线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

高层住宅楼结构设计8篇

时间:2023-09-03 15:18:17

高层住宅楼结构设计

高层住宅楼结构设计篇1

关键词:住宅建筑结构设计地基基础

1工程概况

本工程总建筑面积为96412.72平方米,位于广东省清远市佛冈县。层数最高为28层,最低为1层。地上部分共有9栋:1号楼为一类高层居住建筑,沿街高层1层商铺,建筑层数28层。2号楼、3号楼、5号楼为一类高层商住楼,2号楼为26层,3号楼、5号楼为28层。沿街高层2层商业。B1、B2、B3、B5、B6栋为低层商业建筑,建筑层数为3层。B6栋为1层。场地抗震设防烈度为6度,设计基本地震加速度值为0.05g,建筑场地类别为Ⅱ类。场地无可震动液化土层分布,亦无发震断裂,属稳定地区。

2工程特点

本工程整体设计思路要求典雅、高级、舒适。建筑立面风格追求新古典主义,平面布置讲究高度灵活性,可以居住、办公为追求大尺度。由于开发商要求功能多样化、适应性强、个性鲜明,使得建筑设计平面与立面复杂、多变。所以与一般工程相比,本工程有鲜明特点,结构设计不利因素相对集中,体型相对复杂,给结构设计带来了很大难度,其结构特点具体体现在以下几个方面:

(1)在地下室设置后浇带,后浇带在两个月后浇筑;适当提高地下室底板、侧壁的配筋率。

(2)地下室外防水层采用柔性防水(聚胺脂涂层或卷材),即使出现微小的收缩裂缝,外防水层也能起到阻止渗漏的作用。

(3)地下室及裙楼采用双向梁布置,采用控制裂缝宽度性能较好的变形钢筋,壁板、楼板钢筋按照“宁细勿粗,宁密勿疏”的原则配置。

(4)从减少砼自身收缩率的角度考虑,优化砼的配合比设计,加入合适的添加剂,控制水灰比、砂率、水泥用量及塌落度等指标;另一方面要求加强砼的振捣及养护,应有可靠措施保证砼在全湿润条件下硬化,优先考虑蓄水养护。

3结构设计要点

3.1基础及基坑支护

3.1.1基础形式

高层采用筏形基础,裙楼和B1~5采用天然独立基础;基础持力层为(2-2层)卵石层,地基承载力特征值fak=700Kpa,混凝土强度等级为C30。

3.1.2基坑支护方案

本工程基坑侧壁安全等级为二级,基坑支护设计与地基基础及地下室结构设计没有矛盾,满足建筑物的使用要求。

3.2地下室结构

地下室底板:采用平板式底板,板厚h=300mm。

地下室顶板:采用梁板式布置,板厚h=180mm。

3.3 上部结构体系

根据建筑使用功能的需要,本工程为剪力墙结构。

4结构计算与分析

采用中国建筑科学研究院PKPM工程部编写的《SATWE》程序计算。

4.1基本假定及主要参数取值

上部结构计算取地下室顶板作为嵌固端。上部结构由下至上分为三栋高层结构计算,自编号分别为1#楼、2#楼、3#楼、5#楼。考虑了平扭耦联计算结构的扭转效应,振型数使振型参与质量不小于总质量的90%,振型数为18。主要参数取值如下:不考虑活荷载的不利分布,梁弯矩增大系数取1.0;周期折减系数取0.9;中梁刚度增大系数取2.0。

4.2主要计算结果

4.2.1自振周期及第一扭转平动周期比

各结构单元的自振周期及周期比详表1,可见以扭转为主的第一周期与以平动为主的第一周期的比值均≤0.90,满足《高层建筑混凝土结构设计技术规程》第4.4.5条的要求。

4.2.2弹性层间位移角

弹性层间位移角即层间最大位移与层高的比值详表2,可见层间位移角均满足《高层建筑混凝土结构技术规程》第4.6.3条的要求。

表2地震作用及风荷载的最大位移角表

4.2.3扭转不规则性指标

在考虑偶然偏心情况下,用于判断结构扭转不规则性的楼层最大弹性水平位移(或层间位移)与该楼层两端弹性水平位移(或层间位移)平均值的比值详表3,可见1#楼、2#楼、3#楼、5#楼最大的位移最大值与平均值比值均大于1.2,小于1.5,未超出《高层建筑混凝土结构技术规程》第4.4.5条的限值。

表3扭转不规则性指标最大值

4.2.4水平地震作用下基底的剪重比

各结构单元在水平地震作用下基底的剪重比详表4,基底剪重比均大于1.6%,满足《建筑抗震设计规范》第5.2.5条的要求。(当小于1.6%时,程序自动放大至1.6%)

4.2.5刚重比

刚重比 EJd /(H2ΣG)详表5,可见刚重比均≥1.4,满足《高层建筑混凝土结构设计技术规程》第5.4.1条对结构稳定性的要求。各栋刚重比均≥2.7,可以不考虑重力二阶效应的影响。

4.2.6楼层侧向刚度比

楼层侧向刚度不小于相邻上一层的70%,和其上相邻三个楼层侧向刚度平均值的80%的较大值。满足规范要求。

4.2.7轴压比

本工程轴压比按地下一层控制,剪力墙轴压比控制在0.70以内(一字墙0.60以内),框架柱轴压比控制在0.90以内。

计算结果分析表明,本工程各项整体指标均能满足相关规范的有关要求或未超出规范规定的最大限值;柱的轴压比和各构件的强度及变形也均能满足规范的要求。

5地基基础

5.1场地工程地质特征

本工程场地位于清远市佛冈县;西面为四层图书馆及广播电视中心,北面为青松东路,东面为文明路,南约120m为106国道。场地上部为冲洪积层,下部为基岩。各岩土层的状态、埋深和厚度变化不大,场地地基属均匀地基。

5.2场区地下水

勘察期间场地地下水位埋深1.74~2.14m,标高69.12~75.35m。场地地下水埋藏较浅,地下水位一般高于地下室底板上部,地下室的抗浮水位取标高75.50m。地下水对混凝土有微腐蚀性,对钢筋混凝土结构中的钢筋有微腐蚀性。

5.3场地的等级分类

建筑场地类别为II类,场地处于丘陵地区,地形地貌简单,地形平坦。不存在坍塌、滑坡、泥石流、严重地陷等不良地质作用及地质灾害现象。地下无人防工程、坑道及矿产资源。无活动性断裂构造。周边无污染源,地下水及土壤基本未受污染。本工程场地等级为二级,地基等级为二级,工程重要性等级为一级,岩土工程勘察等级为甲级。

5.荷载取值

本工程基本风压:高层部分按50年重现期取值为w0=0.30kN/m2(计算位移、周期时采用);100年重现期取值为w0=0.35kN/m2(计算构件配筋时采用)。多层部分按50年重现期取值为w0=0.30kN/m2,地面粗糙度B类,建筑体形系数μs=1.3。

6结束语

高层住宅楼结构设计篇2

关键词:高层建筑;转换层;上部结构;框支柱设计

1 项目概述

某高层商业住宅楼,采用框支剪力墙结构,地下1层,地上33层,建筑高度为99.70m。地下室作为停车库,1~3层为商场;第4层为设备转换层;5层及以上为住宅楼。当地抗震设防烈度为7度,场地土为类Ⅱ;按100年重现期计算的基本风压值0.35kN/,地面粗糙度C类。

