线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

厂房工厂车间装修设计8篇

时间:2023-06-15 09:27:44

厂房工厂车间装修设计

厂房工厂车间装修设计篇1

关键词:规范;条文;应用

1.电厂概况

华电镇雄电厂一期工程建设2台600MW国产亚临界燃煤发电机组,电厂拟选厂址位于云南省镇雄县,地处滇东北昭通地区东部,国家“西部大开发”战略的实施,尤其是西电东送工程的启动,对镇雄县充分发挥煤炭资源的优势,促进地方经济的持续稳定发展,提供了千载难逢的发展机遇。

2.主厂房防火分区

在火力电厂中主厂房是整电厂的核心。那么主厂房的安全性就显得尤为重要。那么在主厂房的建筑防火设计为主厂房的安全提供了保障。华电镇雄电厂2×600M为纵向布置,占地面积多达10300 m2。由于工艺要求不能再分隔,汽机房3层,除氧间、煤仓间有6层,在正常运行情况下,有些层没有人,运转层也只有10多个人。将主厂房综合建筑看作一个大的防火分区来看。将汽机房、除氧间、煤仓间、锅炉房、集中控制楼综合建筑看成一个防火分区。为了防火的方便划分主厂房可以看做多个车间的组合:汽机房(或含除氧间)各层统一为一个车间;煤仓间各层统一为一个车间;锅炉为一个车间;集中控制楼为一个车间。为了使各个车间的安全运行车间隔墙的耐火极限不应小于lh,各隔墙上的门为乙级防火门。

3.主厂房的安全疏散

3.1 垂直交通

“主厂房的疏散楼梯可为敞开式楼梯间;至少应有一个楼梯通至各层、屋面且能直接通向室外。集中控制楼至少应设置一个通至各层的封闭楼梯间。”主厂房汽机间部分三层,高度35.50m。设置交通梯通往各层。出氧煤仓间6层,高度47.60m。共设置三把楼梯。固定端设置一把混凝土楼梯可通向各楼层及屋面,扩建端设置一把钢梯做为疏散梯通往各楼层及屋面。中间设一把钢筋混凝土楼梯满足作为重要交通组织就疏散用。厂房内任何工作点到安全出口的距离控制在50m内。封闭楼梯梯段宽度不小于1.1m,疏散走道的净宽不小于1.4m, 疏散门的净宽不小于0.9 m。疏散钢梯宽度不小于0.8m并且不大于45度。电缆夹层、配电间均设两个安全出入口,工作点到安全出口的距离控制在50m内。配电间、电缆夹层均设两个安全出口,安全出口至房间内工作点的距离控制在50m。

主厂房两端对称设置两台电梯可以提升到各个主要层面,并要求其达到消防梯的要求。同时电梯满足最小载重不小于800kg的要求。

3.2 水平交通

汽机间中部有一横向检修通道;汽机房靠近B列及炉前C-F列之间设有纵向主要通道。汽机间零米、6.9 m层、13.7 m、各有一纵向通道,作为汽机房的运行检修维护主通道。锅炉本体与煤仓间C列柱之间留有8.3m 宽的炉前通道。汽机房与煤仓间、集控楼、锅炉之间设横向通行门,在零米和运转层可方便相互联系,并可直接通向炉后。

3.3 集中控制楼

作为主厂房一部分的集中控制楼建筑,由于其使用性质的重要性,本次修编在总图布置的章节,相应新增加了一条。“当主厂房呈凵形或Ш形布置时,相邻两翼之间的防火间距,应符合现行国家标准《建筑设计防火规范》的有关规定。” 即规定了布置主厂房集中控制楼的时候,平面布置只有两种可能性,一是控制楼与锅炉房两侧相连;二是如果脱开就应该满足《建筑设计防火规范》相关防火间距的要求。此条文主要针对近年来在主厂房优化设计过程中,集中控制楼室外通道多数无法满足消防通道的要求,留下了很大的火灾隐患。另外集中控制楼的布置再有条件的情况下,也应该尽可能地提高消防标准。

4. 电厂的装饰材料及防火要求

4.1 主厂房的装修材料选用

由我国的《火力发电厂建筑装修设计标准》可以看出,国家对主厂房的装修标准要求

不高,火力发电厂主厂房的装修标准总共分三级。主厂房设计中,将装修标准降低,以简洁、大方、明快为主。如主厂房的楼地面除运转层为中级地砖之外,其余均为水泥砂浆压光面层(有工艺特殊要求者除外);墙面为普通内墙涂料和普通油漆裙;天棚除控制室及UPS间为轻钢龙骨矿棉吸声板吊之外,其余均为喷白灰浆天棚;窗户均采用塑钢窗等。,

装修材料燃烧性能等级划分为四级,详见下表

主厂房的各类控制室、电子计算机室、通信室的顶棚和墙面应使用A级装修材料,地面及其他装修应采用不低于B1级装修材料。安装在钢龙骨上燃烧性能达到B1级的纸面石膏板、矿面吸声板,可作为A级装修材料使用。

4.2 防火涂料

厂房工厂车间装修设计篇2

关键词:仓库平面;厂房面积;防火设计;液硫储罐;装车站台

中图分类号:TU892文献标识码: A 文章编号:

1、概述

液体硫磺出装置后,一般根据需要以硫磺颗粒固体的方式出厂,或以硫磺液体的方式出厂。若以固体颗粒出厂,则由泵输送到成型机厂房,经造粒机成型后,变成固体颗粒,在经自动包装机包装后进入硫磺仓库,以火车或汽车运输出厂。若以液体出厂,则由泵输送到液硫储罐,在由液硫泵加压输送到汽车装车站台,以槽车运输出厂。

2、仓库的平面布置

硫磺仓库和厂房一般布置在一个建筑物内,一般靠近工厂铁路布置在装置的边界处。成型机布置在厂房的二层,自动包装机布置在厂房的一层。一层厂房的地面高度一般为1.2m,和火车的车厢基本平齐,层高由包装机决定。硫磺仓库一般单层布置,靠近铁路侧一般设置站台,站台宽4~6m,站台上设置防雨棚。站台距离铁路中心线的距离为1.7m左右

3、厂房及仓库的面积确定

3.1 厂房宽度的确定

厂房宽度根据二层造粒机的数量及所需的检修空间确定。某硫磺项目共4台造粒机,基础宽1732mm,净距2000mm~3000mm,留有一定的检修吊装空间,厂房宽度定为30m。

3.2 厂房高度的确定

厂房地面一般定为高出火车铁轨1.2m,和火车的车厢基本平齐,便于装车。二层高度根据料斗所需的高度确定。某炼厂项目厂房高度定为14.3m(标高)。

某硫磺项目由于设置了吊车,考虑吊装需要,厂房高度就需相应增加,最终厂房高度定为16.2m(标高)。

3.3 厂房长度的确定

首先确定二层所需长度,二层长度由造粒机长度、皮带输送机及其检修操作空间确定,再者考虑一层包装码垛机一体化生产线所需的长度,最终确定厂房长度。

造粒机基础长度12.8m,再考虑检修空间,二层长度定为31.5m。 厂房的地面层布置自动包装码垛机,码垛机一般设置两条生产线,靠近两侧布置。二层长度大于码垛机的长度,厂房长度最终就由二层长度确定定为31.5m。

如果地面层只设置包装机,它的厂房长度只需满足二层所需长度就可以了,最终按二层所需长度确定。

3.4仓库长度的确定

仓库的长度是根据装置产量而定的。如某项目规模为22万吨/年,

日产量220000/360=611t

仓库一般按2~15天的储存量考虑,若按15天考虑,则仓库需储存611X15=9165 t

固体硫磺的密度是1950Kg/m3,则需要储存硫磺的体积为9165000/1950=4700 m3,硫磺码垛按2m高计算,再考虑到回转车辆空间,利用率按70%考虑,则仓库长度L=4700/2x31.5x0.7=106m

即仓库的最小长度106m。考虑充分利用场地该硫磺仓库的长度最终定为122.6m。

同上某项目规模为6万吨/年,按上述计算方法,日产量60000/360=167t,

需储存硫磺的体积为15X167000/1950=1285m3,则仓库长度L=1285/2x31.5x0.7=31m

即仓库的最小长度31m。该硫磺仓库的长度最终定为42m。

4、防火设计

硫磺有以下特性:

1.硫磺具有较强的化学活泼性,在空气中会生成少量SO2和硫酸。

2.硫磺的闪点2610C,在没有外界热源的情况下,由于本身发生物理、化学变化而产生热量,这些热量在适宜的条件下积蓄,使硫磺达到并超过其自燃点2320C,就会发生自燃。

3.硫磺颗粒度如果小于2mm,仓库视为粉尘环境,当硫磺粉尘在空气中的含量达到35g/m3时,就会发生爆炸。

结合硫磺的特性,仓库的设计还应考虑以下防护要求:

4.1结构形式

硫磺自身自燃与硫磺仓库的空气压力、空气流速、压力上升速度、和空气中含氧量都有密切关系。因此硫磺仓库的通风散热是防火设计的重要环节之一。硫磺厂房由于生产温度的需要,可做成封闭式,硫磺储存仓库可做成半敞开式,便于通风,且在一楼厂房应设置机械排风口。硫磺仓库可视为粉尘环境,有爆炸危险性的可能[1],应采用不发生火花的地面,需要时应设防水层。

4.2仓库的面积

从机械化操作及工业生产的要求来看,仓库面积越大,防火墙越少,越方便,效率越高。可一旦着火,损失也越大。因此限定仓库及防火墙间的最大面积,可以给灭火和疏散物资创造有利条件,赢得时间,减少火灾损失。根据《建筑设计防火规范》[2]要求,硫磺仓库每座库房的面积不大于2000m2,防火墙间的最大面积不大于500m2。若装有自动灭火设备的库房,其建筑面积可增加1倍。如果大于这个面积应增加相应的消防设施。

4.3防火墙

防火墙是阻隔火灾蔓延的重要措施。防火墙必须满足4h的耐火极限、240mm厚的普通砖墙就可以满足要求。防火墙上尽量不开门窗,硫磺仓库属于粉尘环境,硫磺仓库和厂房之间应设置防火墙,但由于一层的自动包装机要穿过防火墙,穿墙处应设置自动防火门。

4.4防火间距[3]

硫磺仓库距甲类物品库房的防火间距为15m,与重要公共建筑设施的防火间距不宜小于30m,与其它民用建筑的防火间距不宜小于25m。

5、液硫出厂设施的布置

液硫出厂的另一方式是以液体形式出厂,首先液硫进入液硫储罐。液硫储罐选用拱顶罐[4],内壁刷防腐涂料,罐顶和罐外壁采用隔热层,罐内设加热器,以防液硫凝固。液硫储罐的液硫自液硫泵输送到汽车装车站台。如果由于罐成组布置的需要,可以把液硫罐布置在罐区内。

由于汽车罐车运送油品、石油化工产品、液化石油气等,都属于危险品运输,因此装车台的位置应设在厂(库)区全年最小频率风向的上风侧。为便于车辆进出,作业区要靠近公路,在人流较少的厂(库)区边缘。出口和入口道路不要与铁路平面交叉。栈台距离液硫储罐应最少15米距离,但不宜太远,尽量减少液硫储罐与栈台之间的液硫管线。

装车台可以根据车的车位、场地的大小、自动化程度、装载的品种等因素来确定其型式,一般分通过式和旁靠式两种型式。站台上装或下装鹤管,鹤管应选用蒸汽加套伴热型。下图分别是通过式和旁靠式站台布置示意图。

旁靠式装车台

6、结束语

硫磺出厂部分是硫磺装置的重要组成部分,是以固体出厂还是固体和液体同时出厂,应根据石化企业的市场需求确定,及早规划,做好平面布置。

参考文献:

1.《爆炸和火灾危险环境电力装置设计规范》 GB50058-1992

2.《建筑设计防火规范》 GB50016-2006

厂房工厂车间装修设计篇3

道等的要求

1.1国内设计规范的相关要求

国家标准《大中型火力发电厂设计规范》(GB50660-2011)中6.8.3条规定“主厂房区域检修起吊设施的设置应符合下列规定:(1)起重量为1t及以上的设备、需要检修的管件和阀门应设置检修起吊设施。(2)起重量为3t及以上并经常使用设备宜设置电动起吊设施。(3)起重量为10t及以上的设备应设置电动起吊设施。(4)主厂房内,在不便设置固定维护检修平台的地方可设置移动式升降检修设施。(5)露天布置的设备可根据周围的条件设置移动或固定式起吊设施。”6.8.5条规定“主厂房内各主、辅机应有必要的检修空间、安放场地、运输通道、运行和检修通道。”19.3.11条中规定“主厂房内主要通道宜通畅,宽度不应小于1.5m,净高不应低于2.0m。”鉴于国内暂无核电厂常规岛厂房设计的相关规范,对于核电厂汽轮机厂房的布置设计可以参考火电厂主厂房的设计相关规范要求。在目前进行的核电项目汽轮机厂房布置设计中,一般对于大平台主通道考虑2~3m宽、净高3m的环形通道,以满足小型叉车的通行要求;对于其他不通行叉车的楼层,考虑至少1.5m宽的主通道。

1.2国外设计行业的规定

西方电力行业内部一般规定,对重量大于30kg的设备应在设计过程中考虑其安装检修方法(行车、吊装用单轨、手动或电动葫芦等),对重量小于100kg的设备可以考虑使用便携式吊装设备。在进行布置初步设计过程中对于主要设备的安装检修空间需进行设计考虑。对于厂房通道空间设计,一般项目技术输出方有明确的最低设计要求:‘Maintrafficpath≥Width1.4mxHeight2.2m’;‘Secondarytrafficpath≥Width0.9mxHeight2.2m’;‘Tertiarytrafficpath≥Width0.6mxHeight2.2m’;其中,Trafficpath是人行通道;Maintrafficpath指厂房主要的通行用环形通道;Secondarytrafficpath指从主通道出来到主要设备或出入口、电梯楼梯间等的通道;Tertiarytrafficpath指从主通道和Second-arytrafficpath出来到一些次要设备、阀门等的巡检操作通道。

2设计方法研究

本节简述上述项目通过三维设计工具进行设备安装、检修以及厂房通道设计的方法。

2.1设备安装及检修空间设计

设备安装及检修空间的三维设计有两部分内容:

(1)以设备实体模型为基础,按照设备的安装检修(一般考虑整体更换设备的情况,因为此时与安装时相比难度更大)路径对设备进行逐个拖运过程片段的模型显示,此设计的目的是初步分析设备安装检修的可行性,并通过三维平台抽取设备安装图作为安装招标文件附件,配合设备安装招标的整个过程进行方案的调整及图纸的升版。通过设计人员对于安装招标的参与,将设备的安装方案固化,之后设计人员通过固化的安装方案提供准确的安装荷载给土建专业。这样做的好处是可以避免由于设备安装施工单位安装方案变化对土建结构造成影响,同时通过信息全面的综合土建接口图设计,简化了土建的接口(以往安装单位提供安装方案图给土建专业,明确安装荷载),便于布置设计人员对于厂房布置设计的全面把握。下面以高压加热器的安装检修为例,介绍三维平台在安装检修空间设计中的运用。以设备三维模型为基础,制作设备安装或检修拖运过程片段,以高压加热器为例。根据以上拖运空间模型制作安装及检修方案图,通过三维软件抽取出设备在厂房内各个区域安装过程的平面图纸。此图纸终版将作为厂房安装合同的技术附件,并作为厂房土建接口图中设备安装荷载的设计输入依据。

(2)建立设备的安装检修路径空间,此路径空间依照第一点完成的设备安装路径建立一个完整的拖运空间模型,此空间参与三维碰撞检查,确定在检修需要设备整体更换的情况下对厂房其它设备和管道的影响,通过分析及调整将可能出现的影响降低到最低。

2.2厂房运行人员通道设计

以三维软件为设计工具能够准确的进行厂房人行通道的规划设计,主要及次要通道随着布置设计的深入,循序渐进地在三维平台上进行设计,建立通道空间模型,参与整个厂房的碰撞检查,通过布置设计及通道的调整,最终实现不出现任何其他模型与人行通道空间模型的碰撞。

