线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

计算机大数据论文8篇

时间:2023-04-28 08:57:09

计算机大数据论文

计算机大数据论文篇1

大数据必将给教育带来巨大的改变,曾经依靠经验和灵感的授课过程,将被以数据分析为主的决策分析所代替。而计算机教学既是大数据技术的传播载体,更是最应率先应用大数据技术的课程。无论如何,大数据已经就在我们眼前,已经悄然改变着教学过程,也必将深度改变学校的计算机教育模式。

(一)计算机教学内容的变化

随着大数据技术的发展和大数据分析的成熟,大数据技术及应用必然会成为各高校重要课程。现在,美国的学校已经开设相关课程,比如,大数据分析统计基础、大数据分布式计算、大数据挖掘与机器学习等。国内一些高校也正在尝试开设大数据课程,帮助学生了解大数据,学数据分析。下一步,大数据基础、大数据分析、大数据处理的核心技术等等,必将成为计算机专业的必学内容,也会成为高校重要的基础课程。另外,计算机智能教学系统和教育测评软件将更多地使用在教学中,以记录学生的学习轨迹。而计算机专业的教师也必须熟练掌握大数据技术和分析方法。

(二)计算机教学思维的变化

原来的计算机教学基本是灌输式教学,老师教授的是计算机基础知识、C语言编程的模式、数据库的基本架构,等等。大数据和互联网的发展必然会改变这种授课方式,使知识的接受方式呈现多元化倾向。随着移动互联的发展,学生可以随时随地通过互联网更便捷的获取学习内容。而课堂上单纯的照本宣科、按部就班将不能吸引学生的注意力。因此,教师必须转变教学思维,以更多的案例和互动式教学,引导学生去寻找解决问题的办法,寻找“芝麻开门”的钥匙,只有如此才能让学生有兴趣待在课堂。同时,大数据带来的将是对海量教学案例的数据分析,让教师对计算机教学的难点及教授方法优劣有了更加清晰的认识,不必依靠教学经验去判断教学效果,完全可以驾轻就熟地进行互动教学,启发学生寻找最优解决方案,将是大数据时代下计算机教学的突出特点,这是对计算机专业教学思维带来的革命性变化。

(三)计算机教学模式的变化

目前,计算机教学主要模式是备课—教授—上机—测试,教师主要的精力放在了课前备课。而大数据技术的应用,将会让教师把更多的精力放在课后分析上,形成“备课—教授—上机—测试—数据分析—改进”的模式。在这个模式中,课后的数据分析将是整个教学过程的关键环节。通过大数据分析,可以对一个班的学生进行整体学习行为评价,可以对学生上机测试情况进行细化分析,可以对每个学生的学习习惯进行学习评估,分析学生的学习中偏好、难点以及共同点等,从而得出学习过程中的规律,改进教学方式,提高教学质量。

(四)个性化教学的深入开展

大数据技术的发展,使建立覆盖学生学习全过程、全要素的信息库成为可能,学生大量的试卷、课堂表现留存,学生的学习经历及成长轨迹,学生的家庭情况等等,都将被涵盖在大数据分析中。另外,前述的计算机智能教学系统和教育测评软件,将详细记录学生每次答题的背景、过程和结果。这些信息让教学分析变得更加容易,教师可以利用数据挖掘的关联分析和演变分析等功能,依靠学生的某些学习特征,比如答题持续时间,具体回答步骤和内容(可以细化到每次击键和每个笔划),答对的要素和答错的要素等等,在学生管理数据库中挖掘有价值的数据,并分析学生的日常行为,研究各种行为的内在联系,来据此形成针对学生个性化的教学策略,以帮助学生在学习方面取得更大的突破。

二、小结

计算机大数据论文篇2

关键词:离散数学;辐射作用;辐射体系;编译原理;数据库

中图分类号:TP3-4

离散数学是现代数学的一个重要分支,也是计算机科学与技术的理论基础,所以又称为计算机数学[1]。离散数学研究离散量的结构及其相互关系,通过离散数学的学习,不但可以掌握离散结构的描述工具和方法,为后续课程的学习创造条件,而且可以提高抽象思维和逻辑推理能力,为将来参与创新性的研究与开发工作打下坚实的基础。

离散数学课程所传授的思想、方法与工具,广泛地体现在计算机相关专业的诸领域,从科学计算到数据处理,从计算机科学理论基础到计算机应用技术,从计算机软件与理论到计算机硬件及体系结构,从人工智能到知识系统与工程,无不与离散数学密切相关。由于计算机本身是一个离散结构,它只能处理离散的或离散化了的对象及对象关系,因此,无论计算机科学理论本身,还是与计算机应用密切相关的现代科学的其它研究领域,都面临着如何对离散结构进行数学建模的问题;当然,也需要考虑如何将已建立的离散数学模型进行计算机应用的问题。

随着计算机专业研究生入学考试中专业课程统考的实行,很多高校的计算机专业对离散数学的教学投入开始缩减,减少课时,降低难度,避重就轻;学生也无法认识与理解离散数学在整个计算机专业课程体系中的重要性,致使离散数学的教学与学习在计算机专业越来越边缘化。实际上,离散数学在各学科领域,特别在计算机相关专业领域有着广泛的应用;离散数学是计算机专业许多专业基础课程,如数据结构、操作系统、编译原理、人工智能、数据库系统原理、算法设计与分析、理论计算机科学基础、软件工程等必不可少的先行课程[2]。

作为计算机相关专业数学基础的离散数学,对其它计算机专业基础课程有很强的知识辐射作用。本文致力于从一些计算机专业基础课内容中还原离散数学知识,从而体现离散数学核心内容在计算机专业系统知识中的辐射作用。通过对离散数学辐射作用的介绍,让计算机相关专业的本科生重新认识到离散数学对计算机专业系统知识学习的重要性,从而提高本科生学习离散数学的兴趣,重视自己数学理论基础的巩固和形式思维能力的培养。

1 离散数学辐射体系

离散数学是计算机及相关专业的一门核心课程,它不是一门纯数学课程,而是计算机学科的专业基础课程。离散数学是应计算机科学的发展而形成的一门交叉课程,主要内容涵盖了计算机相关专业对数学的一些基本要求。广义的离散数学主题包括集合论、数理逻辑、关系理论、图论、代数结构、数论、信息论、组合数学等,甚至包含拓扑学、运筹学的内容。有些高校将除拓扑学、运筹学等内容外的主题分为三门课程,即集合论与图论、代数结构与组合数学、数理逻辑。本文谈到的离散数学内容只涉及到数理逻辑、关系理论、集合论、图论以及代数结构。