2 上部结构设计

2.1抗震等级的确定

根据建筑平面使用功能要求,采用框支剪力墙结构形式。转换形式为梁式转换,转换梁板位于4层顶,为高位转换层建筑。抗震等级为框支框架一级,剪力墙底部加强部位一级,剪力墙非底部加强部位三级。建筑结构安全等级二级; 设计基准期50年;结构设计使用年限50年。框支柱和剪力墙混凝土强度等级为:地下2层~8层C55,8层~34层由C50递减至C30。

2.2 上部与下部结构的调整

本工程的结构设计特点在于根据建筑功能要求设置的设备层层高仅为3m,使得转换层的侧向刚度均较大于相邻以下三层和相邻上层的侧向刚度,从而在结构计算分析中需解决以下问题:

(1)如何使高位转换时转换层上部与下部结构的等效侧向刚度比满足《高规》附录E的要求;

(2)一层~三层的各层侧刚度比(本层侧移刚度与上一层相应塔侧移刚度70%的比值或上三层平均侧移刚度80%的比值)需满足《高规》第5.1.14条规定;

(3)经计算分析,最大转换梁截面为1300x2500, 最小为1000x2000,形成框支柱的剪跨比小于1.5。根据《高规》第6.4.2条注3,剪跨比小于1.5的柱,其轴压比限值应专门研究并采取特殊构造措施。

由于本工程的一层~三层作为商场,业主要求尽可能的减少上部住宅的落地剪力墙数量,以保证使用空间,给结构设计增大难度。为保证主体结构竖向刚度均匀,使转换层上下刚度接近,避免刚度突变形成薄弱层并且满足《高规》附录E第E.0.2条和公式规定,抗震设计时等效侧向刚度比宜接近1.0且≤1.3。因此采取以下措施解决上述的问题,具体措施包括以下几个方面:

(1)转换层上部在剪力墙满足《高规》规定的各项控制参数前提下,尽量减少数量,增大结构洞口,降低连梁高度,以减少上部楼层的侧向刚度。

(2)与业主和建筑专业协商降低一~三层的层高,由原层高5.1m,4.2m,4.2m改为4.8m,3.9m,3.9m;以增大转换层下部各层的侧向刚度。

(3)增大转换层以下各层墙体厚度。转换层以下各层均按一层厚度取值为350~450mm厚,转换层减小为30mm厚,上部为200~250mm厚,避免刚度突变;在一~三层周边将部分砖墙改为剪力墙(新增,与上部剪力墙不对应)以提高剪力墙的数量并增大侧向刚度。

经调整后,转换层上、下刚度比均满足《高规》附录E的要求;一~三层的各层侧刚度比亦满足《高规》第5.1.14条规定。

2.3设备转换层的设置

为避免出现剪跨比小于1.5的框支柱,对设备转换层的设置提出多个结构方案进行比较:

设备转换层采用轻钢结构体系,在主体结构完成后再施工;不考虑该层参与主楼的整体计算分析。 则转换层的实际层高为6.9m。经计算分析,转换层的侧向高度在保证建筑功能要求的前提下无法满足 《高规》附录E第E.0.2条中 “当转换层设置在3层及3层以上时,其楼层抗侧刚度尚不应小于相邻上部楼层侧向刚度的60%”。

直接加高设备层层高为4.6m以满足框支柱剪跨比大于等于1.5。这样,建筑总高度大于100m,无法实现。

确定设备转换层层高为3m。对剪跨比小于1.5的框支柱采取特殊构造措施。这样,最终采用方案。

由于目前国内并没有对剪跨比小于1.5的框支柱进行专门研究的规范和资料,因此结构设计时采用几点措施来提高框支柱的抗震性能和延性:(1)轴压比限值降0.1, 对于一级抗震的框支柱取0.5;(2)框支柱截面中部设置芯柱;(3)在框支柱内增设交叉斜筋;(4)增大框支柱的配筋率和配箍率。

3 结构计算分析

通过采用SATWE和PMSAP两个不同力学模型的结构分析软件进行整体内力位移计算分析,计算时按结构不规则且同时考虑双向地震作用和平扭藕连计算结构的扭转效应。采用弹性时程分析法进行补充计算――根据建筑场地类别和设计地震分组选用了两组记录地震波和一组人工模拟地震波进行计算对比。

各项计算参数结果如下表所示:

(1)周期

则Tt/Tl=2.763/3.332=0.83

T1(第一平动) T2 T3(第一扭动) T4 T5

3.332 2.985 2.763 0.967 0.780

(2)位移

最大层间位移角均小于1.4。见表2

荷载工况 顶点位移(mm) 最大层间位移角

X向风荷载 18.3 1.10

Y向风荷载 29 1.06

X向地震 37.5 1.36

Y向地震 32.3 1.36

(3)转换层上下等效侧向刚度比γe:X向γe=0.42,Y向γe=0.40。

(4)X向刚重比EJd/GH2=3.25;Y向刚重比EJd/GH2=4.04

刚重大于1.4,能够通过《高规》第5.4.4条的整体稳定验算;

刚重比大于2.7,可以不考虑重力二阶效应。

通过以上数据显示,计算结果正常,各项参数均满足《高规》条文要求,结构设计能达到“小震不坏,中震可修,大震不倒”的抗震设防目标。

4 框支柱设计

框支柱截面尺寸主要由轴压比控制并满足剪压比要求。为保证框支柱具有足够延性,对其轴压比应严格控制。

(1)该工程框支柱抗震等级为一级,轴压比不得大于0.6,对于部分因截面尺寸较大而形成的短柱,不得大于0.5。柱截面延性还与配箍率有密切关系,因而框支柱的配箍率也比一般框架柱大得多。箍筋不得小于φ10@100,全长加密,且配箍率不得小于1.5%。

(2)在工程中,个别框支柱还兼作剪力墙端柱,所以还应满足约束边缘构件配箍特征值不小于0.2的要求,折算成配箍率(C55混凝土)即为1.82%。框支柱为非常重要的构件,为增大安全性,对柱端剪力及柱端弯矩均要乘以相应的增大系数,每层框支柱承受剪力之和应取基底剪力的30%。因为程序计算时,一般假定楼板刚度无限大,水平剪力按竖向构件的刚度分配,底部剪力墙刚度远大于框支柱,使得框支柱分配的剪力非常小。然而考虑到实际工程中楼板的变形以及剪力墙出现裂缝后刚度的下降,框支柱剪力会增加,因而对框支柱的剪力增大作了单独规定。

5 结束语

综上所述,带转换层高层建筑结构设计不仅要尽可能地满足建筑的使用功能的要求,而且要使结构体系更加合理化,应从建筑功能、结构受力、设备使用、经济合理等多方面入手进行结构的选型和柱网布置,不断地提升住宅建筑结构的设计水平,从而满足建筑结构合理的使用要求。

参考文献

高层住宅楼结构设计篇3

关键词:小高层住宅楼;结构特点;优化设计;探讨

Abstract: the engineering for a high-rise residential houses, of which the ground and layer, the standard 1 layer structure unit (see figure 1, 3 m tall; 9 layer has a jump layer for 10 layer, local outstanding roofing part is the elevator computer room. The paper, in combination with the characteristics of residential building structure, the optimization design for structure, for peer designers.