3检修空间及人行通道设计中需要注意的一些问题

在进行检修空间及人行通道设计时,需注意以下问题:考虑叉车通行的通道至少应考虑3m的净高,普通的人行通道考虑2.2m净高即可。在设计过程中应考虑到所有设备人孔和阀门操作检修的可达性,并按需要设置用于阀门和设备人孔的操作检修通道的二次钢结构平台,相近位置的阀门宜共用平台。应充分考虑主辅行车、单轨吊等的运行范围,确保设备在吊装范围内。设备可以通过吊装设备吊到空地位置检修和运出,吊运空间应参与碰撞检查。需要在检修中打开的人孔门、活动盖板打开空间、阀门的操作空间等应建立空间模型并参与碰撞检查,并应确保运行检修人员的可达性。应注意带有旁路阀的阀门旁路所在方向,确保足够的操作检修空间。模型中的设备阀门等模型应及时按照厂家最新资料进行更新,同时应更新相应的操作检修空间模型并进行碰撞检查。

4结论

厂房工厂车间装修设计篇4

【关键词】灯泡贯流机;河床式厂房;主机间布置

0.工程概况

塘头水电站位于广东省乳源县北部与曲江县交界处附近武水河段上(武水是北江第二大支流,集水面积7097km2,河长260km),是《广东省韶关市武水梯级开发规划报告》规划的第五级梯级水电站。水库正常蓄水位68m,校核洪水位71.87m,总库容1526万m3。电站装机容量20MW,装置4台灯泡灌流机组。工程是以发电为主,兼有航运等综合利用效益的水利枢纽工程。塘头水电站为河床式水电站,主要建筑物从右至左依次布置为:右岸接头土坝、泄水闸、电站厂房、左岸船闸等。

1.主机间布置

灯泡贯流式电站厂房多为挡水厂房,厂房本身作为枢纽挡水建筑物的一部分。挡水厂房可分为单纯挡水厂房和溢流厂房。单纯挡水厂房为通常采用的形式,其结构相对简单,厂房四周有足够高的挡水墙挡水,水库上游来水流量大于发电用水时,多余水量由泄水闸弃水。塘头水电站即为单纯挡水厂房,本文针对厂房主机间几处较具讨论性的结构布置方案进行简单探讨。

1.1上游挡水墙

灯泡贯流机的流道位于水库正常蓄水位以下,因此厂房上游在流道大体积混凝土之上需设置挡水墙来挡水。塘头水电站厂房的上游检修门与泄水闸检修门共用一台坝顶门机起吊,这就使上游挡水墙有了2种布置方案,方案一是上游挡水墙布置在上游吊车柱的下方(见图1),方案二是上游挡水墙布置在坝顶门机下游轨道的下方(见图2)。

方案一的优点是可有效减少上游吊车柱的长度;缺点是不能增加厂房主机间的可利用空间,且坝顶门机的下游轨道梁结构不能节省。这是灯泡贯流机厂房上游挡水墙比较常见的设计方案。

方案二的优点是可增加主机间的可利用空间,且节省了坝顶门机的下游轨道梁结构,增加的空间可利用来方调速器跟透平油罐;缺点是加长了主机间上游排架柱的长度,且增加的空间不在吊车的起吊范围之内,造成调速器跟透平油罐的安装较为困难。

1.2起吊设备

塘头水电站主厂房的起吊设备根据枢纽的布置考虑了2个方案。

方案一:传统的桥机方案(见图1),安装场和主机间运行层错层布置,优点是机组设备进厂、安装及检修均很简单方便,缺点是吊车柱、吊车梁施工占用工期较多,而改用钢制的吊车柱、吊车梁则增加的投资较大。

方案二:小门机方案(见图2),由于小门机方案的门机轨道布置在主机间的运行层,门机不能走到错层布置的安装场,故小门机方案把运行层的发电机、水轮机吊物孔设承重钢盖板兼作安装场使用,不再设置独立的安装间。小门机方案的优点是不用施工吊车柱,节省了工期,且不设独立安装间节省了投资;缺点是相比同跨度的桥机有效起吊范围缩小,起吊设备投资增加,主厂房跨度增大,运行层不能摆放机电设备,且对设备安装及运行维护不利。

1.3管道层

管道层位于主机间运行层下方,也称运行下层,用于布置发电机吊物孔、进人孔、水轮机吊物孔引出的水管、油管以及电缆、母线等管线。塘头水电站主机间的管道层考虑了3个布置方案。

方案一:板梁架空层方案(见图1),就是运行层设置在板梁架空层上面,下面的架空层作为管道层布置。架空层方案的优点是混凝土工程量相对较省,管道层空间较大,管道和电缆的布置、安装较为方便、简单,方便主厂房和副厂房的交通连接;缺点是板梁承受较重荷载时采用板梁结构很不经济,故本方案的运行层不推荐作为安装场使用,也不宜布置小门机作为起吊设备。

方案二:廊道方案(见图2),加厚流道上部的混凝土厚度,在运行层下方布置廊道。廊道方案的优点是上部的运行层可承受较重荷载兼作安装场使用,且可布置小门机方案的门机轨道;缺点是混凝土工程量增加较多。

方案三:电缆沟方案,稍为加厚流道上部的混凝土厚度,在运行层上设置走水管、油管以及母线、电缆的电缆沟。电缆沟方案的优点是运行层也可承受较重荷载并兼作安装场使用,且相对廊道方案增加的混凝土量不多;缺点是管路安装维护不太方便,电缆沟需设盖板,也很难布置小门机方案的门机轨道。

1.4副厂房

灯泡贯流机的流道较长,通常把副厂房就近紧贴主厂房下游布置,这样使发电机、水轮机与副厂房之间的母线、电缆以及油水管路距离最短,节省投资。塘头水电站的副厂房也是如此布置,并考虑了2种副厂房布置方案。

方案一:单排副厂房方案(见图1),副厂房紧贴主厂房下游吊车柱布置,副厂房各层的过道走廊设在副厂房的下游侧,为悬臂式结构的开放外走廊,副厂房和下游挡水墙之间设有一个露天的天井。本方案的优点是副厂房的通风、采光良好,不需要加装风机进行机械通风换气,日照充足的白天也不需要电气辅助照明;缺点是空间利用不够充分,天井积水需加装抽水泵抽排或引到集水井抽排。

方案二:双排副厂房方案(见图2),副厂房布满主厂房与下游挡水墙流道顶板之上的空间,副厂房分2排布置,走廊为设在2排副厂房之间的封闭式内走廊。本方案的优点是充分利用了空间,无天井进水外排的问题;缺点是副厂房的通风、采光较差,需采取加装风机等辅助设备来给各层副厂房通风换气,下层副厂房即使白天也要开灯照明,办公条件较为恶劣。

1.5下游挡水墙

河床式厂房的上下游洪水位通常相差很小,而厂房的正常满发水位则远低于下游洪水位,下游挡水墙要求高于下游洪水位,尾水检修平台要求高于厂房满发水位,这就使紧贴在一起形成整体的下游挡水墙、尾水闸墩以及墩顶尾水检修平台的设计方案有了不同的方案选择,本工程考虑了以下2种布置方案。

方案一:高尾水闸墩方案(见图1),尾水闸墩与下游挡水墙同高,均高于下游校核洪水位,在尾水闸墩墩顶设置尾水检修平台。每台机的下游挡水墙两端固支在尾水闸墩上挡下游洪水,这种设计是大部分河床式厂房下游挡水墙采用的方案,优点是受力结构良好,可有效降低下游挡水墙的厚度及配筋,尾水平台的对外交通良好,洪水期尾水闸门检修不受影响;缺点是通常尾水闸墩厚度较大,高尾水闸墩增加的混凝土工程量较多,且尾水启闭排架也较高,需布置专门的楼梯连通尾水启闭机房。

方案二:低尾水闸墩方案(见图2),下游挡水墙高度不变,尾水闸墩及墩顶的尾水检修平台仅高于满发正常尾水位。这样下游挡水墙就变成了悬臂结构,为了满足阻挡下游洪水的要求,下游挡水墙就需要加厚墙体或在挡墙上下游设肋板等结构加强措施。挡水墙保持悬臂结构不变,仅加厚墙体的方式在结构受力稳定方面不太好,且经济上不太划算,而挡水墙上游侧加肋板则会降低副厂房空间利用率,影响机电设备布置,因此选择了在挡水墙下游侧加肋板的方案。本方案的优点是可有效降低尾水闸墩、尾水启闭机排架的高度,减少工程量,节省工期以及投资;缺点是尾水检修平台需设楼梯或爬梯上下,洪水期不能检修尾水闸门。

2.小结

本文对灯泡贯流机厂房主机间的几处较具讨论性的结构布置方案进行简单探讨,各个布置方案都各具优缺点,设计人员宜根据工程的实际情况灵活布置。

【参考文献】

[1]SL266―2001,水电站厂房设计规范[S].