离散数学课程与后续的计算机相关专业基础课程有着千丝万缕的联系,对其它专业基础课程的影响极其深远,在很多计算机专业课程内容中都会涉及到离散数学知识。无论计算机软件系列专业基础课程,还是计算机硬件相关基础课程,例如编译原理、数据结构、数据库、操作系统、软件工程和计算机组成原理。本文选择这六门计算机相关专业基础课程来阐述离散数学在专业系统知识中的辐射作用,如图1所示的离散数学辐射体系。

在图1中,编译原理的课程内容中就可以还原出全部的离散数学知识结构;数据库的课程内容则可还原出离散数学内容中的关系理论、代数结构、集合论与图论等内容;操作系统、软件工程、数据结构和计算机组成原路中都有离散数学知识辐射的印迹。

2 离散数学辐射作用

2.1 编译原理中的离散数学

编译原理是计算机相关专业的一门重要专业基础课[3],旨在介绍编译器构造的一般原理和基本方法,课程内容除了形式文法、有穷自动机等编译原理所涉及的基础知识外,其它内容基本上围绕处理程序设计语言的编译器应该具有的各功能模块展开,包括词法分析、语法分析、语法制导翻译、中间代码生成、存储管理、代码优化和目标代码生成。

离散数学的数理逻辑中最重要的内容就是逻辑推理,由前提事实出发,采用相应的逻辑恒等式、永真蕴涵式、推理规则、推理方法等进行不停的推导演绎,最终得到想要的结论,这是一个严格的演绎分析过程。在编译原理中,与这一演绎分析过程相对应的则是语法自上而下分析方法,即从形式文法的开始符号(前提)出发,利用文法规则产生式(永真蕴涵式),采用相应的推理方法(最左或最右推导),最终得到想要的句型或句子(结论)。在推理证明中还有一种常用的证明方法,那就是从要求证的最终结论出发,依次为其找到相应的逻辑恒等式、永真蕴涵式、推理规则等作为最终结论或中间结论的依据,即从结论出发追本溯源到前提事实,这是一种典型的归纳逻辑。在编译原理的语法分析中,自底向上的语法分析方法则是归纳过程的代表,即从要得到的句型或句子出发,利用文法产生式规则和推理方法,进行不停的归约,一直到开始符号或失败至,这是一直明显的归纳逻辑推理过程,对应最右推导。

在离散数学的关系理论中,等价关系尤为重要。而在编译原理中,处处有等价原理辐射的痕迹,例如形式文法等价、有穷自动机等价、中间代码表示形式等价等。在编译原理的内容中,有关等价的部分还包括正规文法与正则表达式的等价性、正则表达式与有穷自动机的等价性、正规文法与有穷自动机的等价性。实际上,有穷自动机等价是进行非确定有穷自动机确定化、确定有穷自动机化简的理论基础。

编译原理的很多内容中都使用了形式化技术,最典型的就是状态图刻画有穷自动机、语法树表示语法分析过程,当然在LL(1)文法FIRST集与FOLLOW集计算、算符优先文法的优先函数关系图以及基本块有向图中都体现了离散数学的集合论与图论。在编译原理全部内容中都贯穿了符号串运算,符号串与其上的运算则构成了一个完整的代数系统。

2.2 数据库中的离散数学

数据库技术和系统已经成为信息基础设施的核心技术和重要基础,数据库技术作为数据管理的最有效的手段,极大的促进了计算机应用的发展[4]。数据库的数据模型中的关系模型就经典地体现了离散数学中的关系理论,尤其是关系模型中的参照完整性。数据库概念模型描述中使用的实体-联系模型(图)更是生动地呈现了实体型之间的关系。在离散数学中,函数是一类特殊关系,而关系数据理论中的函数依赖则描述了关系模式属性(集)之间的语义关联。数据库中的查询处理与优化的理论基础则是离散数学中等价原理,查询被处理或优化前后在功能和语义上必须满足等价关系。

与关系模型紧密相连的则是关系代数,这是一类典型的代数系统。关系数据结构是其运算对象,关系操作则是定义在关系上的具体运算,如选择、投影、连接、除等,这些运算都满足封闭性,关系操作的输入与输出则都是表示关系数据的集合,因此集合运算中的并、交、差、笛卡尔积等也是关系操作的一部分。关系数据模型中常用的SQL语言则是关系代数的一种具体实现,即一种具体的代数系统。

数据库理论中被集合论与图论辐射到的内容包括:(1)一个关系数据库是关系模式(二维表)的集合;(2)一个关系模式(二维表)就是一个实体集,表中每一个就是一个具体的实体元素;(3)在概念世界中描述实体型以及实体型间关系的实体-联系图;(4)关系查询处理与优化中的查询树。

2.3 其它课程中的离散数学

数据结构是计算机程序设计的重要理论技术基础[5],也是计算机存储与组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合,因而,数据结构课程中很多具体的数据结构都是集合,如队列、栈、线性表等。数据结构除描述集合中数据元素的特性外,还要刻画集合中数据元素之间的关系,因此,一般认为,一个数据结构是由数据元素依据某种逻辑联系组织起来的,对数据元素间逻辑关系的描述称为数据的逻辑结构。数据结构课程内容中的树、二叉树以及图等结构则是离散数学图论内容的延续,基于图结构的各种算法,如最短路径、最小生成树、关键路径等,在离散数学和数据结构中都有不同深度的描述。

操作系统课程中的进程状态图为典型的图论内容;操作系统在对进程等对象进行管理时,很多内容涉及到对象间关系,如死锁中进程间时序上的先后关系;操作系统中很多算法都使用到了集合概念,如死锁的解锁算法等。离散数学的核心内容辐射到了操作系统的管理与控制中。

软件工程最终的产物是软件系统,既然是软件系统,在进行软件系统分析与设计时,不可避免要研究系统各部分之间的关系。在结构化分析方法中,有自顶而下和自底而上两类分析方法,自顶而下对应数理逻辑中的演绎逻辑,而自底而上则表示数理逻辑中的归纳逻辑。软件工程内容中同图论有关的包括软件开发模型、软件模块间关系表示、软件测试等。

计算机组成原理作为计算机专业硬件方面的基础课,在学生对计算机的认知方面有着举足轻重的作用。计算机硬件的基础组成单元“逻辑门”等以离散数学中的命题逻辑为基础;计算机处理器的结构形式化等都离不开集合论与图论的参与。实际上,在让学生认知软件与硬件的功能等价性时,则充分体现了软硬件的逻辑等价原理。

3 结论

针对离散数学课程在计算机专业课程体系中越来越边缘化的问题,本文以编译原理、数据库、数据结构、操作系统、软件工程和计算机组成原理计算机专业基础课为例,论述了离散数学在计算机专业综合知识体系中的辐射作用,从而体现离散数学在计算机专业教育中的重要性和必要性。

参考文献:

[1]傅彦,顾小丰,王庆先等.离散数学及其应用[M].北京:高等教育出版社,2007.