Keywords: small high-rise residential houses; Structure characteristics; Optimization design; explore

中图分类号:TU241.8文献标识码:A文章编号:

1 工程概况

该工程建筑总面积为4337.18m2 ,建筑总高27.600m,工程建筑结构的安全等级为二级,抗震设防类别为丙类,抗震设防烈度为8 度,设计基本地震加速度为0.2g ,设计地震分组为第一组,地面粗糙度为C 类,基本风压值取值0.35kN/ m2 ,场地土类别为Ⅱ类。

图1 标准1层结构单元图

2 结构方案布置

原结构方案采用一般的剪力墙结构,这种结构形式对于房屋高度不太大的小高层建筑来说,这种结构会造成刚度过大,重量增加,导致地震反应过强,使得上部结构和基础造价提高。所以,为了有效提高经济指标,经多方案论证,决定采用短肢剪力墙结构体系。在本住宅结构平面布置中,尽量使结构平面形状和刚度均匀对称。短肢剪力墙双向布置,尽量拉通、对直。竖向布置中,力求规划均匀,避免有过大的外挑、内收,以及楼层刚度沿竖向突变,使整个房屋的抗侧刚度中心靠近水平荷载合力的作用线,以免房屋发生扭转。根据建筑的平面布置,在房间、楼梯间、电梯间的四角,采用Z 形、L 形、T 形或异形的墙肢。在设计过程中还应注意同周期的关系,使结构的第一自振周期避开场地土的卓越周期,以免地基与结构形成共振或类共振,既保证结构在风和地震荷载作用下的变形控制在规范允许的范围内,又要保证建筑物有相对合理的自振周期,做到结构设计经济、合理且实用。

本方案根据上述建议经过多次调试,得到了几种结构方案,结构平面布置见图2。剪力墙截面厚度同相邻砌体填充墙厚度均为100mm。剪力墙、梁混凝土强度等级为C30。板的混凝土强度等级均为C25。主要连梁的尺寸大都为200mm×400mm。标准层楼板厚度为120mm ,顶层楼板厚度为150mm。有别于肢长肢厚比不大于4.0的异形柱,短肢剪力墙的肢长肢厚比按规范要a-方案1;b-方案2;c-方案3;d-方案4

图2 结构平面布置

求控制在5~8范围内,一般剪力墙的肢长肢厚比均大于8。值得注意的是,对肢长肢厚比为4~5范围内的墙肢,目前规范尚无明确条文规定其构件类型,故设计时建议不要采用。由于原方案的剪力墙过多,使底部剪力过大,使结构很不经济,同时布置了少量钢筋混凝土柱子,使结构不是很合理。故方案1在原方案的基础上去掉了构造柱并减少了少量的剪力墙(见图2a)。在方案1 基础上适当的减少一些剪力墙,从而使方案更经济,在调试过程中由于F 轴剪力墙较少,从而使电梯间X 方向的剪力墙承受过大的剪力造成超筋, 故把电梯间X 方向的剪力墙开洞口, 使结构X 向的刚度减少。(见图2b)方案3是在方案2的基础上改善了Y方向的刚度,使两个方向的刚度相接近,使结构更合理且均匀对称(见图2c)。

在方案3的基础上把Y方向的一些T型剪力墙变成一字型,虽然在多高层住宅设计中剪力墙结构应尽量避免一字型,但由于该结构的实际情况,所以采用了部分一字型(见图2d) 。

3 上部结构抗震计算结果分析

3.1 计算结果分析

从构件力学特性上来说,短肢剪力墙的肢长与肢厚比≥5.0,更接近于剪力墙,故计算时将短肢剪力墙作为剪力墙而不是柱考虑应更合理。因此,结构整体计算采用的是在每个节点有六个自由度的壳元基础上凝聚而成的墙元模拟剪力墙墙元不仅具有平面内刚度也具有平面外刚度,可以较好地模拟工程中剪力墙的真实受力状态,计算结果较精确;同时,对楼板SATWE 可以考虑其弹性变形。虽然主楼结构平面较规则,立面也无刚度突变现象,但由于刚度较大的电梯井处筒体有点偏置,会产生扭转的影响,为了计算准确,地震作用计算考虑了结构的扭转耦联和5 %偶然偏心的影响,取了27 个振型计算。

1) 自振周期的控制

考虑扭转耦联时的自振周期(计算时自振周期折减系数取0.8) 如表1(只列了前6个) 所示。从表1 可得,方案4 结构扭转为主的第一自振周期T3=0.9959s,平动为主的第一自振周期T1 =1.1656s,T3/T1=0.854

2) 结构位移的控制

最大层间位移角(应≤1/ 1 000) 、最大水平位移与层平均位移的比值( 不宜大于1.2 , 不应大于1.5)及最大层间位移与平均层间位移的比值(不宜大于1.2 ,不应大于1.5)见表2 。从中可以看出,结构在风荷载和地震作用下的位移均能很好地满足规范限值。

3) 剪重比控制

剪重比是反映结构承受地震作用大小的指标之一,地震力计算不能偏大,但也不能太小。因为短肢剪力墙本身抵抗地震的能力较差,如果短肢剪力墙分配的地震力太大,则很有可能不满足要求。本工程X方向的最小剪重比为4.50% , Y方向的最小剪重比为4.62 % ,根据“抗震规范”(5.2.5)条要求的X、Y向楼层最小剪重比均为3.20%,所以各层均满足要求。

4) 轴压比是体现墙肢抵抗重力荷载代表值作用下的能力“规范”对短肢剪力墙(尤其一字墙肢)要求更高一些。上述工程出现的短肢剪力墙轴压比在0.20~0.45之间,轴压比小于规范规定值。

表1结构自振周期

表2结构位移

表3结构轴压比

3.2 结构经济分析

为了与工程实际情况相符,假设混凝土的成本与混凝土的体积成正比,钢筋的成本与钢筋的体积成正比。在总造价上,暂不考虑模板及楼板等工程的造价影响。暂定单位材料综合价:混凝土单价为460元/m3 ,钢筋5500 元/T,由表4 可知, 方案4 比原方案在造价上要节约19 %,节约了成本,使材料得到了充分的发挥。

4结束语

高层住宅楼结构设计篇4

【关键词】高层住宅;指标控制;基础结构设计;配筋及构造设计;地震力组合数

1总体指标控制

计算判断结构抗震是否可行的主要依据是在风荷载和地震作用下水平位移的限值; 地震作用下, 结构的振型曲线, 自振周期以及风荷载和地震作用下建筑物底部剪力和总弯矩是否在合理范围中。总体指标对建筑物的总体判别十分有用。譬如说若刚度太大, 周期太短, 导致地震效应增大, 造成不必要的材料浪费; 但刚度太小, 结构变形太大, 影响建筑物的使用。合理的刚度是多少, 笔者建议对于小高层住宅μ/H 取1/2500~1/3500,刚重比在10~15 之间是比较合理的。周期约为层数的0 . 0 6 ~0 . 0 8 倍之间。另外, 对结构布置扭转的控制: 在考虑偶然偏心影响的地震作用下, 楼层竖向构件的最大水平位移和层间位移不宜大于该楼层平均值的1 . 2 倍, 不应大于该楼层平均值的1 . 5 倍。当然, 笔者建议对于顶层构件可不考虑在内, 否则很难满足上述指标。

