线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

压力容器论文8篇

时间:2022-07-15 20:28:26

压力容器论文

压力容器论文篇1

1.1压力容器概念与应用

在实际研究中,我们将反应堆压力容器概念定义为:核反应堆压力容器就是指安放核反应堆,并在核反应堆运行过程中承受压力的密闭容器。在概念中反映了反应堆的两个主要特征:既耐压性与密闭性。因为在核能源设施建设中,核反应堆在实际应用中一般包括了轻水堆、重水堆、气冷堆及快堆等几种主要类型,所以压力容器的结构形式也随着反应堆的变化而各有不同。

1.2压力容器主要设计原则

在反应堆压力容器实际的设计过程中,根据反应堆在实用中主要特征,设计者应遵循以下原则,首先是在设计中容器应位于反应堆厂房中心位置,以此为核心开展反应堆整体设计。其次是在设计时应做好紧急问题的预防与处理防范措施设计。其中主要应考虑的问题包括了以下问题:在反应堆运行过程中冷却剂遇到高压和高温问题;反应堆主管道断裂等工程事故问题;地震一类的地质灾害问题等各类问题。最后是在设计中严格制定质量与安全标准。因为核反应堆长期处于高压与危险状态。所以在压力容器设计过程中,设计者应充分的考虑其在材质、工艺、以及检查等方面的要求,在设计中严格贯彻质量与安全要求确保源头保障的完成。

2压力容器主要技术特点实践研究

在反应堆压力容器的实际工作中,我们按照其材质划分主要将其分为钢容器与预应力混凝土容器两种。研究中我们分别对于这两种容器进行研究,其主要的研究结果如下。

2.1钢压力容器主要技术特点研究

在实际的反应堆应用中,钢压力容器因其密闭与安全性特点被应用在各类核反应堆的建设过程中。下面我们依据反应堆的区别,分别对钢压力容器的设计与建设要求进行介绍。首先是轻水核反应堆中容器技术要求。在这类反应堆设计中与建设中,钢压力容器根据技术要求设计为圆筒形结构。在百万千瓦级大功率反应堆的建设中,为了实现安全与技术要求压力容器内径需要设计为4.4m,高度设计要求在13-15m之间,壁厚为20cm。同时根据设计要求,容器整体在反应堆的运行过程中所承受的压力不得小于15兆帕。为了达到设计与实际应用的要求,我们在容器应用的材料选择中,一般使用含锰、钼、镍的低合金钢为主要材料,同时在容器建设中需要在容器堆焊不锈钢材料以提高容器整体的耐腐蚀性。在反应堆容器的设计中为了方便反应堆换料等工作的进行,一般在其上封头连接中应用法兰工艺。同时在容器顶部安装设置反应堆控制棒驱动机构,便于进行操作。另外在钢容器的实际应用中,为了实现其技术设计与工艺要求,还需要设置反应堆一回路的进出口接管段。其次是沸水反应堆中压力容器的技术要求。在这类反应堆设计与建设过程中,其在外形和材质的要求中与冷水反应堆基本相同。但是也存在着以下不同之处。一是因其运行中所承受压力较低,所以其压力设计只要不低于7兆帕就可以了。二是因为沸水反应堆需要安装设置汽水分离器等主要设备,所以其设计尺寸应大于冷水反应堆,如其在百万千瓦级压力容器设计中,设计直径需要达到6.4m,设计高度需要超过22m,壁厚设计要求在15-17cm。第三是在设计中,沸水反应堆控制棒设计应实现贯通压力容器底部的设计要求。最后是气冷反应堆的技术要求。这类反应堆钢压力容器设计中一般为直径约20m圆球,同时在顶部设置安装加料立管,容器侧部设置进出口风道等设备。随着核反应堆技术的进步,气冷反应堆因为存在容积大、焊接技术要求高与整体运输难度高等特点,已逐步被混凝土压力容器代替。