[2]耿素云,屈婉玲,王捍贫.离散数学教程[M].北京:北京大学出版社,2002.

[3]张素琴,吕映芝,蒋维杜等.编译原理(第二版)[M].北京:清华大学出版社,2005.

[4]王珊,萨师煊.数据库系统概论(第4版)[M].北京:高等教育出版社,2006.

[5]严蔚敏,吴伟民.数据结构(C语言版)[M].北京:清华大学出版社,2011.

作者简介:胡慧君(1976-),女,讲师,研究方向:智能信息处理;刘茂福(1977-),男,教授,研究方向:自然语言处理。

计算机大数据论文篇3

关键词:离散数学;计算机科学;人工智能

中图分类号:O158 文献标识码:A 文章编号:

离散数学是计算机科学的基础理论,也是现代数学的一大分支。离散数学将离散性的结构和相互间的关系作为主要研究对象,目前计算机学科的多个方面都已经提出并使用了离散数学理论。数学为计算机的优化和程序编写起到了积极作用。如人工智能技术、信号处理以及数字电视等媒体技术。

1离散数学应用于计算机数据结构

计算机具体问题的解决依赖于数据机构的建立。从数学角度,就是通过建立严格数字模型,然后解开此模型的过程。是通过数学知识和计算机程序编写的过程,而数学模型的构建就是数据结构研究的内容。寻求数学模型的过程就会提出操作对象,分析操作对象的过程,找到数学语言与计算机语言之间的契合点是研究的起点。一般情况下,数据结构主要分为树形结构、线性结构、图状结构、网状结构四种。数据结构可用于企业结构员工工资的发放问题,还可以解决一系列的距离问题,其具有广泛的应用。

2离散数学应用于计算机数据库

数据库技术已经成为社会认可并广泛应用的计算机技术,笛卡儿积是离散数学中的一个重要理论,它在计算机数据库的建立中起到了明显的作用。代数理论是关系数据模型建立的理论基础,在这一基础上建立了由行和列共同组成的二维表,我们称之为二元关系理论,这一理论主要可应用于表结构设计、域和域间关系、关系操作数据查询与维护功能等。

3离散数学应用于人工智能

离散数学中的逻辑推理是人工智能研究的基础理论之一,谓词逻辑语言的使用使我们了解了推理的子命题。逻辑规则将数学进行了更准确的定义,人工智能研究最初,就应用了离散数学理论的数学推理和,尤其是布尔代数。因此,在人工数学定理证明是人工智能所采用的理论,在现实设计中有很广泛的应用,如推理机的设计与应用。推理机以逻辑推理和产生式推理为主,推理机主要以数据库中的知识解决问题,是专家思想的一种体现。因此我们也可以将人工智能视为一种专家系统,是应用离散数学理论应用于数学问题分析、解决问题的方法。

4离散数学应用于计算机体系结构

离散数学主要应用于计算机体系结构设计中的指令吸引设计及其内容改进,对计算机整体性能的发挥具有良好的作用。指令系统优化方法以指令格式化为主。其主要作用是它能够以操作码与地址码共同实现以最短的位数来操作地址信息和操作信息。目前,主要应用哈夫曼的压缩概念来解决这一问题。这种方法是数学方法之一,是一种无损压缩法。哈夫曼的压缩概念主要是应用了数学中概率不均等原理,将最大概率事件以最短的位数来处理。相反,发生概率最低的事件则以最长的位数来处理,这样平均位数得以缩短。其基本原理是使用哈夫曼算法构造出哈夫曼树。利用哈夫曼树来对系统指令中的使用数据频度进行统计,将其以从小到大的顺序进行排列,将两个最小频度合并成一个大的频度并形成新的结合点,按照同样的原理降低进行从小到大的排列,按该频度大小插入其他未参与结合的频度值中指导所有频度完成结合。将节点能够向下延伸的分支分别标注“1”或“0”,沿着根结点开,沿线到达各频度结点所经过的代码序列就构成了所谓的哈夫曼编码。所得到的编码系列与指令使用概率低的指令编以长码相符合,即指令使用概率高的指令编以短码的目的。

5离散数学在计算机中的应用发展趋势

基于计算机中的离散数学理论应用逐渐广泛,数学理论应用于计算机也逐渐完善。当然,除了上文中提到的离散数学的基础作用外,它还在计算机的其他方面具有重要作用,具有发展前途。未来,计算机硬件的性能将进一步提高,而设计者的离散数学知识则是这一技术发展的基础,数学逻辑的应用将为计算机的软件设计提供理论基础。另外,数学中的关联词概念可用于计算机高低电平的信号运算通二进制数据之间的运算,这就是数学在电路设计中的作用,应用数学理论,设计过程更加清晰化、直观化。数学集合论概念主要应用于数据结构和算法分析,这一理论主要应用于软件工程及计算机数据库的设计,确保了计算机数据库的更新速度。代数结构作为数学的基本理论,对计算机甚至对多个领域具有重要作用,计算机程序设计时,要区分其可计算性和不可计算性,在这一前提下,形式语言与自动机、网络与通信理论、密码学、程序理论或形式语义学都成为数学对计算机的指导项目。最后,代数中的格与布尔理论为计算机硬件的设计以及网络通讯系统的设计提供了基础,这一数学理论应用计算机制度、计算机操作系统以及C语言程序进行编译、研究和检索,在多个领域如树的结构对于集成电路的布线、电子信息网流量上都能够具有一定的发展。人工智能也将成为未来离散数学理论应用于计算机更新、设计和发展中的重要理论。

6总结

总之,离散数学理论在计算机人工智能,数据库建立中都具有指导意义。计算机在科技领域、工业领域以及人们的生活中的应用以及普及,离散数学是以离散性的结构和相互间的关系作为主要研究对象,其在计算机中的应用帮助减少计算机漏洞并提高计算机运行效率。离散数学是计算机技术的基础,缺乏对离散数学的了解,计算机更新和发展无从谈起。无论是信息处理还是理论对于计算机科学,都有着密切的关系,因此如何离散数学理论应用于计算机发展中是本文研究的重点。

参考文献:

[1]朱家义,苗国义等.基于知识关系的离散数学教学内容设计[J].计算机教育,2010(18).