2基础结构设计

本工程结构设计的最大特点是采用后张无粘结预应力宽扁梁结构。设计思路如下: 无粘结预应力筋主要用于平衡楼板和扁梁自重, 并满足梁的抗裂度及变形要求。为保证构件延性, 按照《无粘结预应力砼结构技术规程》梁内配置适当普通钢筋。耐火极限为两小时, 无粘结预应力筋的保护层厚度不小于40mm。目前的短肢剪力墙体系高层由于考虑埋置深度的要求, 一般均设置地下室。基础则采用桩筏基础。如何对桩进行合理选型, 将对整个地下室设计的经济性产生重要影响。例如某一工程, 上部十八层带一地下室, 根据勘察报告, 采用Φ 4 0 0 预应力管桩, 可选桩长有桩长2 5 m , 单桩承载力特征值Ra=900kN,桩长34m,单桩承载力特征值Ra=1300kN。采用25m 桩需要290 根,采用34m 桩需要200 根。从桩本身比较两种方案, 总的桩延米数量相当, 但采用2 5 m桩为满樘布置, 筏板厚需1 2 0 0mm , 而采用34m 桩为墙下布置, 筏板可减至900mm,经济性明显。因此, 笔者认为基础选型应作方案比较, 才能选定经济合理的方案。而对于筏板厚度的取值, 则应考虑桩冲切, 角桩冲切, 墙冲切及板配筋等多方面的因素。另外, 筏板长度的设置也须我们研究探讨,由于考虑地下室的使用合理性, 常规我们采用设置后浇带来解决底板超长引起的收缩及温度裂缝, 后浇带的作用是明显的, 但也给施工带来了不少麻烦, 甚至由于处理不当而引起后浇带漏水及裂缝。而有些高层, 长宽均达1 0 0m 以上, 中间就设置几条后浇带, 也没有其他措施, 笔者认为是不妥当的。

3配筋及构造设计

对于高层住宅来说, 剪力墙是面广量大的, 因此合理的控制剪力墙配筋对于结构安全及工程的经济性具有十分重要的作用。

3.1 剪力墙墙体配筋( 以2 00厚墙体为例) 一般要求水平钢筋放在外侧, 竖向钢筋放在内侧。配筋满足计算及规范建议的最小配筋率即可。笔者建议加强区Φ10@200,非加强区Φ 8@200 双层双向即可,双排钢筋之间采用Φ6@600x600 拉筋。但地下部分墙体配筋则另当别论。因为地下部分墙体配筋大多由水压力, 土压力产生的侧压力控制, 而由于简化计算经常由竖向筋控制, 此种情况下为增大计算墙体有效高度, 可将地下部分墙体的水平筋放在内侧, 竖向钢筋放在外侧。地下部分墙体钢筋保护层按《地下工程防水技术规范》第4 . 1 .6 条规定: 迎水面保护层应大于50mm,且在保护层内按《混凝土结构设计规范》第9 . 2 .4 条规定增设双向钢筋网片。在这种情况下, 很多设计人员在进行外墙裂缝验算时有效截面高度仍按保护层50mm 计算, 笔者认为是不妥当的。当采取了双向钢筋网片后, 计算保护层厚度至少可按3 0 mm来取值, 这对节省墙体配筋效果相当明显.

3.2剪力墙按规范应设置边缘构件, 一、二级抗震设计的剪力墙底部加强部位及其上一层的墙肢端部应设置约束边缘构件;其余剪力墙应按《高层建筑混凝土结构技术规程》第7 . 2 .1 7 条设置构造边缘构件。本节仅就构造边缘构件的配筋作一点讨论。我认为首先要区分剪力墙的受力特性及类别, 即: 普通剪力墙( 长墙) , 短肢剪力墙, 小墙肢和一个方向长肢墙而另一方向属短肢墙来区别对待配筋。对于普通剪力墙, 其暗柱配筋满足规范要求的最小配筋率, 建议加强区0 . 7 % , 一般部位0 . 5 % 。对于短肢剪力墙, 应按高规第7 . 1 .2 条控制配筋率加强区1.2% , 一般部位1 . 0 % ; 对于小墙肢其受力性能较差, 应严格按高规控制其轴压比, 宜按框架柱进行截面设计, 并应控制其纵向钢筋配筋率加强区1 . 2 % , 一般部位1 . 0 % ; 而对于一个方向长肢另一方向短肢的墙体, 设计中往往就按长肢墙进行暗柱配筋, 笔者认为这并不妥当, 建议有两种方法。其一, 计算中另一方向短肢不进人刚度, 则配筋可不考虑该方向短肢影响; 其二, 计算中短肢进人刚度, 则配筋中应考虑该方向短肢的不利影响。建议该短肢配筋率加强区1.0 % ,一般部位0.8 %。

3.3 剪力墙中的连梁跨度小, 截面高度大, 在地震作用下弯矩、剪力很大, 有时很难进行设计, 如果加大连梁高度, 配筋值有时反而更大。连梁高度一般是从洞顶算到上一层洞底或从洞顶算到楼面标高。对于门洞, 上述所示情况梁的高度是一样的; 但对于窗洞, 连梁高度如果从窗洞算到上一层窗底, 有时则高度太高, 这样高跨比太大, 并且与计算图形不符, 相应配筋亦较大, 不合理。笔者建议, 连梁高度计算与设计统一规定从洞顶算到楼板面或屋面, 对于窗洞楼面至窗台部分可用砖或其他轻质材料砌筑。对于窗台有飘窗时, 可再增加一根梁, 两根梁之间用砖填充。连梁配筋应对称配置, 腰筋同墙体水平筋。

3.4目前, 各设计院在剪力墙的楼层处均设置暗梁, 而对暗梁的作用及配筋亦各有理解。笔者认为对于框架- 剪力墙结构,如剪力墙周边仅有柱而无梁时, 则设置暗梁, 并且要求剪力墙两端是明柱, 这是因为周边有梁柱的剪力墙, 抗震性能要比一般剪力墙要好。剪力墙结构则没有这方面的要求, 在墙板交接处设置暗梁对加强墙体整体性作用还是有的, 但究竟有多大则无从确定。因此笔者认为, 就目前而言, 在楼层位置设置暗梁是可行的, 但没有必要设置太大断面及配筋, 建议底部加强区断面可取墙厚x300,配筋上下各2 Φ 16 , 一般部位断面可取墙厚x 250 , 配筋上下各2 Φ 1 4即可。总之, 高层设计时如何把握好合理性,经济性至关重要。在规范允许范围内, 合理把握关键部位及次要构件, 什么地方应加强, 什么地方可以放松, 对于整个建筑物保证安全及降低造价影响巨大, 这也是我们在今后的设计中要不断提高及改进的。

高层住宅楼结构设计篇5

关键词:高层建筑;框架剪力墙;抗震措施

中图分类号:[TU208.3] 文献标识码:A 文章编号:

1工程概述

某高层住宅楼,地上30层,地下2层,建筑物高度98.3 mm。从使用功能上,地下2层为停车库,面积较大;地上两层裙房作为商场;裙房以上为公寓:主体部分尺寸为:62.6m×18.2 m。该工程抗震设防烈度为7度,设计基本地震加速度值为0.19,建筑场地类别为Ⅱ类,结构形式为框架一剪力墙结构,框架及剪力墙的抗震等级均为二级。采用的结构计算软件为PKPM系列SATWE软件计算。

