线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

检测系统设计论文8篇

时间:2022-07-22 14:44:32

检测系统设计论文

检测系统设计论文篇1

检测系统由数据采集端、嵌入式网关远程发送端以及检测管理中心三部分组成。首先,传感器通过ZigBee协议发送所采集的植物生理参数信息到网关中的协调器节点,协调器将数据通过RS—232串口发送到基于ARM9的CDMADTU嵌入式模块,CDMADTU模块对数据进行处理后通过CDMA2000网络和Internet网络将数据发送到由PC构建的Web服务器,发送到服务器的优点是数据易存储易查询。最后,检测中心还能通过基于LabVIEW编写的上位机软件根据已知的数据分析出植物的生理生长状况,并设计了一种根据蒸腾速率和叶绿素含量等参数的自动报警界面,从而可以更精确地判断和控制植物的长势和各项经济指标。

2系统硬件设计

2.1数据采集节点硬件设计

数据采集节点组要负责采集植物的各项生理参数(茎秆与果实直径、叶绿素含量、植物茎流等)和无线发送采集到的数据。无线收发芯片选用TI公司推出的CC2530作为ZigBee网络的射频收发送模块。CC2530是应用于ZigBee网络的真正片上系统(SOC)解决方案,包括一个高性能的2.4GHz射频收发器,内含一个高性能、低功耗的增强型8051内核和一个8通道12位A/D转换器。CC2530较以往常用的CC2430芯片具有灵敏度更高、功耗更小、通信距离更远等优点,因此,满足无线传感器及其网络对高性能、低成本、低功耗的要求。本设计中需要测量的茎秆直径采用基于LVDT的植物茎秆传感器,叶绿素含量测量采用基于透射型活体叶绿素传感器,植物茎流测量采用基于热平衡法传感器,这些传感器的输出均为模拟信号,在传感器部分对输出信号进行调理就能够直接与CC2530芯片连接。

2.2嵌入式网关硬件设计

嵌入式网关主要负责对接收的数据进行处理与存储,并实现ZigBee协议与TCP/IP协议之间的转换,从而将数据发送到远程检测系统。嵌入式网关主要由协调器和基于AM9的CDMADTU模块组成,CDMADTU模块包括AM9微处理器和DTU发送模块。本设计的CDMADTU选用CDMA2000通信模块,该模块采用AM9高性能工业级嵌入式处理器,供电范围宽(5~32VDC),数据传输速度高,系统稳定可靠。在使用CDMADTU之前需要做两步准备:一是因为本设计采用动态IP链接Internet网络与Web服务器,因此,要申请域名,申请域名解析服务后可以通过域名自动建立通信。接入CDMA网络前,需要向电信公司申请SIM卡,SIM卡可为CDMADTU提供链接Internet网络服务。二是使用前需要用终端软件或AT命令对参数设置,以决定进入网络透明数据传输模式的工作方式。

2.3锂电池供电模块设计

植物生理检测系统的实际应用环境很复杂,电源供给很难保障,因此,本设计中采用3.6V锂电池供电。但植物生理检测系统中传感器模块、CC2530等模块需要不同的电源供给,因此,本设计采用DC-DC芯片NCP500SN33G获得稳定的3.3V,该电压适用于SOC工作电压。采用TPS61040将3.6V自举到适用于各类传感器工作的12V电压。其电路图分别如图4、图5所示。

3系统软件设计

3.1数据采集节点软件设计

采集端传感器节点主要负责采集植物各项生理信息并组网将数据发送给嵌入式网关。本设计采用IAR集成开发环境自底向上构建ZigBee网络。为了节省电量,采用的传感器节点一般处于低功耗模式,直到收到上位机命令后才将对应的检测数据上传到网关。为了提高效率,上位机可设置每隔一段时间后对传感器发送上传数据命令。另外,还采用了中值平均滤波算法来消除个别传感器系统内部的随机干扰,提高了传感器的测量精度。

3.2嵌入式网关软件设计

嵌入式网关的软件设计是建立在Linuxredhatlinux操作系统上的,该操作系统具有多任务操作进程、支持硬件广泛、程序模块化、源代码公开等诸多优点而被广泛使用。使用IAR集成开发环境来建立嵌入式网关和远程检测管理中心的网络连接。

3.3上位机软件设计

系统采用LabVIEW平台编写上位机软件,根据设计要求,将软件分为数据显示模块、数据分析模块、数据存储三大模块。数据显示模块主要是将接收到的数据和分析后的结果显示在上位机的前面板上。数据分析模块主要是根据所要检测植物参数的不同选择合适的分析和处理方法。本系统分析模块实现的功能是:当测量数据在正常范围内时指示灯显示绿色,表示植物长势正常。当某一参数超出或者低于正常范围时,其对应的指示灯显示红色报警。数据存储模块主要是将数据存储到数据库中,由于LabVIEW不能直接访问数据库,因此,采用SQL语言来完成对数据库的访问。

4实验结果与分析

为了对设计的系统性能各方面进行验证,在29℃的温室环境下选择了4株番茄做为测试对象,4株番茄均匀分布于250mm×250mm的测试区域,将协调器放置在温室的中心区域从而组建星型网络结构。每株番茄同时采集茎流、叶绿素含量、番茄果实的直径等生理参数并将参数发送到上位机显示界面,采集间隔为2h,总检测时间为24h。

5结论

检测系统设计论文篇2

关键词:检测系统;毕业设计(论文);思考

作者简介:王长鹏(1977-),男,江苏南京人,三江学院教务处,讲师;华沙(1978-),男,江苏南京人,三江学院教务处,副研究员。(江苏 南京 210012)

中图分类号:G642.477 文献标识码:A 文章编号:1007-0079(2014)08-0200-01

毕业设计(论文)是深化教学改革、提高教学质量、培养具有创新精神和实践能力的高等学校培养人才的不可缺少的重要教学环节,是评价学生综合素质、专业技术、思维方法和实践能力的重要内容。学生毕业设计(论文)的质量是评价高校教学质量的重要指标。近年来,高校本科生毕业设计(论文)的质量普遍下滑,引起了教育界专家的广泛关注。2013年1月1日教育部颁发了《学位论文作假行为处理办法》,针对论文作假行为制定相应的处理办法,加大处罚力度,从制度上进行遏制,以促进学风建设,保证高等教育事业科学发展。为了更好地执行教育部颁布的此办法,许多高校纷纷采购了论文抄袭检测系统对本校的论文进行抽查或普查。如何通过检测系统保证和提高毕业设计(论文)的质量已成为当前高校关注和研究的课题。

一、主要问题分析

1.学生因素

各高校的毕业设计(论文)工作基本上在第七学期末或者第八学期初启动,而且大部分都持续16周,即每年的12月(1月)至次年的6月上旬。而这段时间正是毕业生毕业实习或找工作的高峰期,在当前找工作困难的形势下毕业生不得不提前准备,参加各类招聘会场和用人单位的面试,有的毕业生往往在第七学期末就早早向学校提交了用人单位开具的实习证明,使得毕业设计(论文)与学生就业之间的矛盾越来越明显。由于学生在实习期间忙于熟悉单位业务操作,因此投入在毕业设计(论文)中的精力也非常有限。在就业压力的冲击下本科毕业设计(论文)整体质量有下降的趋势。

毕业设计(论文)是实现培养目标的重要教学环节,是理论联系实际、教育与社会实践相结合的重要体现,是培养大学生的创新意识、创造能力和创业精神的重要手段。然而,大部分论文基本上是借鉴了前人的研究成果,自己独创的东西少,理论阐述深度不足。个别同学的论文复制比太高,抄袭严重。有些学生选题大而空,或者不能做到与专业培养目标紧密联系。这些也是造成毕业设计(论文)质量下降的因素。