厂房工厂车间装修设计篇5

一、汽车修理厂消防安全现状

(一)在三级耐火等级建筑物内设置修理车间,喷漆车间和蓄电池充电室等,有的车间甚至毗邻居民房(老城区现象严重),其主要原因。大部分修理厂都民营化,为降低成本,经营业主往往租赁一些三级耐火等级和危房内设置各类车间,有的修理厂各类车间设置同一建筑物内,没有独立设置防火分隔措施,假设某一部位发生火灾,就有火烧连营的危险,不仅能烧毁车间还能殃及四周毗邻居房屋。

(二)电气设备不符合防爆要求,电器线路敷设不规范。如喷漆等车间安装不防爆的开关,熔断器,插座等可能产生火花的电器,电气线路未加耐酸的套管保护,蓄电池充电室没有按照甲类场所设置电气设备和敷设电气线路,通过交通运管部门安全治理整顿发现绝大部分修理厂经营业主都没有按《建筑设计防火规范》要求敷设电器线路和配置不防爆设置,甚至有的修理厂配电盘设置在存放汽油、香胶水仓库内,库房内连接压缩机、电焊机的电线都是临时拉接,几乎80%的厂家配电盘没有设置电器保护装置,设置普通电闸刀,图方便省事都没盖上闸刀盖。

(三)有部分修理车车间内设置有职工宿舍和厨房,是典型“三合一”场所。这些修理厂耐火等级低、无防火间距、电气线路陈旧老化和乱拉、乱接现象突出等,一旦发生火灾,火势蔓延快,人员难以逃生,物质疏散困难,可见其火灾危险性之大。

(四)、没有配置灭火器材或已配置但已失效,从业人员未经消防知识培训。从武进区2007年上半年统计数字看二级汽车修理厂基本上配置灭火器,其他小型修理厂都没有配置灭火器,但这类场所经营业主都没有落实好消防器材保养,维修制度,大部分配置灭火器失效或达到灭火器报废年限。

(五)业主和从业人员安全素质参差不齐,个别业主的文化层次较低,安全意识淡薄,对于一些基本的消防法律、法规、消防基本常识知之甚少,不知道配备相应的消防器材,不知道最基本建筑、电气防火常识。

二、汽车修理厂主要防火对策

(一)认真落实防火安全责任制。要按照《消防法》第14条的规定,督促落实汽车维修企业,认真履行单位的消防安全职责,加强自身消防监督管理,抓紧制定规章制度,明确、细化和规范具体责任,建立和完善消防安全责任制度,严格落实消防安全责任制和岗位防火责任制,把消防安全工作纳入单位的经营管理之中,提高自身预防火灾能力。

(二)各类车间设置宜设置应不低于一、二级耐火等级的建筑物内,严格按照《汽车库、修车库、停车厂设计防火规范》要求进行防火设计、施工到竣工消防验收,保留必要的防火间距,根据需要设置门、防火墙、窗通风孔、机械排风系统和采取防火分隔措施等,严格消防审核、消防验收,把好源头关。

(三)按行业标准配置防爆电气设备,规范敷设室内电线,特别是甲、乙类物品运输车修理车间以及修理厂内的喷漆间、电瓶间、乙炔间等室内的电气设备均应按国家标准《爆炸和危险环境电力装置设计规范》的规定执行。根据场所配置的灭火器材和消防设施,落实从业人员安全知识培训制度,具体应参照修车库灭火器配备数量标准配置,修理厂从业人员应建立培训制度,经考试合格后方可持证上岗,否则用人单位不得采用。

厂房工厂车间装修设计篇6

关键词:AP1000;核电站;综合管廊设计;给排水;工艺管线;电缆 文献标识码:A

中图分类号:TU990 文章编号:1009-2374(2016)04-0011-02 DOI:10.13535/ki.11-4406/n.2016.04.006

1 概述

AP1000核电站主厂房和核电厂配套设施(BOP厂房)之间由于系统和功能的设计接口,需要布置大量的给排水、工艺管线和电缆。为减少施工和维修过程中对厂区反复开挖和回填,通常采用地下综合管廊形式。三门核电一期工程综合管廊围绕主厂房封闭布置,与BOP厂房之间设置支线管廊,综合管廊总平面布置如图1所示。除设计两个主要人员出入口外,综合管廊每70m还设置一个人员逃生口,用于火灾或管道大破口情况下人员的疏散,以及消防人员的救援进出。为满足综合管廊内管道和桥架的安装需求,设置吊装孔用于管道、桥架等施工材料和施工设备的引入。

综合管廊内主要布置有厂用水管道、生产水、生活水、消防水、除盐水、压缩空气等工艺管线以及在最上方电缆桥架中的中低压电缆、控制电缆和仪表电缆,中部留设人员巡检和通行空间,综合管廊典型断面如图2所示:

2 大件设备运输与吊装区域综合管廊设计

三门核电一期工程综合管廊结构设计荷载,除覆土荷载外,大部分区域考虑路面或地面均布荷载20kN/m2和汽车-20级荷载(不同时作用)。因AP1000三代核电采用模块化和开顶平行施工法,在车间、现场预制拼装的大型模块和设备将通过起重设备吊装至核岛厂房内,仅核岛厂房就有20多个超过100吨的设备或模块。为满足大件设备和模块吊装的需求,在靠近核岛厂房一侧设计有吊装场地,且部分吊装场地区域位于综合管廊上方。综合管廊与吊装场地的位置关系如图3所示:

AP1000核岛大件设备和模块吊装一般先通过液压平板拖车经厂区的重型道路将其运输至综合管廊外侧的起吊点,再由位于吊装场地“T形”台的大型起重设备吊至厂房的最终安装位置。因为大件设备和模块运输和吊装荷载不会直接作用在综合管廊上方路面,所以与吊装场地交叉段综合管廊设计时主要考虑路面大型起重设备空载行走荷载,即考虑起重设备从综合管廊外侧检修场地行走至吊装场地时的路面荷载。考虑到后续机组的建设,三门核电自主采购了LTL2600B型履带式吊车用于大件设备和模块的吊装。吊装场地区域综合管廊设计时考虑结构加固,路面荷载值取履带式吊车空载行走荷载(约290kN/m2),加固范围与吊装场地尺寸保持一致。

经计算,三门核电一期工程常规岛大件设备运输、吊装作业时,设备运输通行区域地面均布荷载将达到60.8kN/m2,超过综合管廊结构设计的地面允许均布荷载值(20kN/m2)。现场最初计划采用扣件式钢管脚手架对综合管廊进行加固,但在实施过程中发现该加固方案在狭窄的管廊内部实施较困难,同时还会影响综合管廊内电缆桥架、管道的施工。因综合管廊内与倒送电相关电缆施工进度不能延误以及后期运行阶段大修时也会有常规岛大件设备运输和吊装需求,三门核电一期工程对于已经完成施工且需要加固的综合管廊区域采用增设立柱和梁板结构的加固方案,加固方案如图4所示。该方案需要重新对加固区域管廊两侧开挖,并对下部回填土进行处理以满足地基承载力要求。为避免上述施工问题,可在设计时综合考虑上部大件设备运输路径与吊装荷载,通过局部增大结构尺寸和配筋方式对综合管廊结构进行加固,大件设备运输与吊装时不需再做处理,同时也能避免影响综合管廊内管线和电缆桥架的施工。AP1000核电站综合管廊加固段的选择和结构顶板上部荷载的确定主要综合考虑下面两个方面:(1)核岛厂房一侧设计有大件设备吊装场地,设备吊装通常在综合管廊外侧起吊,因此综合管廊交叉段加固主要考虑大吊车空载行走荷载,加固范围与吊装场地相匹配;(2)汽机房一侧吊装的大件设备较多,且吊装位置也不相同。在综合管廊设计开始前,需要结合汽机房侧主要大件设备的重量、外形尺寸、运输平板车的尺寸和转弯半径以及设备吊装方案确定大件设备运输和吊车行走路线,尽可能减少与综合管廊的交叉,避免设置过多的加固段。综合管廊加固段荷载主要考虑吊车行走、平板车运输设备总重量以及设备吊装临时措施对综合管廊的荷载,加固段长度结合大件设备运输平板车尺寸和吊车尺寸来确定。根据三门核电一期工程的经验,地下综合管廊加固段设计需考虑的大件设备主要有汽机房东侧吊装的除氧器水箱、除氧器,西侧吊装的凝汽器本体模块,南侧及西南侧吊装的发电机定子、汽水分离再热器、主变压器、发电机转子、低压缸转子。

