线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

电磁波的实际应用8篇

时间:2023-05-28 08:21:23

电磁波的实际应用

电磁波的实际应用篇1

“导学案”的精髓贵在一个“导”字,是通过引导学生,让学生自主进行学习探究,发现问题、解决问题,进而实现高效课堂培养能力的目的。所以在设计这一节课时,我更注重引导学生,让他们能从我所给出的指引中动脑动手,获得知识。为此,我设计了三活动,一个测试,依次从电磁波是什么、电磁波的应用以及改变世界的信息技术三个方面来构成核心,让学生在活动的轻松愉快的氛围中“动有所得”,最后的小测试来加深理解、巩固知识。

一、学习目标

1.知道光是一种电磁波。了解电磁波在信息传播中的作用。

2.记住电磁波在真空中的传播速度。知道波长、频率和波速的关系并会进行简单的计算。

3.电磁波的应用。

4.初步了解现代通信网络。

二、重点难点分析

1.波长、频率和波速的关系。

2.电磁波的应用。

三、课堂设计

活动(一)神奇的电磁波

做一做 事先准备好了五套实验用具,将全班学生分成五组,指导他们做了如下实验:打开收音机的开关,转动选台的旋钮,调到一个没有电台的位置,并开大音量。将一节干电池的正极与一把钢锉良好接触,负极连一根导线,用手拿着导线的另一头,使它在锉面上滑动,让学生观察现象并分组讨论产生这一现象的原因。

读一读 在活动之后,指导学生阅读教材,并明确如下两个内容。

1.当导体中的电流迅速发生变化或通一高频率的交变电流时,导体就会向四周空间发射电磁波。只有频率很高的电流产生的电磁波才能传得很远。电磁波的国际单位是赫兹(Hz),简称赫,常用频率单位还有千赫(kHz)和兆赫(MHz)。其换算关系:1kHz=103Hz;1MHz=106Hz。

2.电磁波可以在真空中传播,光也是一种电磁波。真空中电磁波的波速为c,在空气中与真空中电磁波的波速非常接近,c=3×108m/s。相邻两个波峰(或波谷)的距离,叫做波长。电磁波的波速c等于波长和频率f的乘积:c=λf。在空气或真空中,各种频率的电磁波的波速是相同的,所以,频率越高的电磁波,它的波长就越短。

议一议 在获得了如上知识后,再结合“做一做”的内容探讨论如下的物理现象:手机放在电视机旁边,当有电话来时,电视机的画面会出现一些“雪花”,这是为什么?并且长时间用手机连续通话,会出现头晕的情况,这是为什么?

活动(二)电磁波的应用

由于电磁波比较抽象,我特意做了课件,主要涉及军事应用,如探测飞机、导弹用的雷达;民航应用,如GPS导航;天文应用,如探测遥远星球;气象应用,如探测台风、雷雨等。通过课件中设计的一些小问题,引导学生对摸不到看不见的电磁波有一定的形象认识。此活动的另一个主要目的就是激发学生的学习兴趣。

活动(三)改变世界的信息技术

引导学生阅读如下内容,更深入了解电磁波的应用对社会产生的巨大影响。

1.卫星通信是利用人造地球卫星作为中继站,转发无线电波,进行通信的。通信卫星大多是相对地球“静止”的同步卫星。一般只要有三颗互成120°的同步卫星,就覆盖了几乎全部地球表面,可以实现全球通信。卫星通信具有传输距离远、覆盖区域大、灵活、可靠、不受地理环境条件限制等独特优点。全球卫星定位系统(GPS)就是卫星通信的实际应用。

2.光缆通信是应用光的传播特性,把光能限制在光纤内部,用光信号取代传统通信方式中的电信号,从而实现信息的传递。光纤具有传输容量大、传输距离长、高抗干扰等特性。

3.移动通信由电磁波传递信息,可以在信号覆盖的任何地方使用。当前应用最为普遍的为“蜂窝系统”。

四、随堂测试

1.电磁波在真空中的传播速度是__________;电磁波的波长越长其频率就越______________;电磁波___________(填“能”或“不能”)在空气中传播。

2.2012年7月28日03时12分(北京时间),伦敦奥运会开幕,媒体通过通讯卫星用______波把奥运会的信息及时传到世界各地。若中央电视台第一套节目的频率为52.5MHz(1MHz=106Hz),则中央电视台第一套节目的波长为________m。

3.以下与电磁波应用无关的是()

A.手机通信 B.微波炉加热食物

C.雷达侦查 D.听诊器了解病情

4.关于电磁波和现代通信,下列说法正确的是()

A.光纤通信传输的信息量很大,主要用于无线电广播

B.移动电话靠电磁波传递信息

C.电磁波的波长越大,频率越高

D.电磁波的应用对人类有利无害

5.关于电磁波和现代通信,下列叙述不正确的是()

A.光是一种电磁波,电磁波可以在真空中传播

B.电磁波的频率越高,在空气中传播的速度就越大

C.同步通信卫星绕地球转动的周期跟地球自转的周期相同

电磁波的实际应用篇2

关键词:高中物理;生活;电磁学;兴趣

引言:

相较于初中,高中学习时间紧张,学习任务繁重。很多学生对知识用处的认识发生了改变,认为所学知识仅仅是用来参加考试的。而物理的电磁学又具有很强的逻辑性,如果不结合实际很难理解。通过利用生活中的材料学习电磁学,不仅能让学生对电磁学产生兴趣,更能让他们明白知识来源于生活,并将运用于生活。有助于他们养成从实际出发,从兴趣出发的好习惯去学习的好习惯。