2结构布置

2.1结构平面布置

结构平面布置及柱网的布置要按照建筑要求。剪力墙的布置在设计中经过多次调整,一方面由于建筑使用功能的要求:地下室为地下车库;地上1至2层为商场;上部为公寓。在有些情况下,结构按正常情况下布置的剪力墙影响使用功能;另一方面剪力墙的布置要合理且满足使用和计算要求。框架一剪力墙结构应设计成双向抗侧力体系[1],抗震设计时,结构

两主轴方向均应布置剪力墙。由于水平荷载特别是地震作用的多方向性,故结构应在多个方向布置抗侧力构件,才能抵抗水平荷载,保证结构在各个方向具有足够的刚度和承载力[2]|。

当平面为正交时,则应在平面两个主轴方向布置抗侧力构件,形成双向抗侧力体系。这个问题在框架一剪力墙结构中尤为重要。因为在框架一剪力墙结构中,剪力墙是主要抗侧力构件,如仅在一个方向布置剪力墙,则会造成无剪力墙的方向抗侧力刚度不足,使该方向带有纯框架的性质,没有多道防线,在地震作用下,可能会使结构在此方向首先破坏,而且会使两个主轴方向的刚度差异过大,产生很大的结构整体扭转。

框架一剪力墙结构中,由于剪力墙的刚度较大,其影响很大。因此在剪力墙布置时,应按“均匀、分散、对称、周边”的原则。根据建筑主体结构平面特点:①剪力墙均匀布置在建筑物的周边附近,使它充分发挥抗扭作用,在楼电梯间及恒载较大的部位设置剪力墙,以保证楼盖与剪力墙的剪力传递。②纵横向剪力墙尽量连接在一起,或设计成带边框的剪力墙

(该工程按此要求)以增大剪力墙的刚度和抗扭转能力。③剪力墙的布置宜分布均匀,单片墙的刚度宜接近,墙肢较长时宜开洞(如电梯间处剪力墙)。④该工程纵向较长,纵向剪力墙按纵向分布设置,避免集中设置在房屋的端开间。⑤剪力墙的数量应适量,过多会使结构抗侧力刚度过大,加大地震作用,增大地震效应。在此基础上,控制在基本振型地震作用下,剪力墙所承受的地震倾覆力矩占结构总地震倾覆力矩的比例一般在60%~80%之间较理想。

2.2结构竖向布置

该工程下部两层为裙房,形成大底盘单塔结构,在结构布置上应符合简单、规则、减少偏心的要求。根据文献[1]规定:结构的侧向刚度宜下大上小,逐渐均匀变化,不应采用竖向布置严重不规则的结构。抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相邻上部楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%。塔楼结构与底盘结构质心的距离

不宜大于底盘相应边长的20%。由于下部楼层层高较高,上部楼层层高较小,下部楼层刚度较弱,在结构布置时,为实现下刚上柔、逐步均匀变化的原则,尽量减少薄弱层,可通过调整结构构件的刚度或截面尺寸,降低连梁高度等。通过调整后,结构竖向布置满

足要求。

3、计算方法

该工程采用的计算方法为振型分解反应谱法,计算软件为PKPM系列SATwE软件计算。

在结构计算中根据抗震设防烈度,除在结构两个主轴方向分别考虑水平地震作用外,并考虑双向水平地震作用下的扭转影响,同时考虑在偶然偏心影响下的作用。各计算参数的取值均按规范要求。如周期折减系数0.75;柱配筋计算原则按单偏压计算双偏压复核;中梁刚度增大系数2.00;连梁刚度折减系数0.7;梁扭矩折减系数0.4;考虑0.2Q0调整。在结

构计算中通过调整各构件尺寸和剪力墙截面,使其满足规范的要求。例如:该工程在计算中横向中间跨梁出现超筋及截面抗剪不足等情况。因中间跨跨度为4.4 m,两边跨分别为6.0 m和7.8 m,跨度较小,而且由于建筑净高要求,截面高度不得大于400 mm,中间跨梁有的为连梁(一端或两端与剪力墙相连),有的为框架梁(两端与框架柱相连),通过不断的调整该梁的截面及其他构件,最后通过加大该部分梁的截面宽度,其他部分作相应的调整,最后满足要求。

4剪力墙连梁的设计

在框架剪力墙结构设计中,与剪力墙相连的连梁很难全部满足要求。因此,剪力墙连梁的设计成为一个难点。高层建筑在水平力作用下,连梁的内力往往很大,设计时应采取降低连梁内力的各种措施。如:加大剪力墙的洞口高度;在连梁中部设水平缝;对连梁内力进行调整;对连梁刚度进行折减等。该工程采用调整洞口尺寸及对连梁内力进行调整。设计中如

采取加大剪力墙洞口尺寸,从而减少连梁内力的方法在解决连梁的问题上非常有效。另外当连梁高度小于300 mm时,SATWE在计算内力时将忽略该梁的存在,亦不计算配筋,因此对某些连梁超筋的情况,当其破坏对承受竖向荷载无明显影响时,可考虑在大震作用下该连梁不参与工作,按独立墙肢进行第二次多遇地震作用下结构内力分析。

在框架剪力墙结构中,一端与框架柱相连,一端与剪力墙相连的框架梁或连梁(该工程多处出现),超筋较多。类似这种情况,可以采取如下做法:①调整连梁截面尺寸。②与连梁相连的剪力墙开设结构洞。③也可将连梁与剪力墙相连的一端设计成梁、墙铰接,只传递集中力不传递弯矩,这样一般可满足梁柱端及梁跨中的抗弯承载力要求。当梁的跨度较大时,应验算梁的挠度和裂缝宽度。

5竖向荷载问题研究

在高层建筑结构设计中,随着建筑物高度的增加,竖向荷载的作用逐渐退居次要地位,而水平荷载作用则上升为丰要的控制地位。然而,通过对上述两幢框一剪结构建筑物的内力分析发现,框架在竖向荷载作用下产生的最大层剪力数值较大,水平位移值也较大。因此,在框一剪结构设计中,竖向荷载作用下的水平作用效应也应予综合考虑。

(1)应尽量减少竖向荷载的偏心作用对结构产生的不利影响。由于框架的轴向变形引起的水平位移与剪力墙弯曲变形引起的水平位移不一致,使框架和剪力墙之间存在着相互作用的水平力,从受力的角度分析,若忽略了竖向荷载所引起的框架与剪力墙间的水平力变化,对剪力墙来说是偏于安全的,而对于框架来说是偏于不安全的。

(2)结构计算时,不同的加载模式对结构内力有一定的影响。在实际工程中,竖向荷载是逐层增加的,框架与剪力墙间的轴向变形差异,均在施工时逐层给予调整。而在结构电算时,如果将竖向荷载一次加在结构上,就会使得柱与剪力堵的轴向变形差异较实际情况增加,从而引起某些构件的内力与实际情况不符。因此,设计时应根据加载情况对构件截面及内力予以调整。

7结束语

本文通过工程实例阐述了在高层建筑框架一剪力墙结构设计中应考虑的问题及采用的具体方法;对框架一剪力墙结构的布置、计算参数的取值、连梁的设计及需要注意的问题几个方面作了详尽的描述,以便在今后的设计中予以参考。

[参考文献]

[1]GB50011--2010,建筑抗震设计规范[s]

[2]JG3 3--2002。高层建筑混凝土结构技术规程[s]