3 综合管廊与临近建、构筑物的接口设计

3.1 与汽轮机厂房和循环水泵房接口设计

综合管廊设计与厂房在结构上脱开,汽轮机厂房和循环水泵房地下室外墙上预留悬挑的管廊连接段,并增加布筋加固,综合管廊与厂房预留悬挑结构连接接口处设置变形缝和止水带。为避免管廊内水系统管道破裂时积水流入厂房地下室和减少厂房外墙结构较大尺寸的开洞,综合管廊与厂房之间可考虑空间上不直接相通,厂房外墙施工时预留套管,穿墙管道和电缆完成施工后对孔洞缝隙进行封堵。与厂房连接处的综合管廊节点设计如图5所示:

3.2 与气体绝缘输电线路(GIL)沟道交叉段设计

主变与GIS设备厂房之间若采用GIL沟道敷设方式,则沟道在平面布置上将与主厂房四周封闭的综合管廊存在交叉,因此在综合管廊设计时,需根据GIL沟道的平面布置与标高资料,调整交叉段的综合管廊顶板标高。非基岩区域的沟道一般会进行地基处理以避免GIL母线出现不均匀沉降,所以在交叉段综合管廊的顶板可设计与GIL沟道底板共用,综合管廊顶板结构预留GIL沟道插筋。GIL沟道处的综合管廊节点设计如图6所示,除上述主要的设计接口外,综合管廊设计还需要考虑厂区其他工艺管道、实物保护电缆沟和围栏基础、循环水管道和重型道路的布置,合理确定综合管廊的平面和竖向布置,并为后续机组的综合管廊预留接口。

4 综合管廊排水和消防设计

AP1000核电厂综合管廊内安装有大量水系统的管道,包括厂用水系统的管道(DN750mm)、生产水、生活水、消防水和除盐水等。这些水系统管道在运行过程中通常难以避免出现泄漏问题,因此在管廊底部应设置排水找坡层,将泄漏水排至集水井中。为避免出现管道破裂、泄漏导致管廊被淹的情况,可考虑设置集水坑液位报警设施,在管道破裂情况下可发出报警信号提醒运行人员现场确认,并及时启动潜水泵将积水排出至附近的雨水井中。综合管廊上方两侧布置有大量电缆托架和电缆,防火设计需要考虑电缆可能出现的火灾危险。管廊直线段应采用物性条件符合要求的电缆,并设置火灾报警设施;交叉口电缆桥架因层数增加,火灾危险相应增大,因此不同层电缆桥架之间需添加实体隔离或桥架包覆物,降低下层火焰传播至上层桥架电缆的可能性,同时设置自动报警设施。在直线段和交叉口之间还需要增加防火封堵,避免火灾蔓延。若AP1000核电同一机组的厂用水泵控制电缆均通过综合管廊桥架敷设至泵房,而综合管廊内发生火灾可能会使互为冗余的两列厂用水系统失效,进而引起设备冷却水丧失,最终导致电厂停堆。为解决该问题,可考虑采用综合管廊内设置纵向防火墙隔离的方案,使两个厂用水序列分割开来,但管廊的宽度需要相应增加,同时在交叉口处电缆桥架超过规范要求的还需增加喷淋设施。若厂区平面布置的限制无法保证设置防火隔墙所需的管廊宽度,也可考虑将其中一个序列的电缆移出管廊采用直埋敷设方式,并对该序列的厂用水管道进行包裹。

5 结语

综合管廊能够使厂区工艺管道和电缆进行统一规划和布置,避免厂区重复开挖和管线布置混乱的问题,同时便于对管廊内的设备定期维护和检修。在AP1000核电站地下综合管廊设计时需要综合考虑厂房的布置、模块化施工特点、厂区其他沟道和管廊内部管道、电缆敷设要求等多方面的因素,才能最终确定合理的布置和结构设计。总结三门核电一期工程地下综合管廊设计和建造过程中的经验,希望能为其他电厂综合管廊在加固段设计、节点设计以及排水和消防设计方面提供参考。

参考文献

厂房工厂车间装修设计篇7

关键词:玩具厂消防给水设计流量报警阀压力开关喷头

OnDesignofFireSystemforToyManufactory

Abstract:Byapracticalcase,thefiresystemofatoymanufactory,thedesignofautomaticsprinklingfiresystem(ASF)forindustrialbuildingsaccordingtoforeigndesignnormarepresented.SomeguidelinesdifferingfromthedomesticnormsuchasthedecisionofwaterdischargeofASFsystem;thesetupofalarmandpressurevalves,thelayoutofpipelinenetworkandthedistributionofsprinklersaredescribed.

1情况概述

南海市美泰玩具厂(简称玩具厂)始建于80年代初期,是一间大型的中外合资企业。主要产品是塑料玩具,且全部外销。全厂主要车间有:配料车间、注塑车间、喷漆车间、组装车间、维修车间和模具车间等,此外还有写字楼、高架仓库等用房。

建筑高度超过24m的高层工业建筑A、B、C、D厂房4座。在消防设施方面,部分厂房有简单的室内消火栓灭火系统和电力报警系统。

该厂向境外火灾保险公司购买了火灾保险,因此必须重新设置安装消防给水系统。由于境外保险公司的参与,玩具厂消防给水系统的设计与我国国内现有的常规设计有很大的不同。具体的说,具有以下几个特点:一是要符合中华人民共和国的消防规范;二是要满足火灾保险公司的要求;三是所采用的设备和材料要有FM/UL认证。

笔者作为玩具厂消防给水工程的设计者,在此对其进行分析介绍,与大家共同探讨。

2消防给水系统设计水量的确定

经过与消防部门、保险公司协商,消防给水系统水量作如下规定。

2.1室内消火栓用水量的确定

室内消火栓用水量按照《建筑设计防火规范》的标准执行,由于厂房高度介于24m至50m之间,所以消火栓用水量选用25L/s。同时使用水枪5支,每支水枪最小流量5L/s,每根竖管最小流量15L/s,火灾延续时间为2h。

2.2自动喷水灭火系统设计水量的确定

自动喷水灭火系统设计水量按照美国NFPA13和NFPA231C标准确定。由于玩具厂各厂房、车间的生产性质不同,火灾危险性等级也不相同,所以各车间自动喷水灭火系统的喷水强度和作用面积也不同,具体情况见表1。

表1玩具厂喷淋系统设置基本数据

喷淋系统

设置地点喷水强度

/L/(min.m2)

(GPM.ft2)作用面积

/m2(ft2)每只喷头最

大保护面积

/m2(ft2)设计流量

/L/s(GPS)

组装、维修、模

具车间,写字楼6.91(0.17)279(3000)12.05(130)32.13(8.5)

配料、注塑车间11.4(0.28)279(3000)9.3(100)53.01(14)

喷漆车间16.3(0.4)233(2500)9.3(100)63.30(16.7)

高架仓库18.32(0.45)186(2000)9.3(100)56.79(15)

在表1的4组数据当中,两组是中危险级,两组是严重危险级。与我国自动喷水灭火系统常规设计相比有较大差别:一是分类较细,每一等级的喷水量不是固定值,而是根据不同的建筑划分成一个范围;二是喷水量较大;三是严重危险级的喷淋系统仍可采用湿式报警系统。其中,仓库的喷水量是按照NFPA231C标准确定的,其特点是:喷水强度大,作用面积小。

至于系统设计流量的确定,应选择最不利情况时所需的消防流量(即可能发生最大的消防流量)作为自动喷水灭火系统的设计流量。从表1中可以看出,喷漆车间所需的消防喷水量最大,可作为自动喷水灭火系统设计流量。经采用NFPA13规定的计算机方法计算,水量约为68L/s。该车间位于A、B座厂房4楼。火灾延续时间按照NFPA13标准为2h。