2.指导老师因素

在教育大众化背景下,高校经过连续几年的扩招,学生人数猛增,一个教师指导学生的数量也逐渐增多,许多院校一般都达到10名学生左右。此外,高校给每个教师规定了工作量,除了完成课堂教学任务外还有其他相关的科研项目。如果教师指导学生人数过多,由于精力有限,自然就会影响论文指导的质量。而对于民办本科院校来说,一方面专职年青教师自身的科研水平有限,没有能力指导学生完成高水平的毕业设计(论文);另一方面兼职指导教师比较多,会出现个别的兼职教师责任心不强,对学生要求不严格,也使得毕业设计(论文)质量难以保证。

3.管理制度因素

各高校虽然都制订了比较全面的毕业设计(论文)的有关工作规程和管理办法,但是只能保证毕业设计(论文)程序、流程、格式等方面的规范,而毕业设计(论文)的本身质量却依然无法保证,如论文工作量不足、对知识和技能的应用过于简单、叙述不深入、图表制作粗糙等质量问题。学校缺乏对毕业设计(论文)全方位的质量评价和监控体系,答辩环节往往出现过于集中或“走过场”的现象。这些因素都使得毕业设计(论文)的质量得不到保证。

二、方法与措施

1.加强过程管理

为了严把毕业设计(论文)质量关,需要重视过程管理中的以下几个环节:选题方向和内容要符合本学科专业培养目标,达到科学研究和实践能力培养的目的,难易度要满足专业培养方案中对素质、能力和知识结构的要求,难易适中,工作量适当;虽然毕业生由于毕业实习或找工作难以返校集中进行当面指导,但是除了通过电话、电子邮件、QQ等通讯方式之外,仍要保证当面指导的次数和时间;对学生的毕业设计(论文)通过系统进行,低于某个比例(江苏地区各高校自行制订的,基本上以20%和30%为标准)才允许答辩,抄袭严重者推迟答辩;答辩前指导教师、评阅教师和答辩教师须认真审阅学生论文,严把论文质量关,答辩工作不能流于形式。为保证答辩的质量,学生答辩的时间不得少于25~30分钟,合理安排答辩工作的时间、批次及流程等。

2.培养实践能力

为了避免学生毕业设计(论文)出现纸上谈兵、抄袭资料、拼凑论文等现象,应该从源头抓起,在入校后就要有意识地让学生接受科学研究方法、工程设计方法与实践技能的基本训练,实现实践能力、创新能力与综合素质的全面提高。鼓励学生参加大学生创新创业训练计划项目和相关的学科竞赛,在实践过程中锻炼能力,毕业设计(论文)可以在创新项目和学科竞赛的研究成果基础上进行提升和深化。理工科学生能够运用本专业设计或研究的方法、手段和工具开展课题的设计与研究工作。指导教师在下达任务书时必须明确学生完成毕业设计(论文)工作的具体任务和参数指标,同时,在答辩之前院(系)还要参照任务书的参数指标对学生设计的实物进行验收,填写《软硬件验收表》。文管类学生能够综合应用所学知识对课题所研究的问题进行分析。指导教师对学生论文的研究目标要明确,内容要具体,且具有一定的深度。同时,文管类学生要尽量通过实地考察和实证研究撰写毕业论文。

3.加强校企合作

理工类学生在校内进行三年半的理论知识学习和模拟实践后,最后一学期全程参与到实际项目和工作环境中,将毕业实习与设计结合起来,在校内和校外指导教师的联合指导下完成毕业设计。现场教师都是拥有丰富实践经验的技术人员,他们在学生具体工作中的指导不仅及时解决了学生的问题,更重要的是教给了学生课堂上、实验室中无法接触到的最新的技术知识、解决问题的思路以及言传身教的做人、做事道理。他们是校外毕业设计的师资队伍补充,也是学生刚踏上社会的领路人。毕业设计改革后,实际校内教师指导仅指导了理论部分,实践部分由现场教师指导完成,即由2名及2名以上指导教师指导1名毕业生,实行了双导师制,因此,在落实好企业导师指导的前提下校内指导学生人数可适当增加,缓解专职指导教师人数紧张的压力。

4.规范论文撰写

通过对结果的分析,有许多高复制比率的论文是因为学生引用不规范或无引用造成的。因此,论文中的术语、图表、数据、公式、引用、标注及参考文献的引用及著录要符合学校毕业设计(论文)工作规程的规范要求。尤其在借鉴和引用前人研究成果时一定要将引用部分标明清楚,避免发生因为引用和标注的不规范而造成论文复制比增高的情况。

三、结语

各高校刚刚接触系统,而检测系统能否成为提高当前毕业设计(论文)整体质量的良药仍需要今后多年的实践来证明。笔者认为检测系统只是提供判断论文是否抄袭的一个标准,而提高毕业设计(论文)整体质量则不是一蹴而就的,需要学校、院系、指导教师和学生的共同努力,这样才能达到标本兼治的效果。

参考文献:

[1]薛宏丽,马朝兴.高校毕业设计(论文)质量保障体系的研究与实践[J].职业时空,2009,(10).

检测系统设计论文篇3

BY-150型种子包衣机是一种智能化的种子精细加工包衣处理设备,主要由种子定量供给组件、定量加液组件、定量加粉组件及电气控制系统等部分组成。精确控制供种量、进液量和进粉量三者的比例是包衣流程的关键。设备开启时对种子进行质量设定,然后打开进料门,将种子加入称重桶内;在称重操作完成后,打开下料门,种子进入混合桶中;加液管依次打开液阀、气阀,将药液定量注入到混合桶内,同时包衣药粉在推进螺杆机构的控制下进行定量加粉;经过一定时间的搅拌混合后,打开出料门,将处理后的种子送出,完成整个包衣流程。在整个包衣流程中,通过称重桶内的高精度称重传感器对供种量进行检测;通过加液管内的液位传感器对进液量进行检测。各传感器在测点处输出的信号量可作为包衣流程中各动作开启和完成的标志,保证包衣流程的有序进行。通过定时器控制匀速旋转的加粉电机,即可实现药粉投放的定量控制。

2检测控制系统硬件设计

2.1系统总体结构

综合包衣机的工作流程,整个检测控制系统主要由包衣机控制主板、多传感器信号检测板、执行器控制板和液晶触摸屏构成

。多传感器信号检测板实现对称重传感器和液位传感器信号的采集;执行器控制板可实现对电机设备启停的开关量控制;用户通过液晶触摸屏进行包衣参数设置、包衣过程启停、包衣状态显示等操作。包衣机控制主板采用RS-485方式与多传感器信号检测板和执行器控制板进行通讯,采用RS-232方式与液晶触摸屏进行通讯。

2.2包衣机控制主板

包衣机控制主板选用RealARM6410开发板。该开发板以ARM11内核的S3C6410芯片作为控制核心,包含电源模块、晶振模块、复位电路、485通信模块和232通信模块等外部设备,可以装载和运行LINUX操作系统,具有处理运算能力强、耗电低、扩展性强等特点。将RealARM6410开发板作为包衣机的控制主板,可以很好地保证系统在包衣过程中的可靠性和稳定性。

2.3多传感器信号检测板

多传感器信号检测板选用意法半导体公司出产的32位高性能STM32F103C6T6作为微控制器。该微控制器的核心是ARMCortex-M3处理器,最高CPU时钟为72MHz,具有良好的精密性、可靠性和运算速度。本设计中针对供种量和进液量两种参数信息,分为两个检测模块进行硬件开发。