[2]王丽.浅析离散数学在计算机科学中的应用[J].数学学习与研究,2011(09).

计算机大数据论文篇4

关键词:离散数学;计算机科学;人工智能

离散数学是计算机科学的基础理论,也是现代数学的一大分支。离散数学将离散性的结构和相互间的关系作为主要研究对象,目前计算机学科的多个方面都已经提出并使用了离散数学理论。数学为计算机的优化和程序编写起到了积极作用。如人工智能技术、信号处理以及数字电视等媒体技术。

1离散数学应用于计算机数据结构

计算机具体问题的解决依赖于数据机构的建立。从数学角度,就是通过建立严格数字模型,然后解开此模型的过程。是通过数学知识和计算机程序编写的过程,而数学模型的构建就是数据结构研究的内容。寻求数学模型的过程就会提出操作对象,分析操作对象的过程,找到数学语言与计算机语言之间的契合点是研究的起点。一般情况下,数据结构主要分为树形结构、线性结构、图状结构、网状结构四种。数据结构可用于企业结构员工工资的发放问题,还可以解决一系列的距离问题,其具有广泛的应用。

2离散数学应用于计算机数据库

数据库技术已经成为社会认可并广泛应用的计算机技术,笛卡儿积是离散数学中的一个重要理论,它在计算机数据库的建立中起到了明显的作用。代数理论是关系数据模型建立的理论基础,在这一基础上建立了由行和列共同组成的二维表,我们称之为二元关系理论,这一理论主要可应用于表结构设计、域和域间关系、关系操作数据查询与维护功能等。

3离散数学应用于人工智能

离散数学中的逻辑推理是人工智能研究的基础理论之一,谓词逻辑语言的使用使我们了解了推理的子命题。逻辑规则将数学进行了更准确的定义,人工智能研究最初,就应用了离散数学理论的数学推理和,尤其是布尔代数。因此,在人工数学定理证明是人工智能所采用的理论,在现实设计中有很广泛的应用,如推理机的设计与应用。推理机以逻辑推理和产生式推理为主,推理机主要以数据库中的知识解决问题,是专家思想的一种体现。因此我们也可以将人工智能视为一种专家系统,是应用离散数学理论应用于数学问题分析、解决问题的方法。

4离散数学应用于计算机体系结构

离散数学主要应用于计算机体系结构设计中的指令吸引设计及其内容改进,对计算机整体性能的发挥具有良好的作用。指令系统优化方法以指令格式化为主。其主要作用是它能够以操作码与地址码共同实现以最短的位数来操作地址信息和操作信息。目前,主要应用哈夫曼的压缩概念来解决这一问题。这种方法是数学方法之一,是一种无损压缩法。哈夫曼的压缩概念主要是应用了数学中概率不均等原理,将最大概率事件以最短的位数来处理。相反,发生概率最低的事件则以最长的位数来处理,这样平均位数得以缩短。其基本原理是使用哈夫曼算法构造出哈夫曼树。利用哈夫曼树来对系统指令中的使用数据频度进行统计,将其以从小到大的顺序进行排列,将两个最小频度合并成一个大的频度并形成新的结合点,按照同样的原理降低进行从小到大的排列,按该频度大小插入其他未参与结合的频度值中指导所有频度完成结合。将节点能够向下延伸的分支分别标注“1”或“0”,沿着根结点开,沿线到达各频度结点所经过的代码序列就构成了所谓的哈夫曼编码。所得到的编码系列与指令使用概率低的指令编以长码相符合,即指令使用概率高的指令编以短码的目的。

5离散数学在计算机中的应用发展趋势

基于计算机中的离散数学理论应用逐渐广泛,数学理论应用于计算机也逐渐完善。当然,除了上文中提到的离散数学的基础作用外,它还在计算机的其他方面具有重要作用,具有发展前途。未来,计算机硬件的性能将进一步提高,而设计者的离散数学知识则是这一技术发展的基础,数学逻辑的应用将为计算机的软件设计提供理论基础。另外,数学中的关联词概念可用于计算机高低电平的信号运算通二进制数据之间的运算,这就是数学在电路设计中的作用,应用数学理论,设计过程更加清晰化、直观化。数学集合论概念主要应用于数据结构和算法分析,这一理论主要应用于软件工程及计算机数据库的设计,确保了计算机数据库的更新速度。代数结构作为数学的基本理论,对计算机甚至对多个领域具有重要作用,计算机程序设计时,要区分其可计算性和不可计算性,在这一前提下,形式语言与自动机、网络与通信理论、密码学、程序理论或形式语义学都成为数学对计算机的指导项目。最后,代数中的格与布尔理论为计算机硬件的设计以及网络通讯系统的设计提供了基础,这一数学理论应用计算机制度、计算机操作系统以及C语言程序进行编译、研究和检索,在多个领域如树的结构对于集成电路的布线、电子信息网流量上都能够具有一定的发展。人工智能也将成为未来离散数学理论应用于计算机更新、设计和发展中的重要理论。

6总结

总之,离散数学理论在计算机人工智能,数据库建立中都具有指导意义。计算机在科技领域、工业领域以及人们的生活中的应用以及普及,离散数学是以离散性的结构和相互间的关系作为主要研究对象,其在计算机中的应用帮助减少计算机漏洞并提高计算机运行效率。离散数学是计算机技术的基础,缺乏对离散数学的了解,计算机更新和发展无从谈起。无论是信息处理还是理论对于计算机科学,都有着密切的关系,因此如何离散数学理论应用于计算机发展中是本文研究的重点。

作者:周菲苹 单位:海南师范大学

参考文献:

[1]朱家义,苗国义等.基于知识关系的离散数学教学内容设计[J].计算机教育,2010(18).