3消防给水系统的布置

3.1系统设置

玩具厂的消火栓给水系统和自动喷水灭火系统采用分开设置,消火栓给水系统采用临时高压给水系统,自动喷水灭火系统采用稳压装置。

根据玩具厂的厂区分布特点,全厂设有两座消防泵房和水池。消防水池储量分别为500m3和600m3。消防给水也是两套系统,各自独立(见图1)。分别供应全厂南半区和北半区的消防用水。两个泵房各设2台消火栓泵和自动喷水泵,均为1用1备,稳压泵只设1台。消火栓泵流量28L/s(445GPS),扬程86m(280ft),功率37kW。自动喷水泵流量70L/s(1100GPS),扬程70m(235ft),功率75kW。稳压泵流量1.6L/s(25GPS),扬程86m(280ft),功率4kW。上述所有设备均为国外成套产品,即主泵、稳压泵、启动柜都是成组配套的。

图1玩具厂总平面图

3.2湿式报警阀的设置

按照我国常规作法,严重危险级的建筑物,自动喷水灭火系统的设置应采用雨淋系统。而玩具厂的建筑物危险等级,既有中危险级,又有严重危险级。但自动喷水灭火系统全部采用的是湿式报警系统。

《自动喷水灭火系统设计规范》规定,湿式报警阀的控制范围是采用控制喷头数目来确定的。但玩具厂如果采用此规定,湿式报警阀的布置将比较困难。所以,在玩具厂自动喷水灭火系统设计中,湿式报警阀的控制范围是采用控制面积来确定的。每组湿式报警阀的控制面积不超过4833m2(52000ft2)。全厂共设置8组湿式报警阀,全都布置在厂区内厂房外墙边醒目的地方。

3.3压力开关的设置

消防给水系统中,凡是采用稳压装置的,自动启泵都是靠压力开关来控制。一般常规作法是设置两个压力开关,一个控制稳压泵的启、停,一个控制消防主泵的启动。而在玩具厂消防给水设计中,选择的是另外一种方法。即玩具厂两套系统各设置3个压力开关,一个控制稳压泵启、停,其余两个分别控制两台自动喷水主泵启动。具体作法是:当压力低于0.8MPa时,稳压泵启动,当压力高于0.89MPa时,稳压泵停泵;当压力低于0.75MPa时,启动第一台自动喷水主泵;当压力低于0.7MPa时,启动第二台自动喷水主泵。在这里,第二台自动喷水泵不只是作为备用泵,而是第一台泵水量的补充。

4消防给水管网及喷头的布置

4.1室内消火栓管网的布置

室内消火栓管网呈立体环网布置。消防箱设有普通消火栓和消防软管卷盘,布置间距30m,消防门为玻璃门,按钮开启。4座主厂房屋顶,除了设有试验用的消火栓外还配有压力表。报警警铃及远程启泵信号线全部用镀锌线管保护。

4.2自动喷水给水管网的布置

由于玩具厂目前正在生产,厂房内风槽、线槽、工业管道交叉纵横。使自动喷水给水管道布置十分不便。设计时,多次到现场查看,测量管道的位置,确定管道的走向。施工时,基本上避免了自动喷水管道与其他管道的碰撞及管道走向上的竖向起伏。

根据现场的实际情况,玩具厂自动喷水管网布置成枝状管,属于一种不等压系统。这种系统容易造成喷水不均匀。在管径的选择上,由于玩具厂采用NFPA标准,与《自动喷水灭火系统设计规范》的标准不同,各个厂房、车间的喷水强度也不统一。所以,只能按照NFPA规定的方法,对各车间、分区的自动喷水管网逐段计算。配管时,一要满足喷头的工作压力,二要考虑作用面积内的平均喷水强度。从验算结果看,两条要求都得到满足。

玩具厂自动喷水灭火系统的分布是很广的,各个建筑都布置了自动喷水系统。为了解决距离泵房比较近、楼层比较低的喷淋管网压力过高,流量过大的问题,在低层各分区水流指示器前,设置了减压阀。

4.3放空管的布置

自动喷水给水管网的冲洗和放空措施是非常必要的。对玩具厂来说,自动喷水灭火系统分布广,如何考虑系统放空,这是消防给水设计中面临的一个具体问题。一般的自动喷水设计,是将每层楼自动喷水管网的末端设置一个检验放空阀,然后管网坡向放空阀以利整个系统放空。但是,玩具厂现场情况复杂多变,各种风槽、工艺管道早已安装就位,而且纵横交错。为了避免系统放水不完全,在玩具厂设计中采用了多处放空的方法。除了末端设置检验放空阀外,还在每层喷淋管网配水管的末端设置了放空阀、放空管(见图2)。放空管管径DN100且层层连通,到底层排入雨水井,同时解决了系统管网冲洗放空的问题。

图2喷淋系统放空管示意图

此外,为了使喷淋系统更加安全、保险。除了按规定设置的水泵结合器外,在放空管的底部也设置了水泵结合器。

4.4泵房管道的布置

喷淋系统设计流量的校核,是每个设计者都关心的问题。用末端试水装置检验,只能检验出系统正常与否。因水量太小,不能确定系统设计流量是否符合设计要求。烧爆几只喷头检验也是如此,又不可能让整个作用面积内的喷头一齐喷水来检验。在玩具厂设计中,采用了如下方法来检验。在泵房自动喷水系统总出水管处,设回流试水管至消防水池。在回流试水管上设置了流量计和泄压阀(见图3)。泄压阀是用来防止管道超压,泄压用的。而流量计则是用来检验系统流量大小的。用控制系统压力的方法,检验系统流量是否符合设计要求。流量计带液晶显示和远传功能,不仅现场能看得到,消防中心也能观察到。同时,在泵房内消火栓系统管网和自动喷水系统管网之间,设一连通管。平时用阀门关闭,必要时可打开阀门,互为补充。这也是一种出于安全保险的考虑。

图3消防泵房示意图

4.5喷头的布置

由于玩具厂各厂房、车间的喷水量各不相同。要根据其特点选择不同种类的喷头应用于不同的场合,做到各类喷头各尽所能、各尽其责。喷水量小的选择12.7mm口径的喷头,喷水量大的选择13.5mm口径的喷头。个别地方,如调色间、调漆间,上空布满抽风口,则选择了13.5mm口径的侧向喷头。根据玩具厂生产现场腐蚀性较大、生产操作容易发生碰撞的特点,选择了快速反应、易熔合金喷头,动作温度74℃。具体情况见表2。

表2玩具厂喷头种类一览

喷头设置地点出水口径

/mm螺纹口径

/mm动作温度

/℃K值

组装、维修、模具

车间,写字楼12.7(1/2”)15(1/2”)7480

配料,注塑车间12.7(1/2”)15(1/2”)7480

喷漆车间13.5(17/32”)20(3/4”)74115

高架仓库13.5(17/32”)20(3/4”)74115

在喷头的布置上,根据场合不同,选择不同的喷头布置方式。对所有建筑(厂房)均采用建筑喷淋的方式来布置喷头。建筑喷淋采用了全方位保护方式布置,喷头间距为3.0m×3.0m和2.5m×2.2m,这当中考虑了建筑的开间布局和横梁的位置因素。在设备比较高大和密集的车间,以及高架仓库除了采用常规建筑喷淋外,还采用了加密建筑喷淋和设备喷淋双重保护的方法来布置喷头。设备喷淋采用分层布置。在中、下层喷淋,为防止碰撞,造成喷头误喷,喷头上都加了保护罩,个别地方则采用边墙型喷头。

5完善的消防管理措施

要确保玩具厂消防万无一失,完善的消防硬件设施是十分必要的。但如何做到硬件好用、管用,随时发挥作用,消防的软件设施就显得十分重要了。在这方面外资厂的一些作法值得我们借鉴,笔者在这里简单介绍一下。

5.1施工材料的保证

为保证消防设施的安全、可靠,玩具厂所有设备、材料都必须有FM/UL认证。所以,所有喷头、水流指示器、湿式报警阀、阀门、水泵等设备、材料均为国外产品。消火栓、管道采用国内产品。小于等于DN100的管道采用国标加厚镀锌管,大于DN100的管道采用镀锌无缝钢管。

5.2管理制度的保证

玩具厂的防火制度是非常严格的,除了平时的防火宣传、防火教育外,生产过程中的日常操作都有严格的规定。同时规定了厂房内严禁吸烟,严禁动用电气焊。厂房内这一类的警告牌随处可见,而且防火巡视员经常巡视检查。在消防工程施工中,也不允许在厂房内动用电气焊,镀锌无缝钢管的连接都是在厂外焊好法兰,现场装配。施工中,配带手提灭火器的防火巡视员现场监视。