2.3.1供种量检测模块

供种量检测模块包含2路称重传感器信号放大电路用以检测称重桶中种子的质量,原理如图3所示。本设计中采用上海大和衡器有限公司出产的UH-53型称重传感器,该传感器具有准确度高、抗偏载能力强和长期稳定性好等优点。为了增加检测模块的抗干扰性,保证种子质量的检测精度,采用AnalogDe-vices公司具有低噪声、低失调电压和高共模抑制比特点的AD8608型CMOS精密运算放大器构成两级差分放大电路。放大电路第一级由两个同相输入运算放大器电路并联,第二级串联一个差分输入的运算放大器。这样的连接方式可以很好地抑制输入电压中的共模成分。参照称重传感器的额定输出,可以取放大倍数为500倍。为了减少第二级运放共模误差造成的影响,第一级运放的增益要尽可能高。因此,将第一级放大倍数设定为500。经过取值和计算。放大电路的输出端经过一个分压电路后,接入STM32芯片上带有A/D转换通道的I/O接口。

2.3.2进液量检测模块

进液量检测模块包含上液位和下液位传感器检测电路。Uup为上液位传感器信号,Udown为下液位传感器信号。Control1为控制主板发送的补液信号,Control2为控制主板发送的加液信号。动作执行之前Control1、Control2都为低电平,以加液动作为例,当液面高于上液位传感器时,Uup、Udown都为低电平。Uup通过光耦开关电路,在PA3处输出高电平到STM32芯片的I/O接口上;Udown通过光耦开关电路,在PA4处输出低电平到到STM32芯片的I/O接口上。此时Control2发送一个高电平信号,使RS锁存器2输出高电平,经过继电器驱动电路后使加液电机运转;然后使Control2变回低电平,在液面介于上下液位传感器之间时,Uup为高电平、Udown为低电平,PA4处仍为低电平,使RS锁存器2的输出保持之前的高电平状,加液电机保持运转。当液面低于下液位传感器时,Uup、Udown都为高电平,PA4变为高电平,使RS锁存器2输出低电平,加液电机停止;在此过程中补液电机一直保持停止状态,直到单片机通过Control1发送补液信号时再进入补液动作。通过采用主板信号控制动作启动、传感器检测电路直接控制动作结束的方式,可以有效避免药液的过量添加,保证了进液控制的稳定性。

2.4液晶触摸屏

液晶触摸屏采用广州微嵌计算机科技有限公司的WQT系列产品,它由400MHz的ARM9高速CPU、数字LED背光显示和高精度电阻式触摸屏等部分构成,有良好的兼容性和友好的人机操作界面。该液晶屏具备数据显示、数据监控和触摸控制等基本功能,并且采用双口独立通讯,可通过自定义的通讯协议实现与主板之间的信息传输。

2.5执行器控制板

执行器控制板采用与传感器信号采集板相同的STM32F103C6T6微控制器,通过设计继电器驱动电路,实现对加粉、门控等电机启停的开关量控制。开关量控制信号经由一阶RC低通滤波器和线性光电耦合器组成的电路后,可有效地滤除信号中的干扰成分。控制信号通过三极管进行放大,可驱动继电器的开合。

3检测控制系统软件设计

包衣机在开启电源并初始化完成后,通过液晶触摸屏设置包衣流程的总批次、种子质量以及种药混合时间等包衣参数。在包衣机控制主板系统平台上进行软件开发,每隔一定时间在485总线上采用轮询的方式与多传感器信号检测板和执行器控制板进行通信;系统参照用户设定的各项参数以及称重和液位传感器实际检测到的参数信息,发送电机控制命令,进行各批次的种子包衣处理动作;每个动作之间通过适当的延时衔接,可实现包衣机各工作部件的有机组合和包衣流程的有序进行。

4结论

检测系统设计论文篇4

关键词:云计算;演化博弈;分布式入侵检测;趋势预测

中图分类号:TP183 文献标识码:A 文章编号:1009-3044(2016)10-0178-03

Abstract: For the lack of distributed IDS behavior analysis method in cloud computing environment, this paper proposes a model based on evolutionary game theory for distributed IDS in cloud behavior analysis and prediction, depict strategy selection trend of participator behavior with replicator dynamics equation, describe convergence trend of dynamic situation with evolutionary stable strategy, and analyse the effect on IDS behavior on different profit and loss condition. Then the paper gives out a reasonable security management suggestion for manager consider. Finally, an experiment is designed over analysis for the model to show the effectiveness of the proposed method.

Key words: cloud computing; evolutionary game; distributed intrusion detection system; trend prediction

1 概述

近年来,随着云计算的蓬勃发展,云计算的新技术、新应用正慢慢延伸到人们的日常工作和生活中,发挥着越来越重要的作用。云计算技术的进步在给人们带来方便和好处的同时,也对人们的信息安全工作提出了新的要求。云计算环境下的安全技术主要包括云资源访问控制、密文处理、数据可用性、隐私保护、虚拟安全技术等[1]。其中,对云资源的访问控制的研究仍然是一大研究热点。学者们对云资源访问控制的研究主要包括安全审计、等级保护、访问控制、入侵检测、信任评估等。其中,入侵检测技术以其主动性、全面性、智能性等优势备受青睐。然而,随着云环境的异构性与复杂性不断增强,传统网络下的入侵检测技术方案并不再能很好适应云计算日趋智能化、系统化、综合化的环境。

针对云环境日益扩大化、复杂化以及单一设备的负载过于集中等问题,学者们纷纷提出适用于云环境下的新型入侵检测模型:Dermott等[2]提出一种基于DS证据理论的协作式跨域云入侵检测系统,Akramifard等[3]则从用户行为模式分类的角度出发,提出一种基于多级模糊神经网的云入侵检测系统。其中,云环境下的分布式入侵检测系统以其独立性、灵活性、可扩展性、错误扩散小、协作性等[4]的优势越来越受到学者们的关注。Li、Kumar等[5-6]提出了一种基于云理论的分布式入侵检测系统,Li[7]提出了一种基于人工神经网的云分布式入侵检测系统,Zhang等[8]提出了一种基于粗糙集的云分布式入侵检测系统。

虽然学者们在云环境下的入侵检测技术研究做了较多工作,但很少有学者对云分布式入侵检测系统行为趋势分析、系统行为发展预测进行深入研究。本文将演化博弈理论应用于云环境下的分布式入侵检测系统行为趋势分析预测,从参与人有限理性的立场出发,提出一种基于演化博弈理论的云分布式入侵检测系统行为分析预测模型,分析讨论不同损益条件对检测系统行为的影响,得出合理的安全管理方案。最后,通过实验验证该模型的理论以及预测结果的正确性。

2 基于演化博弈理论的行为分析预测模型

本文将全部云分布式入侵检测系统看作一个种群,云中的所有分布式入侵检测系统个体是该种群的个体。各个检测系统彼此独立、对等,通过相互之间交换信息,并结合自身现状,作出是否协同工作的决定。种群中有不同比例的群体选取特定行动,将采用不同行动的入侵检测系统抽象成不同“类型”的博弈方,“类型”会随着博弈方策略而改变。执行特定行动的种群个体随机配对,组成参与人组合,也即不同策略选取组合的搭配。

3 基于演化博弈模型的云入侵检测系统行为预测

模型中的入侵检测系统作为思维有限理性的角色,对所处环境、信息并不能做到全完掌握,或可能由于自身原因做出错误决策,使得博弈结果不能总达到最佳。

从检测系统博弈的复制动态方程的鞍点来看,由于,复制动态具备稳健性的演化趋向为和,和都是稳定的演化趋向,也都是检测系统可能的策略选择。若C为定值,当协同工作带来的额外收益(G)与规避风险的保守工作带来的收益(H)之差越大,值越偏向于0,部分面积越大,代表检测系统选取协同工作策略的概率越大;相反,若部分为定值,若协同工作的成本(C)越大,值越偏向于1,代表检测系统拒绝协作、单干的概率越大。例如一般的基础设施即服务(IaaS)设备协同工作的成本(C)一般都不会改变,为提高检测系统协同工作的概率,可尝试减少回避协作带来的收益,或增大协同工作带来的额外收益,以保证云服务设备能够得到更大的保障。

