力强,且使用寿命长。在BAF池底装有人工反冲装置,反冲的出水回到原污水处理站调节池。

2.5主要设备

(1)砂滤器4台环境保护论文,规格为φ3000mm×4000mm;

(2)砂滤器提升泵;KL(W)80-160,6台(4用2备),流量为50m3/h,扬程为32m,功率为7.50kw;

(3)臭氧发生装置:空气源,CF-G-2-600型,2台,臭氧产量为600g/h;

(4)BAF曝气风机:BK5006型,3台(2用1备),风量为7.07m3/min环境保护论文,水柱为6m,功率为11.3kw;

(5)BAF反洗风机:BK6008型,2台(1用1备),风量为15.1m3/min,水柱为6m,功率为22.6kw;

(6)BAF反洗水泵:KL(W)125-200B,2台(1用1备),功率为22 kw;

3、工艺运行

该回用系统于2008年5月开始调试运行,调试约1个月后,对COD的去除率趋于稳定环境保护论文,业主方化验室对出水进行了为期3个月的连续监测验收,经检验出水各项指标均达到了设计要求,并开始进行部分回用于车间生产用于冷却循环水和漂洗水,提高了水的重复利用率。同时顺利通过了业主方组织的专家组验收中国学术期刊网。

4、经济效益分析

整个深度处理规模为5000m3/d,占地约1000m2,总投资为750万元,吨水运行成本为1.4元, 经过1年多的稳定运行,平均每天回用水量约为1800m3。

该公司将河水处理后回用于车间生产的用水成本为0.9元/m3,达标排污费0.26元/m3,两项合计约1.16元/m3环境保护论文,每年约节省费用1800×1.16×300=62.64万元,经济效益十分可观。

5、结论

针对苏州某印染厂印染废水的特点,以该企业污水站排水为对象,采用采用砂滤、臭氧氧化、BAF等工艺进行深度处理,出水达到企业生产用水要求,取得了较好的环境效益、经济效益和社会效益。经过1年多的运行,系统运行稳定,维护管理方便,运行效果良好,得到了环保部门的支持和推广。

参考文献

[1]郭召海,刘文保,沈骏,等.臭氧/生物滤池组合工艺深度处理印染废水[J].中国给水排水,2009,25(13):358-37.

工业废水论文篇8

论文关键词:印染废水,深度处理,回用

 

苏州某印染企业排放的废水约5000m3/d,主要包括浆料浓水、浆料清洗水、印染浓水、印染清洗水。废水具有有机污染物含量高、色度深等特点,属于难处理的工业废水。该废水经过曝气调节池 混凝沉淀池 水解酸化池 接触氧化池 沉淀池 混凝沉淀池处理后,达到了国家排放标准,但排水中仍含有大量难降解处理的大分子有机物环境保护论文,污染物浓度和色度较高,不能够满足生产用水的要求中国学术期刊网。

为响应国家提出的节约水资源、保护环境、发展循环经济、建设环境友好型社会的号召,并降低企业生产用水成本,企业兴建了一套处理规模为5000m3/d的中水回用工程,实现废水的资源利用。

1、工艺流程及特点

针对该废水的水质特点,在试验的基础上,本公司确定了以砂滤、臭氧、曝气生物滤池为主的组合工艺对其进行深度处理和回用。工艺流程见图1。

图1 废水回用处理工艺

Fig.1.Technology diagram of wastewater reuse

污水站处理后的废水直接流入回用调节池,由提升泵入石英砂过滤器以去除前段处理工序残留的微小絮凝体,然后自流流入臭氧氧化池,最后经曝气生物滤池(BAF)处理后回用。臭氧氧化池利用臭氧氧化废水中残余的难以生物降解的有机物环境保护论文,将其转化为可生物降解的有机物,从而显著提高了印染废水的可生化性[1],

2、主要构筑物设计及运行参数

2.1 回用调节池和回用水池

回用调节池和回用水池共壁合建,半地下室,钢砼结构,有效容积均为200m3。

2.2 砂滤器

采用4台外形尺寸为φ3000mm×4000mm的砂滤器,滤料采用0.5~1mm的均质石英砂中国学术期刊网。设计滤速为V=8m/h,反冲洗周期为24h。反冲强度为10~12 L/(m2s),反冲洗历时10~15min。冲洗方式为先采用空气冲洗,然后气水联合冲洗环境保护论文,最后用水反冲洗,

2.3 臭氧氧化池

臭氧氧化池为钢砼结构,设2座。为了提高臭氧的溶解效率,将臭氧池设计成多格串联式,接触时间为30min。臭氧发生器为青岛国林实业有限公司生产,单台臭氧产量为600g/h,臭氧通过设在池底的刚玉微孔曝气器分散成微小气泡后进入废水中,臭氧投加量控制在(12±2)mg/L。在臭氧池后加设停留槽,减少残留的臭氧对后续BAF的生物处理效果的影响中国学术期刊网。

2.4 BAF

BAF为钢砼结构,共设8座环境保护论文,并联运行,COD容积负荷约1.0kg/(m3d),下降式运行,流速为2.0m/h,填料层高度为2m,接触时间为30min,采用水槽堰板均匀布水,底部出水。填料采用比表面积大、表面粗糙、易挂膜的陶粒填料。

BAF池能耗低、氧转移率高、抗击负荷能力强,且使用寿命长。在BAF池底装有人工反冲装置,反冲的出水回到原污水处理站调节池。

2.5主要设备

(1)砂滤器4台环境保护论文,规格为φ3000mm×4000mm;

(2)砂滤器提升泵;KL(W)80-160,6台(4用2备),流量为50m3/h,扬程为32m,功率为7.50kw;

(3)臭氧发生装置:空气源,CF-G-2-600型,2台,臭氧产量为600g/h;

(4)BAF曝气风机:BK5006型,3台(2用1备),风量为7.07m3/min环境保护论文,水柱为6m,功率为11.3kw;

(5)BAF反洗风机:BK6008型,2台(1用1备),风量为15.1m3/min,水柱为6m,功率为22.6kw;

(6)BAF反洗水泵:KL(W)125-200B,2台(1用1备),功率为22 kw;

3、工艺运行

该回用系统于2008年5月开始调试运行,调试约1个月后,对COD的去除率趋于稳定环境保护论文,业主方化验室对出水进行了为期3个月的连续监测验收,经检验出水各项指标均达到了设计要求,并开始进行部分回用于车间生产用于冷却循环水和漂洗水,提高了水的重复利用率。同时顺利通过了业主方组织的专家组验收中国学术期刊网。

4、经济效益分析

整个深度处理规模为5000m3/d,占地约1000m2,总投资为750万元,吨水运行成本为1.4元, 经过1年多的稳定运行,平均每天回用水量约为1800m3。

该公司将河水处理后回用于车间生产的用水成本为0.9元/m3,达标排污费0.26元/m3,两项合计约1.16元/m3环境保护论文,每年约节省费用1800×1.16×300=62.64万元,经济效益十分可观。

5、结论

针对苏州某印染厂印染废水的特点,以该企业污水站排水为对象,采用采用砂滤、臭氧氧化、BAF等工艺进行深度处理,出水达到企业生产用水要求,取得了较好的环境效益、经济效益和社会效益。经过1年多的运行,系统运行稳定,维护管理方便,运行效果良好,得到了环保部门的支持和推广。

参考文献

[1]郭召海,刘文保,沈骏,等.臭氧/生物滤池组合工艺深度处理印染废水[J].中国给水排水,2009,25(13):358-37.

推荐期刊