计算机大数据论文篇5

关键词:计算机网络专业;大数据;云计算;Hadoop

中图分类号:G642.0;TP393 文献标识码:A 文章编号:2095-1302(2016)12-0-02

0 引 言

随着云计算、物联网以及“互联网+”技术的兴起,数据正以前所未有的速度在不断增长和累积,互联网大数据正在实时影响人们的工作、生活乃至社会发展。2012年 3月,美国奥巴马政府公布“大数据研发计划”,旨在提高和改进人们从海量、复杂的数据中获取知识的能力,发展收集、储存、保留、管理、分析和共享海量数据所需要的核心技术。2014年大数据高速发展,中国互联网三巨头BAT(百度、阿里、腾讯)纷纷建立大数据研究院、大数据实验室等,提供大数据专业服务,一批大数据专业分析公司应运而生。我国的开放、共享和智能的大数据时代已经来临,同时对专业人才的需求也日益增长。

大数据的发展与计算机网络密切相关,因此适时调整高职计算机网络专业方向的培养目标,可以更好的适应大数据发展要求。大数据背景下计算机网络专业学生的目标是培养具有计算机网络、大数据及云计算的专业知识,实践能力强、职业道德素养高,具备云平台的管理能力和网络软件开发能力,能够从事网络工程设计实施、网络高级管理维护、网络开发、云平台组建及管理以及大数据存储、计算及分析等岗位的高级技能型人才[1]。

1 大数据与云计算

根据维基百科的定义,大数据[2,3]是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。大数据主要具有4V特征[2],即数据体量巨大(Volume)、数据种类繁多(Variety)、流动速度快(Velocity)、价值密度低(Value)。

从技术角度上看,大数据必然无法用单台计算机处理,必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。目前应用最为广泛的大数据分布式处理平台就是Hadoop,Hadoop是由Apache基金会所开发的分布式系统基础架构,能够对大量数据进行分布式存储、分析和处理的云计算平台,已经在网络大数据领域得到了广泛运用。例如Yahoo使用4 000个节点的Hadoop集群来支持广告系统和Web搜索的研究;Facebook使用1 000个节点的集群运行Hadoop,存储日志数据,支持其上的数据分析和机器学习;百度用Hadoop处理每周200 TB的数据,进行搜索日志分析和网页数据挖掘工作;淘宝的Hadoop系统用于存储并处理电子商务交易的相关数据。

2 课程体系改革研究

2.1 课程体系现状

目前,高职院校计算机网络专业类课程大多围绕计算机网络工程和计算机网络开发两条主线,主要课程包括网络基础、路由器及交换机配置与管理、Windows网络服务器配置与管理以及动态网站开发相关技术等。这些课程内容传统,课程内容严重同质化,教学内容已不能满足大数据时代人才培养的要求,这些将直接影响学生的理论实践能力和就业机会。

大数据、互联网+、物联网及云计算技术的发展和应用给高职计算机网络专业人才培养带来了新的要求与挑战,与市场需求存在脱节现象。计算机网络专业应紧跟大数据、云计算等先进技术的步伐,不断进行专业课程的创新性研究,重视实践类课程和教材的研发,适时调整人才培养目标和专业教学计划,以期满足工作岗位的实际要求。

2.2 研究思路

计算机网络专业经过多年的发展,其课程体系比较成熟,形成了各自的特色教学。因此,本文的研究内容是对原有课程体系的补充和完善。

2.2.1 有针对性的进一步优化传统的专业职业技能课程

传统的专业职业技能课程已经比较成熟,经过了实践的考验,也已得到了学生的认可。尽管如此,还要有针对性的进一步优化,使得课程体系的理实比达到更优,提升课程教学实施的效果。

2.2.2 采用增加模式,补充完善课程体系

基于大数据和云计算技术研发新的职业技能课程,充实现有的课程体系。大数据和云计算紧密相联,因此要增加云计算和大数据的理论和实践课程。在研发课程的过程中,以岗位需求为导向,以培养技能型人才为目标,合理安排理论教学内容和课时,着重开发实践教学案例和内容,明显区别于本科课程教学设置。

2.2.3 课程体系相互作用,相互促进

网络技术是大数据、云计算技术的基础。因此计算机网络传统课程也是新研发课程的基础。新研发课程既是传统课程的有效实践,又是对传统课程的有效扩展和提升。

2.3 具体内容

由于大数据、云计算技术是基于网络的技术,因此,计算机网络专业人才培养具有先决条件。根据以上研究思路,具体方案主要包括强化现有课程体系,增加基础理论课程、完善知识体系,增加实践课程、锻炼岗位能力三个部分。

2.3.1 强化现有课程体系

针对现阶段存在的问题,学校应强化现有课程体系,使学生具有扎实的网络管理能力和一定的网络开发能力。现有的课程体系使学生具备了相关能力。熟悉ISO/OSI互联网模型,并掌握常见的互联网协议如TCP/IP、ARP、OSPF、SSL、DNS、DHCP及HTTP等。能够配置管理Windows和Linux服务器,熟悉使用常见的网络命令,具备远程网络控制学习能力。掌握程序设计语言Java,具备Windows和Linux下的程序开发能力,包括编写shell程序。能够配置交换机和路由器,具备组建局域网的能力。熟悉信息安全、系统安全及网络安全攻防技术。

2.3.2 增加基础理论课程,完善知识体系

针对人才需求,增加大数据、云计算等基础理论课程,完善知识体系。虽然大数据、云计算等课程教学的最终目的是培养实践技能,但基础理论仍非常重要,主要包括熟悉大数据的基础概念和常见技术架构;熟悉云计算原理和架构,并了解虚拟化技术如KVM;熟悉分布式系统和分布式计算原理;了解大数据、云计算的最新应用。

2.3.3 增加实践课程,锻炼岗位能力

在课程体系设置中,实践课程比例应超过理论课程。增加大数据、云计算等实践课程,锻炼学生的岗位能力。主要包括主流云平台管理软件的使用,如华为FusionSphere、VMWARE等;分布式系统管理、分布式并行计算以及Map/Reduce编程;Hadoop集群、HBase分布式数据库的构建与管理;Hadoop、HBase等案例实践与应用。

通过以上方法,使得计算机网络专业学生在原有专业基础上,掌握大数据和云计算的原理,具备云平台的管理能力,并能基于Hadoop等云计算平台实现大数据程序,对大数据进行计算分析。