4 实验分析

4.1 数据设定与模拟

本文对模型中的变量进行赋值:取H=10;G=6;C=3,实验结果如图3所示。

4.2 实验结果分析

图3描绘出了随着云入侵检测系统之间的长期博弈过程的进行,检测系统之间博弈策略选取趋势的总体相位图。由图中可观察到,检测系统存在协作与独立工作的可能,如前文分析,即便选择协作的检测系统数量高达70%,也会渐渐趋向于选择独立工作。此时若依前文结论,将协同工作的成本(C)减小为1.9,检测系统之间策略选取趋势的相位图将如图4所示,检测系统独立工作的可能性减少,而与其他检测系统协同工作的可能性增大,由此说明减小检测系统协同工作成本确实有助于增大检测系统协同工作的可能,从而验证了前文的结论。同理将回避收益(H)减少时也将有同样效果。

5 结束语

本文应用基于过程分析的演化博弈理论提出一种云分布式入侵检测系统行为分析预测博弈模型,这种有限理性的演化博弈更符合现实客观条件,通过归纳检测系统的策略收敛方向,以及不同损益对检测系统行为策略趋势造成的影响,实现了对系统的安全分析,为安全方案规划提供参考依据。通过实验验证了该方法的理论,以及预测结果的正确性。然而,由于演化稳定策略本身存在无法描述系统受到随机效应影响时的长期稳态的局限,博弈模型本身还有待完善,未来进一步的工作将研究可应对随机性问题的安全分析演化博弈模型,使分析的结论更准确完善。

参考文献:

[1] 冯登国, 张敏, 张妍, 等. 云计算安全研究[J]. 软件学报, 2011, 22(1):71-83.

[2] ?ine MacDermott, Qi Shi, Kashif Kifayat. Collaborative Intrusion Detection in Federated Cloud Environments[J]. Journal of Computer Sciences and Applications, 2015, 3(3A): 10-20.

[3] Akramifard H, Mohammad Khanli L, Balafar M A,et al. Intrusion Detection in the Cloud Environment Using Multi-Level Fuzzy Neural Networks[C]//Proceedings of the International Conference on Security and Management (SAM). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), 2015: 75.

[4] 马恒太, 蒋建春, 陈伟锋. 基于Agent的分布式入侵检测系统模型[J].软件学报, 2000, 11(10):1312-1319.

[5] Han Li, Qiu-xin Wu. A Distributed Intrusion Detection Model based on Cloud Theory[C]//Cloud Computing and Intelligent Systems (CCIS), 2012 IEEE 2nd International Conference on. IEEE, 2012, 1: 435-439.

[6] Manish Kumar. Distributed Intrusion Detection System Scalability Enhancement using Cloud Computing[J]. Computer Science & Telecommunications, 2014, 41(1).

[7] Zhe Li. A Neural Network based Distributed Intrusion Detection System on Cloud Platform[D]. The University of Toledo. 2013.

检测系统设计论文篇5

关键词:“建模式”教学;温故知新;热电式传感器

作者简介:卢森幸(1977-),男,壮族,广西宜州人,河池学院物理与机电工程学院,讲师,桂林电子科技大学电子工程与自动化学院硕士研究生。(广西 宜州 546300)

中图分类号:G642.0     文献标识码:A     文章编号:1007-0079(2014)14-0136-02

21世纪是信息化时代,传感器是信息采集系统的首要部件,它既是现代信息技术系统的“感官”,又是信息社会赖以存在和发展的物质与技术基础。[1]因此,培养具有传感器技术的学生将会是培养应用型人才的有效途径。

一、“传感器与检测技术”教学现状

1.学科知识多元化,学生方向难定

“传感器与检测技术”是一门交叉学科,知识多元化,并且实践性强,相关知识更新快。多元化使得学生摸不到头绪,不知道从何下手;由于时间、实践设备、精力等因素限制,实践无法做到面面兼顾;面对学科知识更新无法迎头赶上。这样,学生往往“在努力中失败”,学习倍感压抑,学习兴趣自然会逐渐被磨灭。

2.教材编写知识点分立化,关联性差

在教材编写上,为了能够明确阐析,节省版面,教材编写一般分为传感器原理、结构、性能(参数)、测量电路、补偿电路和应用模块,但分模块单独列举和说明,它们的关联性没有很好地得到针对性说明。学生在学习过程中,由于知识面不够,大局观受到限制,自然把这些知识都分立开来,导致感觉所学的知识杂,难以掌握。

3.传统教学模式缺乏综合性和和实践性

在传统的教学模式中,教师往往依照教材内容、应用教材课件完成教授任务,享受教材知识分立说明便捷,忽略教材知识模块之间的关联性的重组。同时,教师过于注重独立知识点的解释、公式的推导、原理的分析等内容,缺乏对传感器技术的分析和应用具体问题的教授,无法很好涉及综合应用,更多采用口号式说明“综合性和实践性强”。

二、以应用为导向开展“建模式“教学模式

“建模式”教学模式以应用为导向,把各个知识点关联;以培养工程师高度出发,给学生贯彻研发设计理念;以系统研发设计为目标,注重培养学生模块到系统思维。

1.“建模式”是“温故知新”学习模式

“传感器与检测技术”几乎涉及现代文明的所有学科,并且传感器又有自己的工作原理和性能特性。学生如果什么都当成新知识,那么脑子的“内存空间”就会不够用了,学习就会走上迷途,当然难以产生学习兴趣。“建模式”是“温故知新”教学模式,教学过程中要鼓励学生自信已学知识够用,树立学习信心。具体做法是:在教学过程中,给学生灌输“吃老本”的思想,即应用已学的知识、技能去“感知”待测量的学习过程。其实,所涉及的学科学生大部分已经学习,但学生迷茫的是:不懂得如何去应用,特别是综合应用。在教学过程中,教师实施“建模式”教学,帮助学生弄清楚学习方法、线索,引导学生进行检测系统“入门学习”,指导学生应用已学知识去解析新知识,找到各个知识点之间联系;以应用为导向和开发思维式进行教学。这样,学生综合能力、实践能力自然得到提高,学习兴趣当然浓厚。

2.“建模式”教学模式的建立与实施方法

“建模式”模型建立过程有4个步骤,即原始模型(建立)、模型分析、模型假设和模型应用,如图1所示。该教学模式把学科内容中传感器原理、结构、性能(参数)、测量电路、补偿电路和应用有机结合起来。

“建模式”模型各个步骤的具体内容如表1所示,在实施过程中,按照各个步骤内容进行,注意各个步骤具有独立性,同时,注重关联性引导教学。

表1 “建模式”模型各个步骤的具体内容[2]

步骤 具体内容

原始建模 系统设计需要有核心理论来支撑的。传感器检测系统是物理、化学、生物效应的应用,这些就是检测系统的支撑理论。根据待测量特点、系统结构和性能要求、系统设计目标进行某个效应、公式或理论选用过程,也就是原始模型建立过程

模型分析 根据待测量特点、系统结构和性能要求、设计目标进行模型分析。本科阶段,传感器检测系统一般为线性系统,以应用为导向进行分析,创建线性传感器检测系统;建立过程中得出传感器检测系统的结构

模型假设 为了达到待测量特点,结合系统结构、系统性能要求和系统设计目标而构建的线性传感器检测系统必须做出诸多假设,从中将引出传感器检测系统的性能参数。同时,检测系统产生诸多误差,因此,在进行检测系统分析、设计的时候,需要构建相应的补偿电路