[3]徐建.建筑结构设计常见及疑难问题解析[M].北京:中国建筑工业出版社,2007

[4]王瑶,徐勤.钢筋混凝土框架结构优化设计探讨[J].工程与建设,2010,24(6):768--770

高层住宅楼结构设计篇6

【关键词】结构布置;剪力墙设计;成本控制;构造措施

中图分类号:TU2 文献标识码:A 文章编号:

剪力墙结构因其抗侧移刚度大,承载力较高,抗震性能好和良好的经济性能,在高层建筑中的应用越来越广泛。在确保实现建筑功能和结构安全的前提下,将资源进行合理配置,从而做到技术先进,经济合理,是结构设计追求的目标。本文通过实例分析,探讨关于高层剪力墙结构设计要点。

一、工程概况及结构布置

(一)工程概况。该工程为剪力墙结构,地下2层,地上29层,带三层裙房,建筑总高度为87.3m。抗震设防烈度为8度,设计基本地震加速度为0.2g,地震分组为第一组,场地类别为Ⅱ类,特征周期为0.35s,抗震等级为一级,基本风压为0.40KN/m2(100年一遇),地面粗糙度类别为B类,其它使用荷载按规范取值。

(二)结构布置。

结构标准层剪力墙平面布置图见图1。

图1 标准层剪力墙平面布置图

1.剪力墙布置。剪力墙布置的原则是加强建筑周边刚度,减小建筑中心刚度;同时控制短肢剪力墙数量,减少边缘构件,从而降低结构用钢量。

2.梁、板布置。高层住宅中,梁板跨度一般不大,楼层梁的布置应有明确的传力路径,尽量避免多重的传力情况。

(三)结构规则性判断。规则的结构体系受力明确,能很好的实现结构工程师对概念设计的理念,是结构设计优先选择的方案。

1.平面规则性判断。结构平面应力求简单、规则,避免刚度、质量和承载力分布不均匀。由图1看出结构中部由于电梯间、楼梯间开洞及建筑造型要求形成薄弱部位,这部分采取以下措施:增加楼、电梯间四周板厚(取120mm,HRB400级8@150双层双向拉通配筋),在中

部建筑凹槽处增加结构楼板(120mm厚板)以控制中部楼板开洞率不大于50%,且将凹槽两边板适当加厚(取120mm)。通过以上措施减少开洞对结构的不利影响。

2.竖向规则性判断。结构竖向不规则指刚度不规则、竖向抗侧力构件不连续、楼层承载力突变。《高规》中规定剪力墙结构中,楼层与其相邻上层的侧向刚度的比值不宜小于0.9,当本层层高大于相邻上层层高的1.5倍时,该比值不宜小于1.1。本工程二层建筑层高(4.5m)是三层建筑层高(2.9m)的1.55倍,计算结果中第二层与第三层X向侧向刚度比值为0.9757

二、计算分析

采用PKPM中的SATWE分析软件,-1~3层定义为底部加强部位,考虑5%偶然偏心,风荷载体型系数取1.3,连梁刚度折减系数0.6,周期折减系数0.95,计算结果分析如下:

(一)嵌固端判定。嵌固部位关系到结构计算模型与实际受力状态之间的符合程度,涉及到构件内力和位移计算。本工程地下二层,选取负一层顶(0.000)作为该楼的嵌固端。计算结果中X向地上一层与地下一层侧移刚度比值为0.3873,Y向地上一层与地下一层侧移刚度比值为0.4868,满足《建筑抗震设计规范》(简称《抗规》)作为上部结构的嵌固端的要求。

(二)最大层间位移角。在正常使用条件下,结构应具有足够的刚度,来满足结构的承载力、稳定和使用要求,这就要对结构的位移进行控制。实际的计算结果如下:X方向最大层间位移角为1/1004, Y方向最大层间位移角为1/1038,结构满足弹性状态下的正常使用要求。

(三)结构抗扭刚度。地震作用下,扭转效应会导致结构严重破坏,对高层建筑的抗震极为不利。《高规》中把位移比和周期比作为控制高程建筑结构平面不规则扭转效应的重要指标。计算结果中,考虑扭转耦联时的振动周期(秒)、X,Y方向的平动系数、扭转系数见表1。

表1 平动系数、扭转系数

由表1中数据可得以扭转为主的第一周期与平动为主的第一周期比值为0.766<0.9,结构具有一定的抗扭刚度。

(四)结构整体稳定验算。在水平风荷载或水平地震荷载作用下,影响高层建筑结构整体稳定的因素主要是结构的刚重比。当结构的刚重比小于结构的最低要求时,结构重力的P-效应会急剧增加,可能会导致结构的整体失稳。在水平力作用下,高层剪力墙结构的变形形态为弯剪型,当结构的刚重比小于1.4时,会导致P-效应快速增加,甚至导致结构失稳,这是刚重比的下限要求;当结构的刚重比大于2.7时,重力P-导致内力和位移增量在5%左右,即使结构的实际刚度折减50%的情况下,重力P-效应仍可控制在20%以内,重力二阶影响很小,可以忽略不计。计算结果中:X向刚重比EJd/GH2=5.61;Y向刚重比EJd/GH2=6.04,两个方向的刚重比均大于2.7,可以不考虑重力二阶效应。程序自动计算.

(五)水平地震剪力系数。对于长周期结构,地震动态作用中的地面运动速度和位移可能对结构的破坏具有更大的影响,目前规范所采用的阵型分解反应谱法尚无法对此作出评估,出于对结构安全的考虑,提出了对结构中水平地震剪力及各楼层水平地震剪力最小值的要求,《抗规》5.2.5以强制性条文对水平剪力系数作了规定。在水平地震作用下本工程水平地震剪力系数最小值为0.032,计算结果中首层水平地震剪力系数为0.0306

三、结语

通过上面实例分析可以看出,剪力墙结构设计首先要确定合理可行的结构方案,把握好结构体型、刚度分布、构件传力路径及延性等几个主要方面,利用计算软件实现概念设计的目的,再加以必要的抗震构造措施,使结构具有良好的抗震性能和足够的抗震可靠度。其次通过计算结果中各参数判断设计的合理和经济性。另外,在设计中应考虑成本控制,比如剪力墙结构中下部承载力最大,可采用较高强度的混凝土来满足轴压比的要求,用较低强度混凝土过度代换,受力主筋采用HRB400高强钢筋,能发挥钢筋的抗拉性能,节省钢筋用量,从而达到节省建筑成本的目的。

【参考文献】:

【1】.高层建筑混凝土结构技术规程(JGJ3-2010)【M】.北京:中国建筑工业出版社

【2】.建筑抗震设计规范(GB50011-2010)【M】.北京:中国建筑工业出版社

【3】.混凝土结构设计规范(GB50010-2010)【M】.北京:中国建筑工业出版社

【4】.高层建筑结构设计原理【M】.成都:西南交通大学出版社

【5】.冯中伟.高层剪力墙住宅结构优化设计【J】.建筑结构,

高层住宅楼结构设计篇7

随着人们生活水平的提高,对住宅提出了更高要求,已由安全、适用逐步走向舒适、健康。健康住宅、生态住宅、高品质住宅等高要求住宅将成为住宅发展的趋势。健康住宅的健康性主要包括居住环境和社会环境的健康性,其中住宅声环境满足要求是健康住宅的重要因素。在住宅设计、施工等环节,有关住宅隔声与减振处理方面的技术研究,实践应用方面尚存在技术难题和技术瓶颈。本文结合健康住宅的声环境要求,提出健康住宅隔声施工的技术措施并通过工程试点应用,提出隔声施工的方案和措施。 1高要求住宅的声环境设计依据 设计依据参照:①《声环境质量标准》GB/3096—2008;②《建筑隔声评价标准》GB/T50121—2005;③《社会生活环境噪声排放标准》GB22337—2008;④《住宅性能评定技术标准》GB/T50362—2005;⑤《住宅建筑规范》GB50368—2005;⑥《绿色建筑评价标准》GB50378—2006;⑦《健康住宅建设技术规程》CECS179:2009;⑧《民用建筑隔声设计规范》GB50118—2010;⑨健康住宅建设技术要点;⑩绿色生态住宅小区建设要点与技术导则。 2高要求住宅的声环境要求 结合高要求住宅的声环境设计依据,分别提出了住宅室内外声环境要求,以及住宅中主要构件的隔声性能要求,包括墙体、楼板及门窗的隔声要求等。住宅所在区域的声环境标准,对于0类住宅声环境功能区允许噪声推荐值:昼间≤50dB(A),夜间≤40dB(A);对于1类住宅声环境功能区允许噪声一般值:昼间≤55dB(A);夜间≤45dB(A);对于2类住宅声环境功能区允许噪声低限值:昼间≤60dB(A);夜间≤50dB(A)。高要求住宅宜建设在0类和1类声环境功能区。普通住宅室内允许噪声级分别为:卧室昼间≤45dB(A),夜间≤37dB(A);起居室昼间≤45dB(A),夜间≤45dB(A)。而高要求住宅室内允许噪声级分别为:卧室昼间≤40dB(A),夜间≤30dB(A);起居室昼间≤40dB(A),夜间≤40dB(A)。对比可以发现,高要求住宅的卧室、起居室(厅)内的允许噪声级要求较高。住宅墙体的隔声要求要结合住宅中墙体的部位和功能,有分户墙、户内隔墙、邻卫生间墙、含窗外墙等,应分类选用,墙体及楼板的隔声要求如表1所示。 3高要求住宅隔声方案与技术措施 3.1楼板隔声方案和措施 为满足高要求住宅中楼板的隔声要求,可采用浮筑楼板、铺设弹性面层、采用组合楼板减振做法等来改善住宅结构传声对邻室的干扰。浮筑楼板做法是将20mm厚挤塑聚苯乙烯板(FM250)用专用聚合物砂浆或黏结剂粘贴在楼板找平层上,然后根据不同面层厚度施工40~65mm厚陶粒混凝土垫层,再铺地砖或复合木地板面层。据检测报告,其计权标准化撞击声压级达到62dB,若不采取隔声技术措施,撞击声压级将>80dB。在浮筑楼板结构施工中,因为固体声的振动易沿墙、梁、柱、基础及楼板系统侧向传透到其他各层房间,尤其是由于楼板与四周墙体的刚性连接,将振动能量沿结构传播,导致其他结构也辐射声能,因此隔绝撞击声的矛盾显得更为突出。尽量避免楼板与周边墙体、洞口等的任何刚性连接是很重要的,即防止“声桥”的不利作用,否则将使楼板的隔声性能大为降低。“声桥”往往由楼面施工时漏浆和垫层中设备管线敷设不当等原因引起,如由于踢脚板处理不当,楼面与墙面产生刚性连接。对于铺筑龙骨的地板,常见的弊病是将龙骨直接搁在基层上,或是用钉贯穿弹性垫层而将地板和基层楼板钉牢,这样甚至可使浮筑木地板的隔声效果几乎完全丧失。为防止出现“声桥”,应注意楼板在面层和墙的交接处采用隔离措施,以免引起墙体振动,在地面与墙之间设置垂直的弹性垫,并注意踢脚板细部的隔声处理。 3.2墙体隔声方案和技术措施 对于墙体的隔声性能,应结合墙体的类型分类选用墙体的隔声方案和措施。采用湿作业砌筑的墙体,墙体砌筑质量、墙体留置开关盒或开设管槽等会削弱墙体有效截面形成薄弱环节,墙体抹灰质量、墙体洞口或缝隙是影响墙体隔声的主要因素。施工中避免墙体开关盒背靠背设置,开关盒采用隔声毡包裹和密封处理,保证砌筑砂浆饱满度、抹灰厚度和质量,减少墙体通缝和孔洞,避免形成声学通道,是提高砌筑墙体隔声的有效措施。而穿墙管道四周处理是影响整个墙体隔声的一个关键工序,所有穿墙管道必须设置套管,可采用钢或塑料套筒,套筒与管道之间用岩棉嵌填严密,然后用弹性胶条封闭。套筒与墙体之间用岩棉、玻璃棉等材料仔细嵌填严密,最后用水泥砂浆密封封口。在主体结构设计允许的情况下,宜尽量利用承重墙作为分户墙。如果分户墙属于填充墙,可选用陶粒混凝土或密度大的增强石膏砌块等。同时,应注意墙中的管路与嵌槽,不得出现贯通现象。如240mm多孔砖、200mm厚混凝土、180HL钢丝网水泥轻质墙板和200mm厚模卡砌块构造的墙体,隔声量可以达到要求。分户墙中所有电气插座、配电箱或嵌入墙内对墙体构造造成损伤的配套构件,在背靠背设置时应相互错开位置,并应对所开的洞(槽)有相应的隔声封堵措施。对分户墙上施工洞口或剪力墙抗震设计所开洞口的封堵,应采用满足分户墙隔声设计要求的材料和构造。为防止楼板和墙体上孔洞、缝隙的漏声,对楼板和墙体上的各种孔、槽、洞均要求采取可靠的密封隔声措施。分户墙中设置电气配套构件,在背对背安装时相互错开的距离宜≥600mm。用于封堵分户墙上施工洞口或剪力墙抗震设计所开洞口的材料和构造的隔声性能,要达到原设计分户墙的相应标准要求,以保证原设计墙体的隔声性能。墙体的隔声方案和隔声技术措施如表2所示。 3.3门窗隔声方案和措施 影响建筑外窗的隔声性能因素包括窗户开启形式、窗户材质、玻璃配置、密封措施和五金配件耐久性等。当外窗玻璃表面质量相同时,隔声性能从劣到优的顺序为:中空玻璃<单层玻璃<夹层玻璃<单夹层中空玻璃<双夹层中空玻璃,对于通过改变规格参数来提高玻璃的隔声等级STC,建议应按如下顺序进行调整:增加声阻尼(采用夹层玻璃和增加PVB厚度)→增加空气层厚度→增加玻璃厚度。密封措施和五金配件耐久性较好的建筑外窗隔声性能下降得小,宜选择适宜的密封措施和五金配件。结合使用和功能要求,优先选择开启灵活,安全性高,隔声性能好的窗户。门窗是住宅中隔声的薄弱环节,提高门窗的隔声性能对改善围护结构的隔声性能意义重大。门窗的隔声方案和技术措施如表3所示。#p#分页标题#e# 4结语 声环境满足要求是健康住宅、生态住宅和高品质住宅的重要内容,是体现住宅舒适和健康的重要条目。通过研究健康住宅的声环境要求,推动从健康角度研究住宅,解决健康住宅的关键技术措施,特别是促进住宅隔声施工技术的形成,满足居住者对住宅的环境需求。住宅隔声是个系统工程,开展建筑、结构、施工、装饰、节能、公共卫生与社会学等的跨学科研究,从规划设计、施工、物业管理、监理监测等环节入手,形成住宅隔声施工的成套技术,为高要求住宅隔声的建设施工服务。