一、从书本上了解电磁学

(一)什么是电磁学

电磁学以电流的磁效应和变化的磁场电效应两个实验为基础,融合了电学和磁学的知识的学科。高中阶段主要研究变化的电流产出磁场、电荷以及磁场规律等。

(二)电磁学在生活中的运用及意义

电磁学已经运用于生活的方方面面,电磁学在改善着我们的生活,提高了我们的生活质量,提高了我们的工作效率。深入了解生活中的电磁学对我们的生活是非常有必要的。

二、通过对生活中遇到的问题,培养对电磁学学习的兴趣

只有对电磁学从心理上产生兴趣并拥有想要了解的强烈愿望,我们才会积极的投入到电磁学的学习中去。我们或许认为电磁学可能离我们的生活很远,生活中很难遇到与此相关的实际问题,然而我就遇到了。

一次家里的微波炉坏了,妈妈说要找人来修,我脑中瞬间闪过这样一个想法:微波炉的知识我好像在高中的知识里学过,不就是用微波来加热食物吗。我看一下说明书,没准就能把它修好了。于是我便拦住妈妈,说我能修。妈妈犹豫了一下便同意了。当我拿到说明书发现自己完全看不懂时,才发现自己把话说大了。还有一会,我想用我家的砂锅给父母煲个鸡汤喝,却发现这个电磁炉就是不能用,以为是电磁炉坏了。后来这件事被爸爸知道了,爸爸狠狠的嘲笑了我这个高中生的没文化和没常识,居然不知道电磁炉只能用来加热铁制炊具。

通过在生活中出的糗,我深感自己所学知识之浅薄,离实际的应用还差的远,分数考的高有什么用,还不就是个书呆子而已。因而我开始对生活中的电磁学产生了浓厚兴趣,便开始通过对生活中的材料来分析理解来学习电磁学。

三、通过分析生活中的实际运用学习电磁学

(一)电磁炉

通过观察我们发现电磁炉的表面被一块耐热陶瓷板所覆盖,耐热陶瓷板下方是线圈。根据生活经验我们发现电磁炉只能用来加热金属炊具,陶瓷炉和石锅等都不能用电磁炉来加热,根据所学知识分析当交变电流通过耐热陶瓷板底部的线圈时,由于交变电流的方向和大小随着时间的变化也在发生着变化,导致通过线圈的磁通量不断发生着改变,因而线圈周围产生的磁场强度不断改变,这时当金属锅身靠近磁场时金属锅身内产生涡流从而发热达到烹饪食物的效果。如此看来电磁炉为什么不能加热非金属类的炊具的原因就显而易见了。根据我们的分析我们可以得知电磁炉只能用于加热金属炊具,只能在交变电流中使用。

(二)微波炉

和电磁炉一样微波炉也是家庭生活中常见的厨具,给我们的生活带来了许许多多的便利。通过高中的课本我们仅仅只能知道微波炉是依靠产生微波来加热食物的电器,要想完全弄懂微波炉的工作原理依靠高中的知识是完全不够的,这恰恰证明仅仅依靠课本的知识是完全不能满足我们的好奇心的,可见好奇心这个老师比起课本还是要强很多。通过手机查阅资料,我们大概可以这样简单理解:微波炉中存在一个叫磁控管的东西,磁控管中有一个永磁体能够产生磁场,同时微波炉中存在一个几千伏的高电压和另一个灯丝的电压。灯丝在受热时,金属分子中电子脱离原子的控制成为离散的电子,在永磁体产生的强磁场和微波炉中高压的作用下,电子被送入磁控管中最终经过一系列的复杂原理微波就产生了【1】。微波是一种电磁波,均匀集中的微波持续作用于食物是,食物内的分子会发生振荡,宏观上的表现就是食物会熟。

(三)磁悬浮列车

一开始我想:相对于微波炉复杂的原理,大致了解磁悬浮列车的原理应该会简单的多吧。当我去实际了解是我发现并不是我想的那样,还真是应了那句古话:纸上得来终觉浅,绝知此事要躬行。就我们高中所学知识来看根据同名磁极相互排斥,轨道与列车相互排斥,列车因而悬浮在轨道上【2】。然后根据实际了解磁悬浮列车同样也利用了异名磁极相互吸引的原理,在磁悬浮列车的车体底部和两侧转向上的顶部均按有磁体,配合安装在轨道上方和升臂下方反作用板和感应钢板,使得列车与轨道间的距离维持在十至十五毫米之间。相比于普通列车磁悬浮列车消除了列车与轨道间的摩擦力,让磁悬浮列车的速度更快。

四、结束语

电磁学作为一门以电学与磁学为基础的理论性极强的学科,如果只是学习课本上浅显的知识是很难真正在实际中有所利用的【3】。高中生要从自己的长期发展出发,从生活中遇到的問题出发,培养自己的学习电磁学的兴趣,并试着去了解电磁学在生活中的运用,弄清楚这些运用的原理。这样我们不仅能深入理解那些复杂的理论做到学以致用,而且也可以让我们从容的面对考试,不再为物理学这个难点感到苦恼。

参考文献: 

[1]刘家鑫. 高中电磁学在生活中的实际运用[J]. 教育现代化-知网, 2017(15):0181-0181. 

[2]贵新旸. 高中电学在电路发展中的应用[J]. 数理化解题研究, 2017(25):59-60. 