2.4 Hadoop课程实施

通过以上分析可知,增加的课程内容主要是大数据、云计算相关课程,最终采用Hadoop云计算平台相关技术实现大数据的存储、计算与分析。通过理论教学,使得学生深入了解掌握大数据技术、云计算原理及Hadoop架构。通过实践教学,使得学生能够掌握Hadoop集群的配置与管理,并且能够基于Hadoop实现大数据程序设计,使得学生具备基本的大数据处理能力。因此Hadoop课程是核心课程。

2.4.1 Hadoop原理

Hadoop是把大数据集分发到计算集群中各个节点上共同处理以实现大数据的快速处理。用户无需了解分布式底层细节就可开发分布式程序,充分利用集群的威力进行高速运算和存储。Hadoop最核心的设计是HDFS文件系统和MapReduce编程模型。HDFS为海量数据提供存储,而MapReduce则为海量数据提供了计算。如图1所示,Hadoop运行的基本过程如下[4,5]:

(1)客户端可以将文件上传至HDFS文件系统,NameNode则会根据文件大小和Block大小配置将文件的物理属性分成若干个Block文件块,并分布式存储至DataNode数据节点,同时将块存储信息保存至NameNode节点,以方便文件进行资源管理。

(2)文件上传完成后,客户端提交具体Job任务至Hadoop集群,各DataNode节点根据任务要求可以读取相应的文件Split,并完成Map和Reduce计算任务,将结果作为输出文件传输至HDFS文件系统。

(3)在任务执行过程中,可以通过JobTracker、TaskTracker及ResourceManager监控任务的执行情况和资源消耗信息等。

2.4.2 Hadoop教学平台配置与部署

Hadoop教学平台需配置、部署一些部件。基于现有实验室的计算机和网络环境,网络服务器系统采用Linux Ubuntu,构建Hadoop集群网络。基于Cloudera Hadoop开源框架实现Hadoop教学平台。

2.4.3 Hadoop分布式文件存储及大数据处理实现

Hadoop分布式文件存储及大数据处理实现包括:HDFS文件系统的使用;HBase的使用;MapReducer程序实现;大数据案例分析与实现。

3 结 语

本文分析了大数据背景下高职计算机网络专业的培养目标和课程体系的改革思路,在优化计算机网络专业传统课程的基础上,增加大数据、云计算等相关课程,并以Hadoop课程的具体教学实施来培养学生的实践能力,使得学生能够紧跟大数据、云计算的技术步伐,满足工作岗位的要求。

参考文献

[1]赵伟艇,夏栋梁.基于岗位能力培养的云计算课程群知识体系构建研究[J].电脑知识与技术,2016,12(2):167-169.

[2]陶雪娇,胡晓峰,刘洋.大数据研究综述[J].系统仿真学报,2013(S1):142-146.

[3]孟小峰,慈祥.大数据管理概念技术与挑战[J].计算机研究与发展,2013,50(1):146-169.

[4]王铮.基于Hadoop的分布式系统研究与应用[D].长春:吉林大学,2014.

[5]陈吉荣,乐嘉锦.基于Hadoop生态系统的大数据解决方案综述[J].计算机工程与科学,2013,35(10):25-35.

[6]曾文英,吴积军,曾文权,等.基于云计算的IT课程体系改革[J].计算机教育,2014(17):40-44.

[7]鲍爱华,陈卫卫,刘鹏,等.云计算课程内容体系的建设与实践[J].计算机工程与科学,2014,36(A02):42-45.

计算机大数据论文篇6

关键词:计算机思维;数据结构;实践教学

中图分类号:G642 文献标识码:A 文章编号:1009-3044(2016)10-0152-02

1 计算思维

2006年3月,美国卡内基・梅隆大学的周以真教授在美国计算机权威杂志ACM上发表并定义了计算思维(Computational Thinking)。周教授指出,计算思维是运用计算机科学的基础概念进行问题求解、系统设计,以及人类行为理解的涵盖计算机科学之广度的一系列思维活动。[1]计算思维的提出,引起了美国教育界以及科学界的广泛关注,直接促成了“大学计算教育振兴的途径”计划, 以及更为具体的以“计算思维为核心的课程改革”。

计算思维的重要作用同样引起了国内学者和计算机教育专家的关注,国防科技大学的朱亚宗教授站在人文历史的基础之上,将计算思维归类为三大科学思维(实验思维、理论思维、计算思维)之一。[2] 2010年,“九校联盟(C9)计算机基础课程研讨会”上,了《九校联盟(C9)计算机基础教学发展战略联合声明》,确定了以计算思维为核心的计算机基础课程的教学改革。随后,一些计算机教育者开始在“计算机导论”、“程序设计”、“离散数学”等课程的教学中广泛探讨计算思维的应用和实践。

2 《数据结构》课程教学中存在的问题

2.1先导课程的基础不够扎实

《C/C++语言程序设计》、《离散数学》等课程是《数据结构》学习的先导课程,对程序设计基础的掌握程度会直接影响学生对《数据结构》理论知识的学习和实验实践训练。目前计算机专业的教学计划中通常会把《C/C++语言程序设计》安排在大学第一学期,与《数据结构》课程开设距离1-2个学期,这造成了学生在学习《数据结构》时对《C/C++语言程序设计》的前导知识已经淡忘模糊,指针、结构体问题甚至会出现知识空白;同时,《C/C++语言程序设计》也是实践性较强的课程,前期学习往往实验训练不足,学生动手能力普遍较差,这些情况对《数据结构》课程的实践教学带来很大困难。

2.2课程知识理论性抽象性强

《数据结构》课程主要讨论现实世界中数据的各种逻辑结构,在计算机中的存储结构以及进行各种非数值运算的算法。目的是使学生掌握数据组织、存储和处理的常用方法以及算法设计的基本方法。《数据结构》是许多后续专业课程的基础,课程本身涉及的概念多、内容广,理论性抽象性比较强,学生在学习理解上普遍存在一定的困难。

2.3课程实践环节薄弱

实践是《数据结构》课程的重要环节,培养学生设计开发复杂高效程序的技能是课程的教学要求之一。具体内容包括:掌握数据组织、存储和处理的常用方法;对经典算法进行编码调试;具备编写较大型程序的能力。实际教学中,课时不足尤其是实验课时不足,造成了课程的实践环节较为薄弱,学生在课程学习后往往反映:“课堂内容能够掌握,但上机编程时困难重重无从下手”。