模型应用 传感器检测系统将待测量转化为已知量输出,构建相应的测量电路,应用电路,形成待测量检测系统

在“建模式”教学的过程中,课堂课后都注重发挥学生的主导作用。具体操作方式是:利用课堂教学平台、网络教学平台、第二课堂平台,对学生进行分组,并分配任务:收集补偿电路、设计补偿电路;收集并讲解经典电路、设计功能电路;收集并讲解检测系统电路、设计检测系统。

整个施行过程,以小组为单位,针对“建模式”教学模型各个模块开展教学:学习他人设计模仿他人设计自行设计;最小模块设计模块关联设计检测系统设计。

这些教学最大的特点是,由于网络和第二课堂平台应用,使得这些教学不用拘泥传统教学中的时间、空间、人等因素。

3.“建模式”教学模式实施实例

现以热电式传感器为例简单讲解“建模式”的教学模式实施。篇章限制,授课内容点到为止,重点讲解课程知识点的引导、授课方式/手段和相关学科知识在授课过程中的引入、关联、应用。

(1)原始模型。热电式传感器终极设计目标是制成热电式传感器检测系统,用来检测测量量是温度。它支撑理论是热电效应,这是物理学知识应用。教学时,用动画、实验演示热电效应。在进行操作的时候,强调两电极材料不同,两接触点温度不同;应用高等数学知识解析理论中的接触电势和温差电势。其中的具体内容就是热电式传感器工作原理,即原始模型。通过直观操作可以加深学生对原理理论理解,让学生相信实践可行性。学生能够应用所学物理知识去完成温度测量,这是一个巨大的成就感,学习兴趣自然浓厚。

(2)模型分析。线性系统要求:被测量温度变化转化为电动势变化。而热电动势公式参量中,有玻尔兹曼常数、电子电荷量、材料自由电子密度、汤姆逊系数、两触点温度。这就涉及两个问题:一是在构建线性系统时,如何弱化无关参量从而实现系统线性化。二是如何进行系统结构设计?针对问题,应用高等数学理论进行分析,引出温度检测系统结构并建构。在建立结构的过程中,选取材料要注重几何形状、工艺、环境因素等影响。同时,材料涉及很多参数,其实是材料物性、电气特性应用,引导学生具体应用,使学生懂得材料选择相关因素,从而更为直观理解电气知识应用、电气知识与材料乃至系统结构构建的协调关系。这是在一般教学中无法做到的。讲解完该线性化例子后,以组为单位,完成电阻公式的线性化。在学院网络教学平台进行,各组讨论完成。

(3)模型假设。为了做成线性系统、达到温度检测系统设计要求,构建模型的时候,需要做出诸多假设。这样,就会引入一定误差。然而,学生出于多种原因,对于误差补偿存在以下局限性:1)不补偿。设计时找一个电路,调试出结果是运气,调试不出就放弃。2)补偿手段单一。学生见识面少,导致补偿手段单一。3)补偿不周全。学生缺乏大局观,补偿不周全。

要想对构建系统时的假设引起的误差进行补偿,首先,需要从构建结构所用的材料出发。构建结构所用的材料有许多性能参数,参数涉及物理特性、电气特性。授课时点到相关知识点应用,只要知识点联系上,学生自然能够“顿悟”。其次,引导学生从结构设计上进行补偿,如:热传导处理、隔热处理、触点焊接处理。授课过程中重点讲解冷端补偿:延长导线法;0℃恒温法;热电势修正法;温度修正法;冷端温度自动补偿法。其中,延长导线法、0℃恒温法都是结构设计上补偿;操作时,热电偶冷端远离测量场,温差明显;在讲解过程中,强调引入第三方导体及其影响处理,即物理特性――中间导体定律应用,引导学生如何完成理论到结构设计具体实施。热电势修正法、温度修正法从理论公式上的补偿,其实就是电气公式的数学处理,电子技术知识和高等数学应用。冷端温度自动补偿法是电子法,即电子技术知识应用,讲解时,指出中间温度到0度间产生一电动势,这使得输出初始时不为0,而检测系统需要初始输出为0;利用电子法产生一电动势,大小相等,方向相反即可。最后,对输出热电势及其误差分析并补偿:输出热电动势微小,注意负载的影响,这其实是电子技术知识应用;从结构设计、物理特性、电气特性等方面进行分析,即材料学、物理学、电气知识的应用;研究系统的动态响应,做到系统补偿,即自动控制原理知识应用。

为了巩固学习,布置任务:分析某一温度补偿电路图;以组为单位,收集或设计一温度补偿电路。任务在第二课堂或学院网络教学平台上进行且讨论完成,课堂抽查,讲解讨论。

(4)模型应用。讲授经典电路,从温度检测系统组成、构造、调理等方面入手,培养学生系统设计思维。检测系统各组成模块电路――学生大多已经学习、接触、应用。但是,学生少用,综合应用更少,应引导学生收集、理解、应用、设计各个模块电路――即电子技术知识积累、应用。同时,引导学生收集经典电路、构建虚拟检测系统和实物检测系统。教学过程中,课堂引导、利用学院网络平台、第二课堂开展以学生为主的检测系统讨论、设计,培养学生检测系统设计思维,提高学生实践能力。

4.实施“建模式”教学显著效果

在施行以应用为导向“建模式”教学的过程中,课堂、课后都注重发挥学生的主导作用,发挥课堂平台、网络教学平台和第二课堂作用,让学生有时间、有空间、有动力进行学习,具体效果如下:第一,通过多组收集同一功能不同设计电路,这可以成为学生课程设计、毕业设计乃至成为工程师的电路素材。第二,通过多组讲解同一功能不同设计电路,让学生主动理解更多功能电路,电路知识认知、应用得到飞速提高。第三,通过设计功能电路、检测系统,可以提升学生电路、检测系统设计能力。第四,“建模式”教学以应用为导向,把各个知识点关联;以培养工程师高度出发,给学生贯彻研发设计理念;以系统研发设计为目标,培养学生模块到系统思维。

三、结束语

近年来教学实践证实,在“传感器与检测技术”教学过程中,以应用为导向开展“建模式”教学,学生对传感器与检测技术知识能够找到学习规律,并且能够系统掌握相关知识;对传感器检测系统认知、构建、设计都能够比较从容进行;综合能力、系统意识和设计思维得到明显提高。

参考文献:

检测系统设计论文篇6

关键词: 网络入侵; 异常信号; 检测系统; TMS320VC5402

中图分类号: TN926?34; TN815 文献标识码: A 文章编号: 1004?373X(2016)24?0154?04

Purification method of intruded network feature variation signal

JIANG Cheng

(Hubei Engineering University, Xiaogan 432000, China)

Abstract: The modulating capacity and detecting stability of the traditional abnormal signal detection system after network is intruded become poor due to the influence of the variable network intrusion types. The artificial immunity based abnormal signal detection system dealing with intruded network was designed. The signal acquisition module in the system uses FPGA to design the invasion parameters to acquire all the signals in the intruded network. The modulating module is used to disassemble, amplify and filter the signals coming from the signal acquisition module to generate the signal set under detection. The timer circuit and filtering circuit in the modulating module were designed. The TMS320VC5402 chip is used by the abnormal signal detection module to perform the abnormal signal detection, storage, and alarming. The modulating module and anomaly signal detection module were designed based on artificial immunity. The forming code of the artificial immunity model was compiled. The artificial immunity model is used to screen the system workflow. The result of simulation experiment shows that the system has strong modulating capacity and detecting stability.