关于消防设施的保养,在消防工程的招标文件中,就明确提出了施工单位要负责以后的日常维护保养工作。而且要有详细的维修保养计划。要求一个季度检查维护一次,一年对设备检查维修一次。施工计划中,要有防火制度,否则算废标。

至于消防设施的管理,玩具厂明确规定:保安部负责消防设施的管理和巡视。保安值班室挂有消防系统图和巡视路线图。为防止无关人员随便操作消防设施上的阀门,各处阀门平常都上锁,钥匙就挂在消防系统图上阀门的位置上,以免搞错。需要操作时,必须经过保安值班人员。

6有关问题的思考

6.1自动喷水灭火系统设计流量的商榷

自动喷水灭火系统的设计流量关系到对建筑物火灾的控制程度,也关系到灭火的效果。针对火灾危险性等级不同的建筑物制定出不同的设计流量标准十分重要。

我国《自动喷水灭火系统设计规范》将建筑物和构筑物的火灾危险性等级分为三个等级,即严重危险级、中危险级和轻危险级。但规范并没有一个明确标准来划分这三个等级。因此,在设计时只能将所设计的建筑物与规范附录二中所列举的各种建筑进行比较来确定其危险性等级。而且,对各危险性等级的建筑物,设计流量标准只有一个固定值。尤其是工业建筑,生产类别各不相同,应该针对不同的生产类别,制定出一个比较详细的设计流量分类标准。

笔者在玩具厂消防给水设计过程中,接触了一些国外规范,像英国的FOC标准。其中,对于工业建筑,也是根据不同的生产类别,制定出不同的设计流量分类标准。

我国应根据国内长期实践的经验,同时参照国外的先进经验,尽快制定出既安全又经济合理的设计流量数据。

在玩具厂消防工程设计过程中,有一点感受就是规范、标准要定期修订。事物是在飞速发展的,新技术、新方法、新概念不断出现。一种标准长期不进行修订,就跟不上事物的发展,就是落后的标准。

6.2报警阀的控制范围

湿式报警阀是自动喷水灭火系统的重要部件。《自动喷水灭火系统设计规范》中将湿式报警阀的控制范围确定为不超过800个喷头。这是从系统检修停用的角度来考虑的,是非常对的。不能允许喷淋系统停用的范围过大,影响到建筑物安全,控制范围应有所限制。但是,这样规定在设计过程中实行起来问题较多。实际上控制喷头数目也就是确定湿式系统的控制面积。由于喷头布置的疏密不同,同样多的喷头,保护面积是不相同的。相反,同样的面积,喷头数目也是不相同的。例如:1万m2的面积,喷头按3.6m×3.6m布置,喷头数目就少于800个,用1个湿式报警阀就行了。而按3.0m×3.6m布置,喷头数目就超过了800个,要用2个湿式报警阀。尤其是需要布置上、下喷头的地方,上、下喷头按1个喷头计算,还是按2个喷头计算,就有不同的意见。所以,湿式报警阀的控制范围用面积来控制较为合适。像玩具厂这样大范围布置自动喷水灭火系统的地方,采用控制面积的方式布置湿式报警阀,基本上做到了报警阀分布均匀,报警时不仅告诉人们有火灾发生,同时知道发生在何处。

6.3消防器材的问题

玩具厂消防给水工程上的主要设备、材料,基本上都是国外产品。设计时,曾提出采用国内产品,对方表示同意,但是提出必须要有FM/UL认证。我们在市场上调查了一下国内产品,几乎没有FM/UL认证的,因此只好放弃。所以,希望中国的消防设备生产厂家,能够尽快填补这块空白。

6.4消防标准的衔接

目前,越来越多的外资企业到中国办厂,他们的到来必然也带来了国外的消防标准,这些标准如何与国内标准衔接呢?目前,没有明确规定。像玩具厂这种作法就是设计者、火灾保险公司、消防部门3家协商的结果。

厂房工厂车间装修设计篇8

地下厂房按2级建筑物设计,厂区地震基本烈度为6度,按规范规定,建筑物不进行地震设防。

1地下厂房位置选择

在选择地下厂房位置时,考虑了下面几个因素。

(1)厂房上游侧靠近水库处有F1断层,与厂房轴线基本平行。厂房应尽量远离F1,以确保厂房围岩稳定和减少渗水量。

(2)厂房靠山体侧的F3断层沿冲沟发育,F3影响范围内的不透水层埋藏很深,透水量较大。因此厂房应尽可能远离F3影响带。

(3)通过厂房的F7、F28、F29断层,与厂房轴线有较大的夹角,对厂房围岩稳定影响不大。而F12、F2断层与厂房轴线基本平行,F2断层靠河床侧正与厂房顶拱相切,对厂房围岩稳定不利,厂房应尽可能地避开。

综合以上因素,同时考虑主变室、尾水调压室及输水系统的布置,确定了主厂房位置。根据实际开挖揭露的地质情况来看,地下厂房位置选择是合理的。

2厂房纵轴线方向确定

2.1确定原则

(1)厂房纵轴线应尽可能垂直于岩体主要节理裂隙的走向或与其成较大的夹角,避免上下游边墙承受较大的侧向压力,以利于围岩稳定。

(2)轴线尽可能平行于初始地应力的最大主应力方向或与其成较小夹角。

2.2轴线方向确定

根据厂区节理玫瑰图及实测的三维地应力成果,在满足洞室稳定和输水发电系统总布置要求的前提下,厂房轴线方向确定为N40°E。理由如下。

(1)根据厂区节理玫瑰图分析,主要节理组方向为N15~30°W,次要节理组方向为N70~85°E。厂房纵轴线与主要节理组方向夹角为55~70°,与次要节理组方向夹角为30~45°。

(2)从实测的三维地应力成果看,最大主应力方向为N68.9°E,与厂房纵轴线方向夹角为28.9°,虽然夹角稍偏大,但其应力值为6.80MPa,属中低应力区,对厂房纵轴线方向选择影响不大。

3地下洞室群布置

除了开关站出线场和控制楼布置于地面外,主厂房、主变室、尾水调压室及其他洞室均布置于地下,形成了一个错综复杂的地下洞室群。

厂区枢纽布置采用主厂房、主变室、尾水调压室三大洞室平行布置的形式,因此,三大洞室的纵轴线方向与主要节理的夹角方向均较大,对顶拱和边墙稳定有利。主厂房与主变室间净距22m(1倍大洞室跨度),主变室与尾水调压室间净距19.6m。主变室靠近主厂房布置,母线长度较短,可降低造价,提高运行的可靠性。

主厂房与主变室间布置有4条母线洞,每台机组母线通过各自的母线洞至主变室。主变室中布置有电缆电梯竖井,与高程180m的地面开关站和控制楼相连接,由于主变室与主厂房安装场高程相同,故布置了一条进厂交通洞,担负主厂房和主变室的交通运输。在主厂房和主变室四周设上下两层排水廊道,排水廊道内设D76@3m排水孔形成排水帷幕,组成厂区排水系统,以减少主厂房和主变室的渗水量。

地下厂房安全通道除靠山体侧的进厂交通洞和电缆电梯竖井直接与地面相通外,靠河床侧还利用下层排水廊道经过2号排风竖井和调压室运输洞与左岸厂坝公路相接。

4厂房内部布置

主厂房洞室开挖尺寸为129.50m×21.90m×52.08m(长×宽×高),布置有4台单机容量150MW的竖轴水轮发电机组,机组间距21m。水轮机安装高程为65.60m。廊道层、水轮机层、发电机层及厂房洞顶高程分别为59.00、69.80、76.60、100.58m,尾水管底板高程50.00m。廊道层布置有盘形阀、滤水设备等;水轮机层上游侧布置调速器、油压装置等水力机械设备及管路,下游侧布置母线出线、电缆等电器设备。发电机层下游侧布置有励磁盘、机旁盘等设备。每一个机组段设楼梯一部,作为连接发电机层和廊道层的垂直交通道。安装场布置在靠山体一侧,长39m,按1台机组大修时主要部件堆放的实际需要,同时考虑施工期的安装及卸车等要求确定。检修集水井和渗漏集水井布置于主厂房靠河床侧,为避免机组检修时下游水位倒灌,检修集水井顶部高程为76.60m,与发电机层高程相同。由于山体内渗透水量难以准确计算,为保证厂房安全运行,厂房内渗漏集水井仅考虑厂房围岩及机组渗漏水量;排水廊道内的山体渗水量流入排水廊道单独设置的集水井内。在主厂房两端各布置1个空调机室。