电磁波的实际应用篇3

关键词:发电机、励磁电流、温升

引言

在发电机的实际运行中,会产生各种原因导致励磁电流下降。通过分析,我们认为该发电机的励磁部分工作正常。

1. 运行情况介绍

该型号汽轮发电机(以下简称发电机)为隐极式无刷励磁三相四极交流同步汽轮发电机,发电机设计为封闭循环通风系统,适用于热电站或轻工、化工自备热电站,也可作为小型电站发电设备。发电机主要由同步发电机、交流励磁机、永磁副励磁机和励磁调节柜组成。本发电机的励磁电流由交流励磁机经旋转整流器全波整流后供给。而交流励磁机的励磁电流由永磁副励磁机发出的电流经励磁调节柜调整后供给。

该机组设计功率为6000kW,功率因数为0.8,励磁电流值为346.1A,励磁机端励磁电流为7.07A。机组稳定运行时间下的运转功率为3500kW,运行功率因数为0.94,监测到的励磁机励磁电流值为2.8A,即实际运行的励磁机电流值不到设计值的一半。

2. 初步原因分析

经过分析,我们确定造成励磁电流值过小的原因有以下几个方面:

2.1发电机实际运行功率以及功率因数均未达到额定值

同步发电机其电枢绕组与三相电网相连。发电机的额定励磁电流值是通过对发电机的额定功率 以及额定功率因数 进行计算而得出的。其中额定功率因数 和额定功率 有如下关系: 。发电机实际运行功率比额定功率低,则会反应在额定输出电流上,当额定输出电流减小时,则发电机定子绕组中的电枢反应也会相应减小。当发电机电枢绕组中的电枢反应减小,发电机励磁绕组所需的励磁电流值也将进一步减小。同时功率因数比设计值偏高,导致实际输出的无功功率变小,也会进一步降低主机所需的励磁。

2.2发电机转子温升

发电机的实际运行功率以及功率因数的偏低,导致励磁电流减小。在同一台发电机中,励磁绕组的电流值减小时,绕组内的电流密度也相应地降低,导致励磁绕组的发热量下降,这一部分的发热,反应在发电机损耗中就是励磁损耗。同时发电机额定输出电流值的降低,电枢绕组内的电密也相应下降,减少了电枢绕组的发热量。当定转子的发热量都在下降的时候,整个发电机的温升会显著下降。在同样转速及通风的情况下,发电机主励磁绕组的温升实际值将比设计值更低。主励磁线圈的温升降低的情况下,其励磁绕组的直流电阻也会比在额定功率运行情况下的电阻值低,当励磁电流值一定的情况下,将进一步降低励磁电压。

2.3励磁机整流桥整流值

发电机的励磁电流是由励磁机发出的三相交流电,经旋转整流硅二极管进行三相全波整流后得到的单相脉动性直流电。整流电路分为半波整流电路、全波整流电路和桥式整流三种。整流电路是利用二极管的单相导电特性,其导通电压由输入交流电压提供。

通过电力电子学的相关知识,可以了解到不同型式的整流桥会对励磁部分产生影响。整流部分大致可分为二极管整流桥和相控整流器。本机组采用的是硅整流二极管三相全波整流。

2.4励磁机部分温升的影响

实际运行中,我们监测到冷却器两端出风口的温升不同。因为机组在设计的过程中,励磁机和永磁机部分的通风和主机的通风系统设计成为一体式的,励磁机和永磁机通过离心式风扇将风排出并进入主机的风路之中。励磁机和永磁机部分的发热进入一端的通风系统,造成通风系统内的热量不均衡,从而导致发电机冷却器两端出风口的温升不相等。

3. 计算校核过程

3.1按发电机实际运行功率对励磁电流进行计算

运用电磁计算程序,带入实际运行功率3500kW以及实际功率因数0.94,我们计算得到如下的结果:额定励磁电流:218.9 A 额定励磁电压:66.87V

3.2按计算出的温升值校正励磁电流值

在程序计算中,我们导出发电机转子线圈的实际温升值:

我们可以从程序中得出转子绕组的温升为:47.7℃,环境温度约为32℃。

在计算额定励磁电压的时候,采用的计算公式: ,其中 为转子绕组在130℃时候的电阻值,计算出的转子绕组的温度约为80℃。根据温度对电阻的影响,我们采用如下公式将 折算成 ,即 ,可计算出额定的励磁电压值为: V。由此可见,运行的不饱和会对励磁电压造成很大的影响。

3.3不同整流条件下的励磁计算

在全波整流和半波整流下,不同整流管的选用也会对发电机的励磁电压造成影响。其中半波整流电路,整流后的直流电压只有原有交流电压的0.45倍,而全波整流电路,整流后的直流电压为原有交流电压的0.9倍,若带有滤波电容的全波整流桥式电路而言,输出的直流电压值是交流电压的1.414倍。现在的整流基本都是采用全波桥式整流电路为主。

3.4励磁部分温升的影响计算

在励磁机的计算过程中,为了避免繁琐的程序,我们采用了一个固定温升下的励磁电流值。这同样将公式里面的温升带入实际计算中的温升时,发现励磁机的励磁电压降低了很多。在计算程序中,引用的计算公式未曾考虑到实际的温升情况,同主机励磁电流的计算一样,选用了一个恒定的温升作为计算值。在对计算公式仅进行重新核算的时候,我们发现在计算励磁电压的时候,选用的计算公式为: ,而励磁机侧的温升,一般相对来说都比较低。我们带入前面取得的结果数据:额定励磁电流值218.9A以及额定励磁电压值57.63V,然后可以算出,发电机位于额定点时的励磁电流和励磁电压值分别为4.96A和50.4V。此时励磁机励磁线圈的温升为8℃。将励磁机的实际温升带入换算程序中,有: 。

4. 结语

通过以上的分析与计算,我们确认励磁电流值偏小属正常现象,造成的原因是机组不是在满负荷的情况下进行运行,机组可持续稳定运转。当机组持续在额定工况下长时间运行时,励磁电流值将逐步上升到额定值。同时,在对发电机计算的过程中,磁化曲线的取值也是相当重要的。不同硅钢片磁化曲线的取值,会导致计算结果的不一致。当然,计算程序的计算过程都是针对一个稳态过程的计算,和实际运行情况有很大的不同,所以在后面的计算结果与实际的运行数据还是存在差异的。唯一真正有效的检验标准是在满负荷的情况下长时间运行,然后再来检验设计数据的准确性。

5.参考文献

[1]汪耕 李希明 等编著,大型汽轮发电机设计、制造与运行,上海科学技术出版社,2012.