Keywords: network intrusion; abnormal signal; detection system; TMS320VC5402

当今社会已进入到网络时代,各行各业的网络信息化建设已成为提高企业竞争力的有效途径[1]。与此同时,网络易被入侵的弊端使得企业中重要信息无法被私密保存,各行各业开始期待着一种能够对网络被入侵后异常信号进行有效检测的系统[2]。

传统的网络入侵后异常信号检测系统包括:文献[3]研发基于半径动态检测的网络入侵后异常信号检测系统;文献[4]基于危险理论研发网络入侵后异常信号检测系统;文献[5]基于动态取证研发网络入侵后异常信号检测系统。但这些传统系统运行成本较高,因此并未被大面积推广,设计基于人工免疫的网络被入侵后异常信号检测系统。

1 基于人工免疫的网络被入侵后异常信号检测

系统设计

人工免疫的首次提出是在医疗界,其拥有较强的“自我”和“非我”判断能力,将其应用于网络入侵后异常信号检测系统中,可以提高网络入侵异常信号检测系统的调制能力和检测稳定性。基于人工免疫的网络被入侵后异常信号检测系统由信号采集模块、调制模块和异常信号检测模块组成[6]。

1.1 信号采集模块设计

网络入侵异常信号检测系统选用现场可编程门阵列(Field?Programmable Gate Array,FPGA)作为信号采集模块核心管理元件。FPGA拥有便于携带、管控效果良好和稳定性强等特点,图1为FPGA连接电路图。

分析图1可知,FPGA有两个输入端,分别进行电源和被入侵网络信号的输入。信号采集模块可以对网络进行实时监控,当网络被入侵时,立刻对网络中的全部信号进行调出;电容C对所调出的被入侵网络信号进行循环计数和存储,当其中的信号量达到预设数值时, FPGA便将这些信号组建成信号包,并传输到调制模块,通过电感L实施信号包的缓冲传输,避免传输拥堵。

1.2 调制模块设计

调制模块能够对信号采集模块传输的信号包进行拆解、信号放大和滤波,是异常信号检测的基础。拆解是对信号包中信号进行依次调用的过程,信号放大是对信号幅值进行放大的过程,经放大后的信号,可以对其中的有用特征进行有效提取,随后,调制模块对信号的有用特征进行滤波。本文对调制模块的计时器电路和滤波电路进行重点设计,图2、图3分别为计时器电路和滤波电路。

分析图2可知,调制模块选用的是“看门狗”计时器,其拥有4个输入接口和4个输出接口,所提供的重要功能包括虚拟桌面、电子控制、异常判断和电源复位等。虚拟桌面是指计时器为调制模块工作流程构建虚拟模型的过程,电子控制是指计时器的所有工作全部受计算机自动控制,增强网络入侵后异常信号检测系统的调制能力;异常判断是指计时器通过将调制模块的实际发生数据与预设参数进行对比,并实施计时判断的过程,系统经由此项功能对调制模块的工作时间进行控制,并将该接口设为电源接地端;当异常判断给出的判断结果为“超时”[7],调制模块便会进行电源复位,电源复位是保证系统调制性能的实际操作流程。

分析图3可知,电容C1和C2为10 μF的普通电容,C3~C6是0.1 μF的陶瓷电容,陶瓷电容相对普通电容来说,拥有更为细化的滤波功能。该滤波电路利用2个普通电容对信息包进行强滤波,再使用4个陶瓷电容对信息包的细节进行处理,使调制模块拥有很强的滤波性能。调制模块的滤波结束后,将生成信号包的待检测信号集合,调制模块将该集合传输到异常信号检测模块中。

1.3 异常信号检测模块设计

异常信号检测模块对所接收到的待检测信号集合进行异常信号的检测。该模块以人工免疫为理论基础,其将人工免疫中“自我”和“非我”的判断理念设计于检测工作中。异常信号检测模块的核心元件是TMS320VC5402芯片[8]。TMS320VC5402芯片是美国某公司研发的一款高性能定点处理器,该芯片利用哈佛结构将程序指令和电路数据分开进行存储,使芯片具有低耗能和高检测能力的优点,且价格不高、兼容性较强,非常适合用于网络入侵后异常信号检测过程。TMS320VC5402芯片的供电电压有两种,分别为3.3 V和1.8 V。3.3 V电压为芯片的输入/输出接口供电,1.8 V电压为芯片的检测工作供给电能。对TMS320VC5402芯片供电电路的设计是一项非常重要的内容,应使所设计出的电路能够持续、低耗地为TMS320VC5402芯片供电,如图4所示。

由图4可知,异常信号检测模块中的TMS320

VC5402芯片提供的初始供电电压为5 V,经图4(a)将其转换成3.3 V的电压供TMS320VC5402芯片使用,在异常信号检测模块调用TMS320VC5402芯片进行检测工作时,将通过图4(b)中的电路把3.3 V电压转换成1.8 V电压。

异常信号检测模块利用TMS320VC5402芯片对待检测信号集合进行检测。TMS320VC5402芯片先将待检测信号集合解码,将解码后的待检测信号按照其特征类型进行分类,随后对其进行异常信号检测,TMS320VC5402芯片中含有两种检测电路,分别是标准检测电路和记忆检测电路。标准检测电路将待检测信号的特征与标准协议进行比对,所获取的异常信号将被存储和报警;记忆检测电路根据标准检测电路中的存储数据,对非首次入侵的异常信号进行拦截和检测,这一设计旨在提高所研发基于人工免疫的网络入侵后异常信号检测系统的检测效率和检测稳定性。

2 网络入侵后异常信号检测系统实现

2.1 人工免疫模型组建代码设计

人工免疫模型组建是网络入侵后异常信号检测系统实现的前提条件。假设x代表记忆检测电路,y代表标准检测电路,z代表检测电路最终集合,data代表待检测信号,则所设计的人工免疫模型组建代码如下:

Begin

Initialization x?set;

data=0;

do

{

A random y set to join x in the collection;

if(y not through negative selection)

{

Delete y

}

else

{

Calculate y fitness;

Add y to the set z;

y.number=1;

while(y.amputate

}

if(y detected an invasion)

{

Update z set;

z.number++;

}}

2.2 系统工作筛选流程设计

在网络入侵后异常信号检测系统实现过程中,采用第1节设计的人工免疫模型将初次系统流程与系统流程进行对比,筛选出系统工作中无效流程将被删除,增强系统的调制能力和检测稳定性。其中,系统工作流程有效的概率称作适应值,适应值越小的检测工作流程,其被删除的可能性就越大。因此,对系统工作流程的筛选是系统软件的设计重点,其流程图如图5所示。

由图5可知,人工免疫主要对系统中的调制工作和检测工作进行流程筛选。人工免疫先进行调制工作的流程筛选,对其工作适应值进行计算,再将计算结果与否定选择进行对比。否定选择是人工免疫中的一项重要筛选方法,其将筛选标准定义为长度为A的字符串,将B定义为永久不删除的字符串。当调制工作流程中的某一项与A,B同时产生重叠,则视为该项流程通过,其将未通过的流程参数记录并存储,再将该项流程删除。人工免疫对检测工作进行的流程筛选与上述内容相同。软件最终会将已删除的流程参数和最终工作流程输出。

3 实验测试

3.1 系统调制能力测试

本文设计的基于人工免疫的网络入侵后异常信号检测系统的调制能力是系统检测工作的基础保障。对本文系统调制能力的测试应从被入侵网络信号经调制后的频域特性和时域特性入手,判定二者是否能够被有效提取。实验对被入侵网络的状态进行了模拟,并在该网络中加入一强一弱两个异常信号。设定强异常信号中时域特性的峰值为6.0 V,频率[9]为190 kHz。设定弱异常信号中时域特性的峰值为2.0 V,频率为110 kHz。规定调制过的信号电压值与实际电压差值应不高于0.25 V,若差值低于0.08 V,则可判断系统调制能力强。本文系统的调制结果曲线如图6、图7所示。

由图6和图7可知,经本文系统调制后的强异常信号时域特性的峰值为5.95 V,频率为190.6 kHz。弱异常信号的时域特性的峰值为1.95 V,频率为109.9 kHz。将以上结果与规定值进行比对能够得出,本文系统拥有较强的调制能力。

3.2 系统检测稳定性测试

在系统检测稳定性测试中,实验给出4种网络入侵类型,分别是网络监听、缓冲溢出、IP地址欺骗和SYN攻击。利用本文系统、基于危险理论的检测系统以及半径动态检测系统,对上述入侵进行异常信号检测,检测结果如表1所示,其中:

检测率=(系统检测出的异常信号数据量÷异常信号总数据量)×100%

表1中的检测率数据是通过系统对4种网络入侵分别进行2 000次检测得出的。经由对比上述数据中各系统的最低值和最高值之差,能够清晰地得出,本文系统拥有较强的检测稳定性。

4 结 论

本文设计基于人工免疫的网络被入侵后异常信号检测系统,仿真实验结果说明,所设计的系统拥有较强的调制能力和检测稳定性。

表1 异常信号检测结果统计表(检测率) %

参考文献

[1] 崔建平.基于3G?ASCX的小型飞行器异常导航信号检测系统设计[J].计算机测量与控制,2015,23(6):2149?2151.