主厂房吊车梁采用岩壁吊车梁,省去了钢筋混凝土吊车柱,缩小了厂房跨度,同时厂房桥机可以提前安装运行,方便施工。主厂房顶部采用轻钢屋架,上设轻质防水屋面,下设轻质吊顶,中间布置通风管道等。

为了改善地下厂房的运行条件,副厂房采用分散布置方式,将中控室和电气辅助生产用房及办公用房布置于主变室顶部高程180m的地面控制楼内,其余房间分别布置于主厂房和主变室内。

主变室开挖尺寸为97.35m×16.00m×14.80m(长×宽×高),内设两台220kV三相360MV·A双卷主变压器,底高程76.60m,与发电机层相同,主变压器可经进厂交通洞入安装场进行检修。主变室下部为高压电缆道和事故油池。主变室靠近进厂交通洞布置,电缆电梯竖井通向高程180m地面开关站和控制楼。在主变室两端各布置1个空调机室。

母线洞与主厂房纵轴线相垂直,开挖断面为8.00m×8.40m(宽×高),底板高程69.80m,与主厂房水轮机层高程相同。母线洞内布置有电压互感器柜、发电机断路器、励磁变压器、电气制动柜等设备。地下厂房横剖面见图1。

5地下厂房支护设计

5.1支护设计原则

(1)根据厂房部位的地质条件,主厂房、主变室、母线洞、尾水调压室和进厂交通洞等均采用喷锚支护作为永久支护形式,对尾水管、输水隧洞及局部洞室交岔口采用钢筋混凝土衬砌作为永久支护。

(2)喷锚支护设计按招标设计阶段地勘报告提供的岩体参数进行,即按维持Ⅱ类围岩稳定所需的支护强度设计。

(3)喷锚支护设计按照新奥法原理,采用“设计施工监测修正设计”的方法,在施工中加强监测和观察,根据实际情况随时调整支护参数。

5.2系统喷锚支护设计

初期喷锚支护参数的选择主要采用围岩分类法、工程类比法、理论验算法,并辅以有限单元法计算成果进行验证。

围岩分类法采用N·Barton,Q系统分类法、Bieniawski地质力学分类法(RMR)、《GBJ86-85锚杆喷射混凝土支护技术规范》和《SD335-89水电站厂房设计规范》等;工程类比法采用国内外已建地下厂房的实例进行类比;理论验算法采用喷、锚、网联合支护的设计方法验算支护效果;有限单元法采用平面有限元和三维有限元法对地下洞室群的围岩稳定性、初选支护参数的合理性、地质参数的敏感性等进行分析、论证,选择了较为合理的支护参数。

6主厂房结构设计

主厂房主要结构有尾水管、蜗壳、机墩、风罩、发电机层楼板和岩壁吊车梁等。

6.1尾水管

尾水管为单孔钢筋混凝土结构,出口为8m×8m的方形断面,轴线与机组纵轴线垂直。尾水管结构由锥管段、弯管段和扩散段三部分组成。由于锥管段和弯管上段四周为大体积混凝土,并设有钢衬,所以设计中只对弯管下段和扩散段进行了结构计算,锥管段及弯管上段参照已建电站经验配置构造钢筋。

弯管下段结构计算中,在垂直水流方向切取一代表性剖面,按弹性地基上的箱形结构进行内力计算,由于尾水管杆件截面尺寸较大,跨高比小,故计算中考虑剪切变形和刚性节点影响。扩散段结构计算中,在垂直水流方向切取两个代表性剖面,按钢筋混凝土衬砌结构采用边值法进行结构分析、配筋,按有限元法进行校核。

6.2蜗壳

蜗壳采用金属蜗壳,进口直径为5.40m,顶板最小厚度1.50m。蜗壳上半部与钢筋混凝土之间铺设弹性垫层隔开,使蜗壳混凝土不承受内水压力作用。弹性垫层材料采用聚苯乙烯泡沫板,厚度为3cm。蜗壳钢筋混凝土结构为一空间整体结构,计算中简化为平面问题考虑,即沿蜗壳中心线0°、90°、180°径向切取3个计算断面,形成一变截面Γ形框架,不考虑各Γ形框架之间的约束作用。采用结构力学和平面有限元方法进行内力分析。考虑到弹性垫层材料具有一定的弹模,正常运行时蜗壳内水压力有可能部分传至混凝土结构,为安全计,结构计算中对上述情况进行了校核。

6.3机墩、风罩

机墩是水轮发电机组的支承结构,承受着巨大的动荷载和静荷载。本电站机墩形式为圆筒式,内径5.93m,下部最大壁厚4.035m,高3.145m,它具有刚度大、抗扭和抗振性能好的特点。机墩结构计算包括动力计算和静力计算两部分。动力计算中忽略机墩自重,用一个作用于圆筒顶的集中质量代替原有圆筒的质量,使在此集中质量作用下的单自由度体系的振动频率与原来的多自由度体系的最小频率接近;机墩的振动作为单自由度体系计算,在计算动力系数及自振频率中不计阻尼影响;机墩的振动为弹性限幅内的微幅振动,力和变位之间的关系服从虎克定律;结构振动时的弹性曲线与在静质量荷载作用下的弹性曲线形式相似,从而可用“动静法”进行动力计算。在静力计算中假定荷载沿圆周均匀分布,正应力取单宽直条按矩形截面偏心受压构件计算;扭矩产生的剪应力假定按两端自由的圆筒受扭公式计算;有人孔部位的扭矩剪应力假定按开口圆筒受扭公式计算;孔边应力集中(正应力)按圆筒展开后的无限大平板开孔公式计算。计算结果除进人孔部位因主拉应力超过混凝土允许拉应力需按计算配筋外,其余部位按构造配筋。

发电机风罩为一钢筋混凝土薄壁圆筒结构,内径13m,壁厚0.50m,高3.655m,其底部固结于机墩上,顶部与发电机层楼板整体连接。风罩内力按薄壁圆筒公式进行计算,计算时考虑温度应力的影响,外壁温度取20℃(冬天)、30℃(夏天);内壁温度取40℃;混凝土浇筑温度根据当地的气温资料取12℃。计算结果表明,混凝土浇筑温度对风罩内力影响很大,因此在施工中要求严格控制混凝土的浇筑温度。

6.4楼板

发电机层楼板采用薄板、次梁、主梁和柱组成的常规板、梁、柱结构系统。设计活荷载发电机层为50kN/m2,安装场为160kN/m2。

6.5岩壁吊车梁

岩壁吊车梁是通过长锚杆将钢筋混凝土吊车梁固定在岩壁上的结构,吊车的全部荷载通过锚杆和钢筋混凝土吊车梁与岩石接触面上的摩擦力传到岩体上。岩壁吊车梁计算取纵向单米宽度,按刚体极限平衡计算,不考虑吊车梁纵向的影响。桥机设计最大轮压450kN,计算中对岩壁吊车梁的断面尺寸、岩壁壁座角和上排锚杆倾角进行了多种组合,最终确定的岩壁吊车梁岩壁壁座角α=20°,上排受拉锚杆(A、B锚杆)倾角分别为βA=25°、βB=20°,锚杆直径和间距均为φ36@0.75m,锚杆计算安全系数K=2.24(设计),K′=2.11(校核)。

受拉锚杆锚入岩石的深度,一方面是为了吊车梁受力的需要,另一方面是加强岩壁支护和控制围岩变形,根据挪威专家推荐的经验公式L=0.15H+2(H为厂房边墙高度m)进行计算,受拉锚杆锚入岩石的深度为8m。受压锚杆主要起加固围岩和保证吊车梁混凝土与岩壁良好粘结的作用,其直径、间距及锚入岩石的深度,参照已建工程的经验选用φ32@0.75m,L=6m。设计中要求锚杆靠岩壁表面2m范围涂上沥青,将拉力传至岩体深部以减小锚杆的初始应力(但由于种种原因施工中未被采用)。

推荐期刊