3 计算思维与数据结构

周以真教授将计算思维的特征总结为:概念化,不是程序化;根本的,不是刻板的技能;是人的,不是计算机的思维方式;是数学和工程思维的互补与融合;是思想,不是人造物;面向所有人,所有地方。[3]同时,周教授也阐述了几种具体的计算思维方法:通过约简、嵌入、转化、仿真,把困难的问题阐释成知道问题怎样解决;利用递归思维、并行处理,把代码译成数据,又把数据译成代码;利用抽象和分解来控制庞杂的任务或巨大复杂系统;基于关注分离的方法(SoC 方法);按照预防、保护及通过冗余、容错、纠错的方式,从最坏情况进行系统的恢复;利用启发式推理寻求解答;利用海量数据来加快计算等。这些阐述不仅扩散了计算思维的原理,也为我们提供了将来的发展和培养方向。

在国内,桂林电子科技大学董荣胜教授以“思想与方法”替代“基础概念”更改了周以真教授的定义。董教授指出,“计算思维”是从学科思维层面直接讨论学科的根本问题与学科的思维方式,而“计算机方法论”则是从方法论的角度讨论学科的根本问题和学科形态,二者的研究互补性很强,相互促进。

计算思维的核心之一是“抽象”,要求在多个层次上抽象进行思维,进而实现问题求解,这个过程具体到一门课程,最适合的内容就是“数据结构和算法描述”。《数据结构》是计算机专业非常重要的一门专业基础课,主要研究数据之间的逻辑结构、存储结构和对数据的各种基本操作。在《数据结构》的学习中,我们经历这样一种过程:应用数据抽象,建立数据对象模型;应用问题抽象,建立问题的数学模型;应用计算机,实现问题求解的算法。这与计算思维的本质特征“抽象”和“自动化”是相契合的,所以在《数据结构》课程中贯穿计算思维的思想,构建一个基于计算思维的《数据结构》教学体系是可行的,也符合董荣胜教授提出的计算思维与计算机方法论相互补充相互促进。[4]

4 结合计算思维训练的《数据结构》教学改革实例

在实际教学中我们发现,大多计算机专业的学生在完成了一门或若干门课程的学习后获得的是零散的概念,对学科知识难以做到系统的理解,甚至直到毕业仍无法建立起利用计算机求解问题的思路。针对这个问题我们曾对部分大三、大四年级学生做过调查,在问到“影响你专业课学习的主要原因是什么”时,82.5%的学生选择了“自己对计算机学科的核心问题,学科涉及的数学方法、系统方法的认识和掌握”,其他学生选择了“自己的动手能力”。计算思维的提出正是要求我们在教学中重视学科所蕴含的思想和方法,为计算机专业课的教学改革提供了思路。

计算机大数据论文篇7

关键词:计算机;数据库;信息管理;应用

信息时代飞速前行,因而单位或个人都有很多数据进行系统化管理,故而数据库管理技术成为比较常用的技术之一。该技术有广泛的应用前景,能够使用在经济、政治和文化领域内,在发展中给人们生活带来诸多便利。因此,需高度重视计算机数据库的信息管理应用要素,不仅将数据库看成是一项管理技术,更要将其看成是一种管理方法,通过应用该技术能有效提升工作效率,让工作更高效和准确。

1计算机数据库技术特点

1.1组织性

数据库的构成不是杂乱无序,而是有一定内在联系,相同数据库之间的文件有着内在的联系,并按照一定的关系形成组织结构。故而从总体角度考虑,认识同一个集合中的数据都有着相似的特点。

1.2共享性

共享作为数据库的主要特征之一,更是数据库建立的关键性要素,如果数据库不具备共享性能,那么数据库存在的价值将会大大打折[1]。具有共享性能的数据库,不但能够为单位内的各个部门以及个体提供数据共享资源,并且这些资源可以被不同的单位、地区与个体共同享用。

1.3独立性

数据库的独立性主要涉及两大方面:一方面是逻辑独立性和物理独立性,另一方面是逻辑独立性让数据库的总体结构产生质的变化,能够变革数据库的逻辑关系,其中包括于数据定义的修改、新数据类型变化、数据之间的逻辑变更,但是这些都要在修改原有数据程序的基础上进行;另外,物理逻辑性主要是指数据存储结构产生的变化状况。例如,更换物理的存储设备、位置、方法等,故此数据的物理结构变化对数据的逻辑变化影响不大,更不会引发应用程序的变革。

2计算机数据技术应用于信息管理中的现状

2.1应用范围广

1)计算机技术结合数据库技术能够有较好的生命力,并能迎合广泛的市场前景。2)在计算机应用范围逐步扩大的情况下,目前已经涉及到多个行业包括与工业、农业、商业等相关专业,在相关管理信息不能及时更新的前提下,信息管理效率将无从提升。3)应用数据库技术的优势是,为很多行业提供相关的信息技术保障,带动行业的生产发展,提升行业的管理水平。4)由于计算机数据库的适用性较好,故而在实际应用的过程中能提出较多的优势,进而得到同行业的认同,这将有助于计算机数据库的技术与实践理论提升。

2.2发展态势强劲

1)计算机数据库发展的优劣与否,能在实际使用中展现出来,由于计算数据库的应用效果能够体现出数据管理的重要性,故而判定数据库的优劣对信息技术有着至关重要的影响。2)数据库技术的发展与数据技术的发展有着极为密切的联系,数据库技术从产生到发展已经历十几年的发展历程,可以分为四个主要发展阶段,初期是网状数据库,然后提升为层次数据库,最后变化为关系数据库,目前发展为对象数据库[2]。3)数据库的发展历经不断实践和成熟磨练阶段,在发展逐步成熟起来,并且发展过程中适用性以及可操作性较强,因而这种适用范围更大,更具快捷和可操作性,并能为数据的后期发展提供更为强劲的动力。4)结合当前的发展状况获悉,发展中关系数据库与对象数据库适用最多。

3数据库技术在信息系统中应用的改进措施

3.1提升数据库的安全系统性

计算机数据库的系统安全技术与计算机安全、计算机数据库技术有着紧密联系,当前部分用户在使用时出现安全意识薄弱的情况,故而需要通过安全系统技术的建立帮助用户做好信息把关。加之部分用户在日常使用中不重视网络安全问题,导致安全措施不能真正的落实下去,故而发生很多安全事件。就此,数据库的安全性是数据库系统的生命而存在,如果数据库系统安全那么存储在其中的数据信息也将安全,能保有内部数据的机密性。数据库技术的应用涉及到很多重要的商业利益,因而需加大数据库安全性能,并将数据安全看成计算机安全技术的关键构成部分。但是数据库安全薄弱的环节主要是在数据共享方面,因而关注的重点则集中在数据共享保障上,为保数据库的安全就需要确保数据库安全技术,并解决其中可能出现的泄密环节,这是安全技术推行的重要解决难点。