[2] 王玉萍,曾毅.基于PTG502?CAN的锅炉管道异常压力检测系统设计[J].计算机测量与控制,2015,23(8):2673?2675.

[3] 昂正全,赵京广,李一超.卫星测控站频谱监测系统设计方案及实现[J].计算机测量与控制,2014,22(11):3466?3469.

[4] 陈娇,潘天红,张明.基于信号变化速率的时间序列异常值检测方法[J].北京工业大学学报,2014,40(7):992?995.

[5] 黄婷,刘政连,王巳.基于曲率扩散模型的可见数字图像水印攻击算法研究[J].中央民族大学学报(自然科学版),2014,23(3):49?55.

[6] 穆丽文,彭贤博,黄岚.异构复杂信息网络下的异常数据检测算法[J].计算机科学,2015,42(11):134?137.

[7] 杨福来,孙旭飞,李硕.基于FPGA的信号灯冲突检测电路的设计与实现[J].微型机与应用,2015,34(23):23?26.

检测系统设计论文篇7

关键词:GPIB接口,频谱分析仪,CAM/CAT系统

 

1引言

根据市场调查统计,频谱分析仪是微波测量仪器中需求量最大的门类之一。,GPIB接口。市场的需求,促进了频谱分析仪的研制和批量生产。在以前的频谱分析仪生产调试和性能测试中,基本都是人工手动进行测试、补偿和记录,由于使用的仪器设备种类繁多、功能各不相同、操作方法迥异,不仅对生产调试、测试检验人员的素质要求极高,并且速度慢、设备利用率低、重复性差,同时容易造成人为误差或错误,不能满足批量生产的要求。而且批量越大,这种问题就越明显,以个人计算机为核心的CAM/CAT系统可以从根本上解决这种矛盾。

随着计算机技术和软件技术的飞速发展,计算机辅助制造(CAM)和计算机辅助测试(CAT)得到了长足的进步。目前,CAM或CAT系统可以采用GPIB、VXI、RS-232、USB等接口。GPIB(GeneralPurpose Interface Bus)接口是测量仪器配备的标准接口,技术标准成熟,速度满足系统要求,因此,我们用带有GPIB标准接口卡的计算机与测量仪器设备组成频谱分析仪CAM/CAT系统,利用计算机智能控制各设备,自动完成频谱分析仪的参数校准、频响补偿和性能测试,并对测试数据进行快速、准确的处理和记录。

2GPIB测试系统的组成与特点

典型的GPIB CAM/CAT系统主要由个人计算机、GPIB标准接口卡和若干台配有GPIB接口的设备通过标准的GPIB电缆连接组成。系统具有以下显著特点:

1)GPIB接口编程方便,减轻了软件设计负担;

2)提高了测量性能。利用计算机对带有GPIB接口的仪器进行操作和控制,可使用各种自动校准、多次测量平均等方法,从而可以提高测量精度;

3)便于将多台配有GPIB接口的仪器组合起来,形成较大的自动测试系统,高效灵活地实现各种不同的测量任务,而且组建和拆散灵活,使用方便。

4)便于扩展传统仪器的功能。由于仪器和计算机相连,因此可利用计算机对测试数据进行更加灵活、方便的传输、处理、综合、利用和显示,使原来仪器采用硬件逻辑很难解决或无法解决的问题迎刃而解;

5)测试方法简便直观,人机界面更加友好,非专业人员也可以运用该系统进行自动测试。,GPIB接口。

3 频谱分析仪CAM/CAT系统的组建与连接

频谱分析仪的应用广泛,生产过程中要调试的参数众多,整机需测试的性能指标就多达20多项。调试和测试需要使用的设备有合成扫频源、合成信号源、网络分析仪、频率计、微波功率计、功分器、打印机等。如图1所示,首先在计算机中安装即插即用PCI总线IEEE488.2接口卡,加载驱动程序。然后用GPIB标准电缆把计算机和所有需要程控的仪器连接起来,并用打印电缆连接计算机与打印机。为了方便在生产线不同工位上使用,我们把这些仪器装入可移动机柜。同时,考虑到其他的应用可能,我们把所有设备采用软固定的方式,活动机柜门保证系统中任何一台设备可在3分钟内完成拆装,这样,可方便地组装系统或拆成单台仪器,提高了仪器的利用率。

4 软件设计说明

系统软件设计是系统开发的主体。,GPIB接口。软件完成仪器控制、数据采集、通讯、数据处理、数据分析、数据管理、信息输出等任务。频谱分析仪CAM/CAT系统采用Windows操作系统、Bland C++ Builder编程开发环境。系统软件结构框图如图2所示,共分为测试配置、测试控制、结果存储/调用和打印输出四个部分。测试配置主要实现人机界面管理和各仪器的GPIB地址分配,使整个系统能够很好的协调工作;测试控制是整个测试系统的主体部分,在这部分实现了频谱仪各项指标的测试过程。由于测试项目众多,因此每一个测试项目都编写成一个独立模块,减少软件系统模块间的耦合,每个模块都实现一个完整的测试项目;结果存储/调用部分实现了数据的存储与调用,方便了测试完成后的数据处理和备份;打印输出部分主要对测试结果进行实时打印输出。

为提高系统的通用性和扩展性,兼顾不同厂家和型号的测试仪器,并顺利完成新型或其它厂家的频谱分析仪测试,在软件设计时把各种常用仪器的控制程序列写成不同的子程序模块,对某种测试仪器配置,软件根据系统配置检测结果调用相应的子程序模块。被测频谱分析仪的控制模块也写成子程序模块,这样,系统的功能扩展和维护就变得容易。

对于一个测试项目,测试软件需要对测试流程、测试仪器工作模式、被测频谱分析仪参数设置等进行连续控制。我们以校准器幅度准确度测试模块为例,说明测试控制部分的程序编写流程,图3是该测试模块的流程图。首先获取各个仪器的控制句柄,从而能够对不同仪器进行分别控制;其次设置信号源频率为300MHz,幅度-20dBm,设置频谱分析仪“CF300MZ;SP50KZ;RBW3KZ;VBW30HZ;LG1DB;RL-18DM;”执行峰值搜索、定标,将信号输入电缆从信号源移至校准信号输出,再执行搜索峰值,读取信号差值。判断读取数值是否在指标范围之内。这样便完成了校准器幅度准确度的测试。,GPIB接口。