高层住宅楼结构设计篇8

【关键字】高层;筏板基础;设计;案例分析

前言:基础选型是高层住宅楼设计中非常关键的,很多高层住宅楼的地下被设计成停车场,自然不能设计太多墙体,此时筏板基础就能很好的满足各种需求,而且施工较为简单,已经广泛应用到高层住宅楼的建设中。

1.高层住宅楼筏板基础设计分析

1.1.确定承载力与埋深

由于我国城市用地紧张,因此高层住宅楼越来越密集,设备用房、车库等地下室成为必须设置的,要结合具体功能确定地下室层数和高度,因此基础埋深也就确定了,然后再结合土质特点确定基础类型的选择。是否可以使用筏板基础的方式又两种,第一是结合承载力设计值确定;第二是结合补偿性基础特征对地基承载力进行研究。

1.2.筏板基础变形量的计算

地基变形量的计算是高层住宅建筑中最重要的验算,以当前的理论水平无法精准的计算地基变形量,计算结果会与实际情况有较大差距,因此给设计人员增大难度,可能会造成造价提高、资源浪费等后果。高层住宅楼的地基变形量计算,由于基坑深度大,因此会出现地基回弹变形从而导致地基凸起,实际中对其的计算难度较大,通常来说实际地基变形量是计算结果的一倍多。地基沉降变形的计算不能将地基回弹再压缩变形产生的沉降量忽视,应该更加重视。

根据实际经验可知,刚性筏板基础挠曲变形小,主要为整体的沉降变形。当筏板基础厚度相同时,其刚度随面积增大而减小。实际的设计中可以将独立柱基和板式筏基相结合,也就是在高层住宅楼的中部采用筏板基础,而四周采用独立基础或联合基础。

1.3筏板基础抗浮锚杆设计

目前大部分城市地下水水位都比较高,所以筏板基础地板埋深如果太大,就必须要有抗浮锚杆。筏板基础抗浮锚杆的设计要注意两点:其一,如果地下室和上部结构无法抵抗地下水浮力,地下室就会出现上浮情况,但如果筏板基础底板结构重量能够抵抗地下水上浮力,则能够确保高层住宅楼基础结构的稳定性。所以要完成地下室和地面上部分结构方可确保高层住宅楼不受地下水上浮力影响,而不用在施工整个过程都要注意地下水位变化;其二,浮托力是由于基坑内有积水而产生的,基坑内积水高度和地下室体积是决定浮托力大小的因素。所以,施工中要将水位控制在合理范围内以避免浮托力的产生。

1.4筏板基础计算方法

筏板基础计算方法有很多,但要结合适用范围和实际情况选择适当的方法,目前级数法、伦算法和静力平衡法是比较广泛应用的简化算法。当地基分布较为均匀,荷载情况相对平均时,可以选择倒梁法或倒楼盖法;较为复杂的地基分析则可以选择有限元法。

2.高层住宅楼筏板基础结构设计

平板式筏基和肋梁式筏基是高层住宅楼筏板基础中最常用的两种结构,一般来说,基础肋梁会安置在底板上,如果地基均匀度不好或者有其他需求,也可以将其安置在底板下。筏板基础的设计需要注意以下几点:第一,设计中尽可能将筏板基础形心和上部结构负载重心保持一致,尽量避免基础偏心太大而导致基础受到弯矩作用;第二,结合抗冲切和抗剪强度测试来确定底板详细厚度,如果柱网之间距离较大,在柱间设置暗梁可以减缓冲切力的影响,底板厚度也可以适当减小,另外,也可以通过预应力钢筋来减少底板使用混凝土的量,从而将工程造价控制在合理范围内。确定底板厚度的因素中,冲切作用强弱是最关键的因素,因此必须要进行抗冲切计算;第三,无肋梁筏板基础的设计可以参考无梁楼盖跨柱上板梁和中板梁带的设计方法,如果要准确计算需要采用有限元方法;第四,筏板基础的受力钢筋最小配筋率为0.15%,悬挑板需要将钢筋附加在角位置。设计人员通常只对结构钢筋配置高度重视,而忽视或不重视构造筋的要求。

3.高层住宅楼筏板基础设计案例分析

以某地高层住宅楼的筏板基础设计为例进行分析。

3.1工程地质情况分析

该高层住宅楼地上为20层,地下室一层,为剪力墙结构。土层分布从上至下分别为0.5-3米的人工填土层;0.6米的冲洪积土层;1.5-8.3米、标贯击数为8-16之间的可塑状残积土层;2.3-12米、标贯击数在18-29之间的硬塑状残积土层;2.4-8.5米的岩石全风化层;0.5-12米的岩石强风化层;1.2-2.2米的岩石中风化层;1-1.5米的岩石微风化层。塔楼占地面积为两千多平方米,地基承载力均值约为240kPa。

3.2筏板基础设计

筏板基础平面设置:筏基平面形心与建筑重心尽可能要重合,筏基边缘最好外挑,且由柱距、场地环境、地基条件、建筑物重心和地基反力的重合等因素决定,通常其宽度是边跨柱距的四分之到三分之一之间。

筏板基础厚度设置:抗剪强度和抗冲切实筏板基础厚度的决定因素,而且还必须符合抗渗要求,如果柱荷载和柱距偏高时,可以通过设置暗梁或者在底板下加墩来增强抗剪切能力。同时还对筏板基础的整体刚度有较高要求,通常来说,筏板厚度是根据地上楼层数量来计算,每层板厚约为0.05-0.08米之间。该楼地上共有20层,筏板厚度为1.1米,在轴力偏大的柱下板底加柱墩,厚度约为1.5米。

筏板基础内力设置:通常计算筏板基础内力都是使用简单算法,最主要的特点是地基、基础和上部结构构成静力平衡系统,三个部分的计算相互独立,其中使用最广泛的方法就是倒楼盖法,但其适用条件为筏板基础刚度和上部结构刚度较好、地基均匀、柱距与柱轴力差距较小。当然这种方法也是有缺陷的,即对基础整体影响完全忽略,不能计算出挠曲变形。这三个部分在计算时是相互独立的,但实际上三者之间相互制约、相互影响。

根据相关资料分析可知,地基压缩层如果是强风化岩层、风化残积土层,则沉降量计算最好使用分层总和法。该案例使用的是有限元法,也就是将筏板基础分割成若干部分,每个部分的地基基床系数是通过土的变形模量算出的。

结束语:

高层住宅楼如今已经非常普遍,筏板基础不仅能够满足地基的承载力,还能尽可能的利用空间,在筏板基础的设计过程中,要通过科学合理的方法对筏板基础承载力、变形量和埋深等参数进行计算。高层住宅楼施工过程中筏板基础进行科学的设计,是高层住宅楼安全性的基本前提,也是建筑的关键构成。

参考文献:

[1]李伟,分析高层住宅楼筏板基础的设计,科技与创新, 2014, (09)

[2]赵洁,郭会强,程新宇,高层住宅楼筏板基础施工方法,焦作工学院学报(自然科学版), 2001

推荐期刊