[2]王洪泽,同步发电机转子励磁电流的解析计算法,大电机技术,1982.

电磁波的实际应用篇4

关键词:电磁线包磁场,电子注,模拟

 

一.引言

行波管中,从电子枪发射出的电子注在电场加速作用下经过一段无场区进入慢波系统,与慢波系统中传播的高频场发生持续的相互作用。在加速区电子注呈会聚状态,在无场区和慢波系统中由于电子注内的空间电荷排斥力作用,电子注将很快发散变粗。为了使电子注的直径维持不变,以便有效地与高频场交换能量,必须设法在电子注上面加上一个聚束力,来抵消空间电荷排斥力。这个聚束力通常是由外加轴向磁场来产生,产生轴向磁场的装置叫做磁聚束系统。磁聚束系统主要有三种类型:电磁线包聚焦、均匀永磁聚焦和周期永磁聚焦[1-2]。三种系统各有优劣,在微波器件领域周期永磁聚焦研究相对较多[3,4]。而对于需要调节磁场的行波管,电磁线包聚焦更方面合理,它可以通过调节线包电流来调节磁场大小。本文主要以S波段的厘米波耦合腔链慢波系统为例研究线包磁场对电子注特性的影响,具体尺寸见图1。

慢波系统的尺寸确定后,行波管的频率范围和相速范围就一定,电子注的加速电压和进入慢波系统速度()大小范围也一定。电子注进入慢波系统后将在轴向磁场力作用下将作螺旋运动。磁场(磁感应强度)、电子运动速度和电子的螺旋半径r满足关系[5]:

(1)

从方程1可见电子的螺旋半径r和它的横向运动速度成正比,和磁感应强度B成反比。对于已经设计好了的慢波系统,电子注通道半径是一定的(本文中的半径为7.5mm),如果横向速度过大,电子就会打到腔壁上,所以希望电子注进入慢波系统的横向速度越小越好,最好是平行入射(即,束腰位置进入)。但是,实际上很难做到在束腰位置入射慢波系统。这样,电子注半径有限,电子的横向速度越大,需要的磁感应强度B越大。与电子注入射慢波系统角度有关,随的增大而增大,可以通过研究来研究的影响。边缘电子的最大,因此我们主要研究边缘电子的入射角,文中入射角都指的是边缘电子的。本文利用电磁场模拟软件来定量模拟一定电子注速度情况下,与磁感应强度B的关系,以及B对慢波系统中电子注电流分布的影响,因为电子注电流的分布对行波管的效率影响很大。

二.建立模拟模型

在本文中,仅研究边缘电子的入射角与所需磁感应强度B之间的关系,不涉及到电子注与波之间的互作用。为了简单起见,我们使用电子注通道半径和长度与实际耦合腔链相同的一个腔代替,因不考虑注与波互作用,简化模型对模拟结果不会有影响。免费论文。我们在模拟中采用单层多匝绕法,线圈直径等于线包多层绕法平均值,两种绕法计算的磁感应强度B差别很小。为了增强轴向磁场的均匀性和减弱进入电子枪区的磁场,在慢波系统的两端和外面都加有屏蔽层。模拟结构如图1所示。

图1 模拟实体剖面图

三.模拟结果

入射角与线包中心磁场的关系的模拟结果见表1和2(表1为电子注未过束腰入射慢波系统情况,表2为过束腰入射慢波系统情况),可见磁场都随入射角的增大而增大。但后一种情况,磁场增大得更快些,这是由于电磁线包磁场的边缘磁场小于中心磁场,在中心区域达到磁聚束要求的磁场时,边缘位置并未达到要求。免费论文。前一种情况时,入射时电子注由边缘向中心运动,磁场的边缘效应对它影响不大,而后一种情况时,电子注向外运动,要求磁场在慢波系统端口要接近于聚束磁场,因此中心磁场相应也就提高了。

表1 未过束腰时入射角与磁场关系

电磁波的实际应用篇5

关键词:电磁线包磁场,电子注,模拟

 

一.引言

行波管中,从电子枪发射出的电子注在电场加速作用下经过一段无场区进入慢波系统,与慢波系统中传播的高频场发生持续的相互作用。在加速区电子注呈会聚状态,在无场区和慢波系统中由于电子注内的空间电荷排斥力作用,电子注将很快发散变粗。为了使电子注的直径维持不变,以便有效地与高频场交换能量,必须设法在电子注上面加上一个聚束力,来抵消空间电荷排斥力。这个聚束力通常是由外加轴向磁场来产生,产生轴向磁场的装置叫做磁聚束系统。磁聚束系统主要有三种类型:电磁线包聚焦、均匀永磁聚焦和周期永磁聚焦[1-2]。三种系统各有优劣,在微波器件领域周期永磁聚焦研究相对较多[3,4]。而对于需要调节磁场的行波管,电磁线包聚焦更方面合理,它可以通过调节线包电流来调节磁场大小。本文主要以S波段的厘米波耦合腔链慢波系统为例研究线包磁场对电子注特性的影响,具体尺寸见图1。

慢波系统的尺寸确定后,行波管的频率范围和相速范围就一定,电子注的加速电压和进入慢波系统速度()大小范围也一定。电子注进入慢波系统后将在轴向磁场力作用下将作螺旋运动。磁场(磁感应强度)、电子运动速度和电子的螺旋半径r满足关系[5]:

(1)

从方程1可见电子的螺旋半径r和它的横向运动速度成正比,和磁感应强度B成反比。对于已经设计好了的慢波系统,电子注通道半径是一定的(本文中的半径为7.5mm),如果横向速度过大,电子就会打到腔壁上,所以希望电子注进入慢波系统的横向速度越小越好,最好是平行入射(即,束腰位置进入)。但是,实际上很难做到在束腰位置入射慢波系统。这样,电子注半径有限,电子的横向速度越大,需要的磁感应强度B越大。与电子注入射慢波系统角度有关,随的增大而增大,可以通过研究来研究的影响。边缘电子的最大,因此我们主要研究边缘电子的入射角,文中入射角都指的是边缘电子的。本文利用电磁场模拟软件来定量模拟一定电子注速度情况下,与磁感应强度B的关系,以及B对慢波系统中电子注电流分布的影响,因为电子注电流的分布对行波管的效率影响很大。

二.建立模拟模型

在本文中,仅研究边缘电子的入射角与所需磁感应强度B之间的关系,不涉及到电子注与波之间的互作用。为了简单起见,我们使用电子注通道半径和长度与实际耦合腔链相同的一个腔代替,因不考虑注与波互作用,简化模型对模拟结果不会有影响。免费论文。我们在模拟中采用单层多匝绕法,线圈直径等于线包多层绕法平均值,两种绕法计算的磁感应强度B差别很小。为了增强轴向磁场的均匀性和减弱进入电子枪区的磁场,在慢波系统的两端和外面都加有屏蔽层。模拟结构如图1所示。

图1 模拟实体剖面图

三.模拟结果

入射角与线包中心磁场的关系的模拟结果见表1和2(表1为电子注未过束腰入射慢波系统情况,表2为过束腰入射慢波系统情况),可见磁场都随入射角的增大而增大。但后一种情况,磁场增大得更快些,这是由于电磁线包磁场的边缘磁场小于中心磁场,在中心区域达到磁聚束要求的磁场时,边缘位置并未达到要求。免费论文。前一种情况时,入射时电子注由边缘向中心运动,磁场的边缘效应对它影响不大,而后一种情况时,电子注向外运动,要求磁场在慢波系统端口要接近于聚束磁场,因此中心磁场相应也就提高了。

表1 未过束腰时入射角与磁场关系

电磁波的实际应用篇6

关键词:电磁场 教学方法 教学效果

“电磁场与电磁波”课程是电子信息类本科各专业学生必修的一门核心基础课。学好这门课,对培养学生树立严谨的科学思想、科学分析问题的方法、复杂抽象的思维能力、勇于开拓的创新精神等将起着十分重要的作用,并且引导学生思考学习麦克斯韦方程组过程中的科学方法论-对称性思想,这对他们日后工作实践具有强大的指导性意义。

一、“电磁场与电磁波”课程教学现状

由于电磁现象比较复杂和抽象,研究它需要的数学工具多且难,教学过程中感到困难,特别是利用理论解题和实际应用更觉得难。

1.在学习中存在的状况

一是推导和计算难。课程中所涉及的公式多、表达式复杂、数学要求强。再推导中运用到矢量运算、微积分方程以及复数运算,过程繁杂,往往顾此失彼,学习吃力。二是概念抽象。该课程理论性强,概念抽象,对一些定理及概念,比如说惟一性定律、内自感、外自感等等概念难理解,物理概念不熟悉,学习难度大。三是解题困难。很多学生反应上课认真听讲,下课花大量时间推导公式,可遇到习题又像到另外一个世界,完全无从下手。长此以往,失去学习的兴趣。

2.在教学过程中存在的状况

第一,电磁场与电磁波课程涉及大量的公式推导,部分教师尤其是青年教师往往注重数学计算,而忽略了其物理意义,容易使该课程失去其意义。第二,课程系统性强,注重介绍其理论基础知识,忽略与实际应用的联系,容易让学生产生“学习这门课有何用”的疑惑,不能调动起学生的学习积极性。

基于以上特点,对于电磁场与电磁波这门课,学生普遍认为“难学”,教师普遍感到“难教”。

二、教学方法的探讨

1.理论联系实际,调动学习积极性

电磁场与电磁波以三大实验定律(库仑定律、安培定律和法拉第电磁感应定律)和两个基本假说(有旋电场的假说和位移电流的假说)为基础,归纳总结出宏观电磁现象的普遍规律―麦克斯韦方程组,然后再从麦克斯韦方程组(即时变场)出发,回顾静态场,这时我们可以把静态场归结为时变场的一种特殊情况,用麦克斯韦方程组和其辅助方程来解决我们所遇到的具体的电磁问题。这样就使我们电磁场与电磁波这门课的内容简化为对麦克斯韦方程组的理解和应用,学起来也就简单容易,更有利于学生自主学习。在强调对概念的理解上,应该增加与实际相联系的内容和问题,用课本的理论来解释日程生活中的事例,以调动学习的积极性。

比如在讲解静态场时,由电磁学的库仑实验定律和安培定律分别引出静电场、恒定磁场的概念,并掌握静态场的方程及其物理意义,并介绍静电场的最常见的一个应用就是带电粒子的偏转,像控制电子或是质子的轨迹。很多装置,例如阴极射线示波器、回旋加速器、喷墨打印机以及速度选择器等都是基于这一原理的。随着学生对静态场的逐渐了解,问题也就解决了。在介绍时变场时,重点放在麦克斯韦方程组及其物理意义上,引导学生从该方程组出发,推导出波动方程、边界条件等方程。又比如,在学习均匀平面波的传播时,应该帮助学生建立起电磁波的概念,并对现实生活中遇到的电磁波传播问题进行讨论,再向学生提出几个应用问题:为什么海水中需要用长波通信?防辐射孕妇装为什么能起到防辐射作用?为什么在微波炉加热不能用金属托盘?收音机和电视的天线架设为什么不同?为什么隐形飞机雷达探测不到?等等,引导学生去寻找电磁波的应用,在工程实践、科学研究、日常生活,乃至现代战争中都能找到电磁场应用的实例。通过这部分理论知识的讲授,学生对这些问题有了较深的认识,经过发现提出问题、解决问题的过程,学生对本课程的兴趣越来越浓厚,学习目的也非常明确了。