5 系统功能

频谱分析仪CAM/CAT系统提供的是按钮形式的界面,通过按钮弹出的下拉式菜单,使用者可以选择不同的功能,执行相应的操作命令。

1)系统配置,根据测试仪器配备情况分配GPIB地址,选择相应控制子程序。

2)系统自检,进入自检状态,系统对自身的软件和硬件配置进行全面的检查,确保系统的完整有效。对于自检过程中发现的问题,生成自检报告,以供查看。

3)测试人员、环境条件记录,内容包括,口令、测试人员、测试时间、环境条件等。

4)测试项目选择,在主界面列出了频谱分析仪整机需要测试的所有指标测试项目,每个项目都可以被单独选择测量,也可以选择任意几个直至全部项目进行组合测量。

5)测试过程组合显示,进入组合测试程序后,可以逐个进行各个项目的测试,同时逐个显示测试向导,确认后按照测试流程完成测试,测试的同时,界面显示测试项目的限值、测试结果或波形。

6)测试结果报告,在组合测试结束后,形成测试结果报告,使用者可以选择阅读报告内容。,GPIB接口。

7)发生异常情况时,使用者可以随时中断该系统的测试过程。

6 结束语

频谱分析仪CAM/CAT系统已经应用在AV4032和AV4033频谱分析仪批量生产中,在使用中,充分体现了该系统的自动化程度高、快速、测量精度高、可靠性高、通用性强、扩展能力强的特点,有着巨大的优越性:它可以提高生产效率,例如频谱分析仪的频响平坦度补偿,若手动操作需要2人花费8小时,而用频谱分析仪CAM/CAT系统只需一人30分钟就可完成,仅此一项每台频谱分析仪就可以节约15个工时;其次用自动测试系统可以大大减少人为因素影响,提高产品一致性及质量可靠性。,GPIB接口。另外将计算机用于生产便于对每台频谱分析仪生产过程及维修情况进行建档存储,有利于质量跟踪及用户服务。

参考文献

1)王擎天赵继业等现代通信测量仪器军事科学出版社1999年5月

检测系统设计论文篇8

关键词:电子设备 故障 检测

中图分类号:TP274 文献标识码:A 文章编号:1674-098X(2013)04(b)-0224-01

1 系统设计原则

1.1 设计自动故障自检电路时应预以考虑的问题

(1)自检电路的可靠性应高于被检对象的可靠性,所选元件的故障率要比被检对象元件的故障率小一至二个数量级。

(2)在电子设备上加自检电路后,不能影响或改变电子设备设计的性能参数。

(3)自检电路应在自身发生故障后,迅速自动和被检对象脱离,使被检对象受到保护,并能给出自检电路故障指示和被检对象某部分不再受到监视的指示。

(4)自检电路的检测点应首先安排在可能产生危险性故障以及有严重经济后果和故障率高的部位,也要满足自动分离故障的要求,并使故障覆盖率达到一定要求。

(5)自检电路应能将故障无模糊地孤立至规定的区域位置。

(6)自检电路应具有优良的性能价格比。

(7)本自检电路的检测、分离层次定为对电子设备有重要影响的电路。

(8)硬件、软件相结合,只要内存容量足够、检测时间允许,应尽可能地采用软件完成检测。

1.2 需要解决的关键技术问题是

(1)测试区划分和测试点确定,被测信号的确定和故障识别准则。

(2)被测信号归一化。

(3)被测信号检测、处理和比较,必要时显示值的大小。

(4)故障的告警等。

1.3 测试点和诊断门限的确定

测试点的配置以不影响原系统的性能为前提,以尽可能少的点判决尽可能多的故障为原则,根据电子设备的结构特点、工作原理、故障的先验知识、故障率等来划分检测区,确定工作点。利用如下技巧:将大系统分成若干个相对独立的分系统,将分系统按单列可更换单元设计。在本方案中即按电子设备各功能电路板分区,将单列可更换单元定为各级电路级。采用连续多次采样,然后对其取平均值的方式判别测试点是否有故障,实际上是对观测数据进行时间平滑,从而减少瞬间波动(躁声或干扰)引起的虚警。

2 硬件组成

整个硬件以单片机为中心组织电路,组成一个单片机应用系统,包括信号源、微信号提取与放大,模拟量数据采集通道自动切换,A/D转换接口等,单片机接口电路等电路。

2.1 信号源电路

由自检系统采用锁相频率合成技术产生的信号源,具有被测电子设备相同的频率稳定度和准确度。在自检系统微处理器的控制下,适时加到被测电子设备的发射或接收部分,使得电子设备在没有接收信号和发送信号的情况下,故障自检系统也能完成检测,且信号源电平固定,为后面相关通道的诊断门限确定提供了方便。

2.2 信号提取及预处理、放大归一电路

信号提取应放置在最能拾取故障信息的部位,对故障信息的鉴别能力取决于整个电路的分辨力和精度,要合理分配到各级,以便选择相应的电路芯片,电路级间的连接和接地应符和抗干扰和降低噪声的要求,当信号频率很高时应注意屏蔽和用同轴线连接。提取出的信号进行预处理及放大,要求信号的规一化及放大器输出不应超出A/D转换器的输入范围,即能将信号放大到A/D转换器所要求的电平。

2.3 模拟量数据采集子系统

模拟量输入数据采集系统设计原则:满足系统功能和性能指标要求,并保证系统可靠。硬件参数选择要恰当,以A/D转换器芯片决定其它芯片,要求其它芯片、元器件的误差比A/D转换器的小,性能价格比高。

2.4 单片机接口电路

包括单片机、按键输入、故障代号显示、EPROM扩展等。

3 及软件设计

为了使自检系统的硬件设备能灵活地完成多种检测与控制任务,还必须配合软件的开发及应用。如采用某些软件措施后,可以使系统在数据检测、采集过程中具有一定的智能作用,使系统的性能得到改善,使信号得到恰当的处理与分析,以适应显示及控制的目的。

在智能检测方面应用的系统检测软件除了某些专用专用程序外,通用的常包括以下几种:系统开机自检、自诊断程序,自动量程及测试功能选择程序,数据自动采集、抑制干扰方面的程序,传感器及采集通道校正、自补偿、线性化处理程序,数据分析、统计、运算处理方面的程序,数据格式及数据输出方面的程序。以下将针对电子设备故障自检系统的特点就其中的几个问题进行说明:

(1)只要内存容量足够,检测时间也允许,应尽可能多地采用软件完成检测。根据硬件电路图的各种信息(如端口地址、逻辑关系等)来完成软件设计,即软件必需以硬件为基础。

(2)每个通道的A/D转换都采用255次转换取平均值的方法来进行时间平滑,从而减少瞬间波动(噪声或干扰)引起的误诊断。

(3)A/D转换的测试点出现故障原地等待,直到排除故障后,按KG开-关,再重新检测、看是否正常。若不正常,仍原地等待。若正常,跳到下一个测试点。同理,以下点照此进行。

(4)显示方式说明:A/D转换通道采用故障代号显示,若通道无故障则不显示。测量通道显示通道号,频率计显示频率,按KG开关转下一通道。

(5)由于数据采集完后是单中断控制方式,所以程序中应有中断服务程序。这种方式减少了CPU工作时间。

(6)在启动故障自检系统之前,电子设备面板显示的工作状态应预置。

4 结语

随着电子信息技术的发展,新型电子设备自动化、智能化水平不断提高,为充分发挥其效能,对新型电子设备的可靠性和出了故障后能迅速排除提出了更高的要求。所以新型电子设备故障自检系统将成为其设备重要组成部分。随着控制论、信息论、检测和估计理论以及数字信息处理技术等近期研究成果被移植到诊断系统中,故障的计算机模拟和智能识别等新技术新理论的应用,必将使得新型电子设备故障自检系统得到更快的发展。

参考文献

[1] Instruction Mannal for MARCONI MARINE DOSIOO VHF RADIOT ELEPHONE,2002.

[2] 周青龙.故障诊断与控制[M].兵器工业出版社,2001.

推荐期刊