3.2数据系统理论实践结合

计算机数据系统的理论需伴随着计算机技术、数据库原理等方面的发展而发展,因而在发展中需要理论与实际相结合,目前计算机系统理论更新换代较快,故而可以将研究的最新成果应用在实践指导上面,进而提升实践的科学性能[3]。另外计算机数据库系统理论研究要将实践看成研究的基础,理论只有通过应用才能体现其价值,很多理论研究在理论上有可行性,但是如果进行实际应用则会有很多脱节的环节,因而应结合理论做好实践,让理论与实践相结合,最终提升计算机数据库系统理论研究的针对性。若计算机数据系统有较好的适用性,那么也就决定计算机数据库未来将有良好的发展前景,并且在研究中不断的努力,力求让数据库更快成长,以期计算机数据系统在将来有更好地发展,安全高效地应用在信息管理系统内。

4结束语

伴随着计算机数据库技术以及信息管理技术的前行和发展,计算机数据库将在信息管理中有着广泛地应用,故而在实际工作中,应加强关于计算机数据库与信息管理结合的探究,让两者之间相互配合相辅相成,利用两者的优势,让理论结合实践,在创新发展中,满足两者的应用标准,实现计算机数据库技术的合理应用。

作者:祁贝贝 单位:新乡职业技术学院

参考文献:

[1]钱平生.试析计算机数据库技术在信息管理中的应用分析[J].电脑知识与技术,2015(9):3-5.

计算机大数据论文篇8

【关键词】 计算机 数据挖掘技术 开发

引言:计算机数据挖掘技术是基于计算机原有的功能基础之上,融入了一些统计学理论,使人们可以利用数据挖掘技术在众多的计算机系统内部的信息中抓取自己需要的信息和数据。计算机数据挖掘技术的出现极大的促进了社会整体的进步,引领了社会各个领域内的数据量潮流,人们要想在无限的数据中采集有用信息,就必须深入计算机数据挖掘技术的开发研究。

一、计算机数据挖掘技术开发流程

1.1明确数据挖掘目的

由于数据挖掘技术的功能是多种多样的,所以在开发具体的计算机数据挖掘技术过程中需要根据自身需要明确数据挖掘目的,进而选择对应数据库。因为在开发过程中,不同的数据挖掘目标需要依靠不同的挖掘技术数据算法,如果目的不明很容易造成最终开发结果的偏差[1]。

1.2数据选择和预处理

明确数据挖掘目标、数据库后还要对所持有的数据进行选择和预处理,数据选择是要将数据中的部分信息纳入数据挖掘研究范围内,预处理是将这些数据中的错误信息进行删除和修正,确保列下有用信息。

1.3数据挖掘

数据挖掘过程中要有两个步骤,其一是根据挖掘目标确定接下来要利用的开发技术和采用的算法,其二是在确定了挖掘技术和数据算法后构建出数学模型,以此来推动挖掘技术的开发。

1.4评估结果

评估结果的最大作用就是对开发出的数据挖掘结果进行科学评估,对数据挖掘技术的开发成果进行检测和验证。如果数据挖掘结果不能够达到数据挖掘开发目的要求,就要及时进行修正,如果数据开发结果符合数据开发目的要求,那么就可以将其投入到实践应用之中[2]。

二、计算机数据挖掘技术开发

1、可视化技术开发。要想得到有效的信息,就需要从计算机系统中获得的信息入手,但是当前的网络信息中存在不少的隐性信息,这些信息的获得就要依靠计算机数据挖掘技术。采用计算机挖掘技术可以有效的抓取隐性信息的某些特征,当利用散点图的方式将这些隐性信息表现出来。所以可视化技术是计算机数据挖掘技术开发项目中的一个重点。

2、联机分析处理。网络是复杂的,其中的网络信息和数据更是十分的庞杂,要想快速、准确的抓取到自己想要的信息,需要依靠联机分析出不同地域和时段的多维数据,联机分析处理方式需要依靠用户的配合。在处理多维数据时,需要所有计算机用户自行的使用或者筛选出分析算法,利用这些分析算法对数据做处理,这样对探索数据也有巨大的推动作用。

3、决策树。计算机数据挖掘技术的开发中需要对决策树进行规则化建立,决策树是一项重要的开发项目,因为决策树的作用是发挥预测和分类的功能,对所处理的数据信息进行具体的预测和分类。目前开发的决策树算法已经有很多种,主要有SLIQ、SPRINT、ID3、C4.5等,SLIQ算法具备连续性属性,还可以对数据做出具体的分类,SPRINT算法与SLIQ算法有同样的功能属性,并且这两种算法可以通过大型训练集对决策时做出归纳[3]。

4、计算机神经网络。计算机数据挖掘技术在开发之中借助了医学神经系统的研究结果,将人体神经元研究脉络通过技术处理形成了计算机网络神经的研究,并且经过一系列的深入探索,目前已经取得了重大的成果。计算机中研发出的神经网络是安全输入、输出和处理单元三种类型进行规划的,这三个层面代表了计算机神经网络系统,当前的开发结果中显示,可以利用计算机神经网络技术实现数据的调整、计算和整理。

5、遗传算法。计算机数据挖掘技术的开发中借鉴了许多其他学科领域中的研究方向和理论,在自然学科中,生物基因可以通过遗传中的不同变化促进后代的自我优化,利用这种思想理论,在计算机数据挖掘技术的开发中也可以通过对不同模型进行组合、演变来创新开发出新的数据算法。

结束语:计算机数据挖掘技术属于当前社会中最重要的分析工具之一,数据挖掘技术已经被各个领域广泛的应用,并且其功能得到验证,极大的促进了社会行业的快速发展。随着科技水平的日益提升,相信计算机数据挖掘技术将会得到更多方面的创新研究和开发,给社会带来更大的促进作用。

参 考 文 献

[1]夏天维. 计算机数据挖掘技术的开发及其应用探究[A]. 《Q策与信息》杂志社、北京大学经济管理学院.“决策论坛――管理科学与工程研究学术研讨会”论文集(下)[C].《决策与信息》杂志社、北京大学经济管理学院:,2016:1.

推荐期刊