2.板书与现代教学手段相结合

多媒体计算机和网络教学以其丰富的媒体表现形式、强大的教学交互功能和方便自由的自主性学习特性,对于提高学生的知识水平、培养学生的信息素养、培养学生的创造思维有着传统教学无法比拟的优势。但运用多媒体进行教学不能完全抛弃传统板书,尤其是“电磁场与电磁波”课程公式多,推导复杂,两者应有机结合起来,并把多媒体教学作为一种辅助教学手段。当进行公式的推导与分析时,应采用板书为主要方式,学生容易对复杂公式理解和接受,同时又引导思路,而不是一页幻灯片过去,学生不知道讲解了什么。但在介绍一些抽象的概念时,利用多媒体技术和仿真技术制作的CAI课件相结合,把复杂抽象的内容用生动形象的方式表达出来,图文并茂,形象直观,可以帮助学生对学习内容的理解。

下面以介绍波导的场结构教学为例,教师可以在教学过程中插入波导场结构的动画效果,其截图如图1,通过动画效果演示不仅能够提高学生学习波导的积极性和主动性,而且能够鼓励并引导学生的好奇心、求知欲、想象力、创新欲望和探索精神。

图1 波导的场结构

3.梳理知识系统,学会举一反三

电磁场与电磁波解题困难,其主要原因是其求解过程不仅仅是一个数学问题,更主要是一个物理问题。只有把其中内含的物理过程分析明白,运用好数学知识,才能充分理解问题的实质,找到正确的求解方法。对于大三学生来说,有必要增加对前面相关内容的回顾,如矢量的通量、环量及矢量运算等。在学习过程中,要加强前面知识的回顾和应用,比如介绍动态位函数时,先回顾静态场中位函数的引入、位函数满足的方程、以及位函数的定义表达式以及应用,进而推导出动态位以及滞后位的相关理论,有利于学习的连贯性。又例如在介绍平面波时,结合波动方程分析平面波的传播、入射和反射等波动特性等等。鼓励学生在做具体的题目时,做完后反思这题所涉及的知识及能力要求符合教学大纲的哪一部分内容,跳出题海战术,学会举一反三,更有助于加深学生对于电磁场与电磁波的认识。

“电磁场与电磁波”课程难学难教,而掌握本课程的理论基础知识,对电子信息工程与通信工程专业的学生来说又非常重要。我们将进一步合理运用新的教学手段,提高教学质量,在理论教学中注意结合具体的应用问题讲述,鼓励学生主动学习、积极思考。

参考文献:

[1]孙玉发,尹成友,郭业才等.电磁场与电磁波[M].合肥:合肥工业大学出版社,2006

[2]梁昌宏.关于电磁场理论的若干思考[J].电气电子教学学报,2005,1:22-24

电磁波的实际应用篇7

关键词 超材料;光学变换;电磁屏蔽

中图分类号O43 文献标识码A 文章编号 1674-6708(2013)101-0132-02

0引言

大型供电设备及大型发电机组在运行中会产生强电磁辐射,这种辐射对一些精密仪器会产生噪声干扰影响其测试精度,甚至会对仪器产生致命的伤害,而强电磁场同样对附近的人员产生辐射,严重时会危害人员身体健康[1]。因此在一定区域内对这种电磁波进行屏蔽是非常重要的。需要应用一些相应的电磁屏蔽方法以有效阻止电磁辐射远离需要保护的辐射区域。目前,一些电磁屏蔽方法已相继被提出或已应用于工程领域,并且很多种吸波材料应运而生以阻止电磁波在保护区域中的传播[2,3]。同时一些金属屏蔽罩或结构也被大范围的用来进行对电磁波的反射或隔离。但是目前大多数的研究主要集中于对材料本身反射波或吸波特性上,而这些方法会受制于电磁辐射强度。在电磁辐射较弱时是适用的,当电磁辐射过于强烈时,这些屏蔽方法显得力不从心。如果能进行对电磁波传播路径的有效引导使其完全绕射过保护区域,那么这将是一种更有有效的保护被辐射区域的方法。

在一些情况下,保护区域是无法移动或者改变放置方式的,因此对此区域的电磁屏蔽保护是对其外部相应电磁特性材料搭建方式的设计。通过引入一些外部操作,在保护区域外部搭建一些电磁波路径引导结构,这样便会将电磁波以所需的传播方式引导远离保护区。这种对电磁波传播路径的引导可以由不同电磁特性材料的组合搭接来获得,而这些具有特殊性质的材料则可以由左手电磁超材料实现[4-6]。左手电磁超材料是一种同时具有负介电常数和负磁导率的等效材料。其于2002年由Smith和Pendry共同提出并通过实验获得[4]。在左手材料结构被实现后,他们又相继提出左手材料可以应用于光学变换理论中以实现坐标变换及完美电磁隐身[4]。受此启发,研究人员又陆续提出了旋转斗篷、超散射及超吸收斗篷等[5,6]。这些研究对于扩宽光学变换理论在电磁波路径引导中起到了重要的作用,同时人们发现,这种光学变换理论是不受电磁波强度的影响的。那么既然这种基于左手材料的光学变换理论可以进行电磁波传播路径的完美引导,这种路径引导方式便可应用于大型电厂、大型供电设备附近等的电磁屏蔽中,使其不受电磁辐射强度限制实现对一定区域的完美保护。

基于光学变换理论,本文提出了一种应用左手超材料进行电磁屏蔽的方法。我们使用左手材料对电磁波的传播路径进行控制,使其沿着我们所设定的路径进行传播,即达到电磁波的虚拟传播空间与实际物理传播空间的转换,进而绕射过需进行电磁波保护的区域,实现对此区域的电磁屏蔽。此种方法可以实现对不同尺寸保护区域的屏蔽,并给出了电磁特性参数的设计方法。这种电磁屏蔽方法可以应用于大型供电及发电场所的电磁屏蔽中,并且不受电磁辐射强度的限制。

1电磁波路径引导方法

对电磁传播路径的引导主要是等效的改变电磁波的传播空间,使其在物理传播空间中传播而产生所需的虚拟空间的传播效果。而对这种物理空间与虚拟空间的转换就是对电磁波不同的传播路径中材料特性的转换。那么我们可以通过控制电磁波传播过程中经过的材料的特性参数来实现对不同传播路径的控制。

电磁波路径引导的过程如图1。外部所产生的电磁波由左侧入射,我们将其设定为一束高斯平面波,表达为:exp(-(y/50[cm])^2)。区域1和区域3为普通空气区域。保护区域位于区域3中。为更易于表现其对电磁波的响应效果,我们将其设置为完美电导体。区域2为所引入的空间变换区域,厚度为d。如果区域2为普通空气区域,那么当电磁波从左侧入射时,入射电磁波在保护区域处发生散射,保护区域受到电磁波照射,散射效果如图1(b)所示。

此时我们在区域2中引入一定特性的材料以实现对电磁波路径的偏移,使其绕射过保护区域。这种偏移是对波的实际物理传播路径的材料特性进行设计。在区域2中将入射电磁波由横向传播引导至向上侧发生偏移而绕过保护区域。在区域2中电磁波的物理传播空间(x’,y’,z’)和虚拟传播空间(x,y,z)的转换关系为

其中k为路径的弯折率,我们将其设置为1,那么最终电磁波的传播路径如图2所示。可以发现电磁波在区域2中材料的引导下发生了偏移,绕射过了保护区域,实现了对保护区域电磁屏蔽的目的。如果我们将k值变小,波的偏移程度会变小。因此对于不同尺寸的保护区域我们需应用不同的k值进行路径引导,以实现将电磁波绕射过保护区域的目的。

2电磁波路径引导组合方法

在上面所设计的路径引导方式的基础上对变换区域进行组合,那么便可以实现电磁波任意路径的引导。如图3所示,区域1、区域3和区域5为空气区域,我们将区域2和区域4中引入变化材料以使电磁波绕射过保护区域后仍能按照原路径传播。区域2和区域4中的空间变换关系如式(1),最终材料特性如式(5)。所不同的是区域2和区域4中正负相反。我们设定区域2中k=1,而区域4中k=-1。最终电磁波的传播路径如图3所示。可以发现入射电磁波完全绕射过了保护区域,并且在绕过此区域后仍然按照原路径传播。

3结论

针对于大型供电及发电场所的电磁辐射问题,本文提出了一种对于电磁波的电磁屏蔽方法,此方法不受电磁辐射强度的限制。其基于光学变换理论,将电磁波的物理传播空间和虚拟传播空间进行变换,实现了对电磁波的传播路径进行引导。我们对路径引导中应用到的超材料材料参数进行了计算,并分析了不同取值对传播路径的影响。最终实现了电磁波在保护区域外的绕射,达到了电磁屏蔽的目的

参考文献

[1]周志付,姜若婷,劳国强.电磁污染及其防护对策.电力环境保护,21(1)2005:60-62.

[2]E.Unal,A.Gokcen,and Y.Kutlu."Effective electromagnetic shielding,"Microwave Magazine,7(4), IEEE,2006:48-54.

[3]M.Sonehara,S.Noguchi,T.Kurashina,T.Sato,K.Yamasawa,and Y.Miura."Development of an electromagnetic wave shielding textile by electroless Ni-Based alloy plating," IEEE Transactions on Magnetics,45(10).2009:4173-4175.

[4]J.B.Pendry,D.Schurig,D.R.Smith,“Controlling electromagnetic fields,”Science,312:1780-1782, Jun.2006.

电磁波的实际应用篇8

【关键词】电磁屏蔽;屏蔽材料;屏蔽原则

作为电磁常识,有电就有磁,有磁则有电,两者是具有伴随性质的。而电磁屏蔽技术同样也就涉及了电场屏蔽、磁场屏蔽和电磁波屏蔽三种展开,而屏蔽的目的只有两种:(1)限制电磁场向外辐射,不干扰其他电子产品的正常工作;(2)抵御外部电磁场对自身的干扰,防止自身由于电磁干扰而功能紊乱。电磁屏蔽离不开屏蔽体,屏蔽体主要是对来自电子元器件、电路、导线、系统等的电磁干扰进行能量吸收、反射和抵消的一种材料或介质。影响屏蔽体屏蔽效果的有两个因素:(1)整个屏蔽体表面是连续导电的;(2)不能有直接贯穿屏蔽体的导体。

1屏蔽体的选择

屏蔽方式及屏蔽材料的选择则需要按照屏蔽原理和屏蔽效能分为电场屏蔽、磁场屏蔽和电磁波屏蔽。其不同类型的干扰“场”选择的屏蔽体也不一样,屏蔽方法和要求也不同。下面针对各种“场”的屏蔽提选择做出解释:

1.1电场屏蔽

此种情况主要是屏蔽由于元器件间或设备见得电容耦合而产生的干扰,通过减小分布电容来减小静电荷的凝聚,从而提高屏蔽效果。针对此种干扰宜选用电的良导体做屏蔽体,用料厚度无要求,只需要满足机械强度即可,但屏蔽体最好的结构形态为全封闭式。当然,实际工作中的特殊应用场景不允许进行全封闭设计,有走线孔或贴合缝的存在,遇到此类工作应尽可能小地开孔、留缝,也可以在孔、缝处加上滤波处理或填充屏蔽材料的处理工艺,以减小电场干扰的路径。屏蔽体最好选择直接接地。

1.2磁场屏蔽

此种情况主要是屏蔽由于磁场耦合而产生的对设备的干扰。主要利用高导磁率材料对磁能进行吸收或反射,从而使被屏蔽体不受磁场的干扰影响。针对此种干扰,可以选用具有一定厚度的良导体材料做屏蔽体。磁场屏蔽又有低频和射频之分,低频磁信号主要利用有一定厚度的导磁率高的材料吸收干扰信号,但导磁率高的材料通常导电性能差,这样就无法发射磁干扰。因此,在高导磁率材料的表面加涂一层高导电涂层用于反射磁干扰。一般选还用铁、硅钢片制作屏蔽体,其结构一般采用筒状、柱状等设计结构,同时,最好直接接地以防止电场感应。

1.3电磁波屏蔽

此种情况主要消除电磁波信号干扰而产生的影响。主要利用具有一定厚度的良导体制作,以抑制其磁场分布。在高频情况下,厚度要易于满足要求,是电磁波透入的深度达到最小。一般由铝、银、钢等材料制作。主要作用是吸收、反射电磁波,阻止其在空间内传播,从而抑制干扰信号对设备的影响。其结构一般采用板状、筒状、柱状等设计结构。

2屏蔽体的完整性设计

现实工作中,一个电子产品不可能完全与外界隔绝。因此,实际的屏蔽体是一个不完整的结构,为保证屏蔽效果则需要尽量减小过线孔、通风孔、板缝等。由于电缆线走线出入引起的穿透使屏蔽效能下降可以采用滤波的方法加以抑制。孔缝对屏蔽效果的影响力:(1)由于缝隙影响屏蔽体的连续导电性,使其不能成为一个电等为体,表面的感应电荷不能从接地线漏走;(2)在低频磁场干扰中,由于孔缝增加了沿磁力方向的磁阻,降低了屏蔽体对磁场的分流作用;(3)在高频磁场和电磁波的良导体屏蔽中,孔缝也抑制屏蔽体感应涡流,使磁场和电磁波穿过孔缝进入屏蔽体内,影响屏蔽效果。因此,在实际工作中应当注意孔缝的形式及方向,尽量减少对屏蔽体屏蔽性能的影响。使干扰信号能在屏蔽体中均匀分布,保证消除干扰的影响。电磁波通过孔缝取决于尺寸大小,当孔缝尺寸大于电磁波波长的1/20时,电磁波就可以穿过屏蔽体,当大于波长的一半时,就可以毫无衰减地穿过。因此,要尽量减小孔缝尺寸,做到小于电磁波波长的1/20为最佳。

3常见的屏蔽材料

金属丝网:用金属丝绕制而成的屏蔽材料;簧片:用片状金属成型制作的屏蔽材料,一般为C型、锯齿形;波导通风板:蜂窝状得通风板,利用截止波导原理实现屏蔽的一种屏蔽材料;屏蔽玻璃:内层填附一层金属丝网的玻璃。导电橡胶:在橡胶中加入金属颗粒、金属丝或粉末的屏蔽材料;导电布:填充金属颗粒和粉末的纤维制层的屏蔽材料;屏蔽体的应用:屏蔽体在实际运用中一般是多层屏蔽和薄膜屏蔽技术两种使用方法。多层屏蔽技术对电场和磁场的干扰信号都有较好的防护,适用于以反射为主的屏蔽场合。屏蔽体的层次排布可以形成多次反射,比单层屏蔽产生的效果更好。使用时,不同层次的屏蔽体之间应当用非导电介质隔开,切不可有电气上的练接。不同层次的屏蔽体也要选择不同材料制作,靠近磁场内干扰源的屏蔽层宜采用高导电率的材料制作,提供良好的电场屏蔽,消弱部分磁场强度,使第二层不至于发生磁饱和现象。远离干扰源的屏蔽层采用高导磁率材料制作,以消除磁场影响。多层次屏蔽体共同作用达到最佳的屏蔽效果。薄膜屏蔽经常应用的是薄金属涂层或粘贴金属箔的方式。在产品的布局中有上下结构或左右结构的隔板上,可以在隔板上进行屏蔽材料的喷涂处理,这样既不影响原有结构外观,又能做屏蔽干扰之用。

4综述

电子产品的电磁干扰设计要从屏蔽、接地、其他抑制干扰方法3个方面开展,干扰源的性质确定尤为重要、干扰源的频率、强度等都是屏蔽技术中首先需要明确的,只有从设计、结构、工艺方面密切合作,从电磁干扰发生的源头分析来解决干扰问题,从而实现电子产品的电磁屏蔽。

参考文献

[1]刘顺华,刘军民,董星龙等.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2007.

[2]陈赟,李艳茹,张红胜.基于Zns金属网栅制作工艺的改进[J].中国光学,2014,7(01):131-136.

[3]郎为民等译.CELOZZIS,ARANEOR,LOVATG[意].电磁屏蔽原理与应用[M].北京:机械工业出版社,2009.

推荐期刊