2.2预应力混凝土压力容器主要技术特点研究

因为技术开发较晚与实际技术问题较多等原因,预应力混凝土压力容器现阶段主要被应用于气冷反应堆建设中。在这类反应堆容器设计中,其主要的设计要点包括了以下内容。首先是在外形与结构设计中,容器整体外形设计为直径大约25m、高度大约30m的立式圆筒。同时在设计中要求容器采用厚度为5~6m平板进行封头处理,同时容器壁厚大约在4~5m。其次是在结构设计中,设计者按照容器具体使用要求,将其结构设计为单腔与多腔式两种结构。最后是按照预应力钢束配置方式进行设计。这项设计主要是做好纵向与横向钢束的按照与设置设计,将两者很好的安全结合。在气冷反应堆实际应用中,预应力混凝土压力容器的主要优势包括了以下两点。一是采用了加多的钢束作为整体承载构件,小部分结构破坏不影响整个容器的整体结构安全,使其安全性更高。二是其主要采用建设工程现场浇筑、安装和装配建设,其安装与运输方便,适合大型核电站建设使用。

3结语

压力容器论文篇2

由于制造质量低劣而引发事故的现象在压力容器的使用过程中屡见不鲜,为了确保压力容器制造质量,压力容器应由获得相关资质的专业单位制造和现场组焊。压力容器的制造质量主要取决于材料质量、焊接质量和检验质量。制造压力容器的材料必须有质量合格证书,在投产前应认真核对证书、材料炉批号和牌号标记,认真检查材料的表面质量、性能和化学成分。焊接质量是保证制造质量的重要环节,为保证焊接质量,必须要认真编制焊接工艺和进行焊接工艺评定,严格焊接材料的验收、保管、发放、领用程序。对于工作人员必须要取得焊工合格证书。质量的检验,压力容器主要进行焊接表面质量、无损探伤和压力试验三个方面的检验。1)焊缝的表面质量,要求形状、尺寸以及外观应符合技术标准和设计图样规定;不得有裂纹、气孔、弧坑和肉眼可见的夹渣等缺陷,清除焊缝上的熔渣及附近的飞溅物,焊缝与被焊着着间实现圆滑过渡;焊缝的表面不应该有明显的咬边,或咬边应符合相关标准规定。2)X-射线、超声波、磁粉和渗透探伤通常是探测压力容器的手段。渗透探伤按GB150-1998《钢制压力容器》有关规定进行。3)压力容器的压力试验是指耐压试验和气密性试验,耐压试验包括液压和气压试验。

2压力容器的安装管理

在压力容器的安装方面,必须确保该施工单位具备安装资格,能够在规定中汇过去安装的资格而进行安装。安装前期,安装单位需要将安装内容及强情况告知当地安全监督部门,确保设备安装正确以及设备的安全、合理使用。在安装特殊压力容器其容积不小于10m3的压力容器,如蒸球、生产装置中一并安装的其他压力容器,液化气储罐,医用高压氧舱等时,安装施工单位、使用单位必须向当地压力容器的安全监察部门申报,详细说明压力容器的名称、种类和数量、制造商、使用单位和部门、安装施工单位及安装地点等信息,办理相应的审批手续。

3压力容器的使用管理

为了保证压力容器的安全、优化、快速运行,必须要进行管理体制的改善,做到管理严格化、规范化,使压力容器在安全范围内使用、操作正确,同时具备合理、科学的保养工作,及时发现其存在的问题并加以解决,消除障碍,保证压力容器的安全运行。1)不仅要增强安全操作意识,还要具有专业的使用知识,在压力容器使用过程中按照规范及原则进行操作,严格掌握使用要求;2)操作人员在使用过程中,必须严格按照规范程序操作,保证顺序的准确性,认真操作及使用,在操作检查中,对设计工艺及操作内容进行监测,避免出现操作失误,严禁设计过程中对于压力、温度及负荷的不合理控制及违规操作,避免造成严重的事故,同时,遇到事故后禁止人工试探,以免造成严重的人员伤亡。日常检查首先检查操作温度、压力、流量、液位等参数指标有无异常;其次对法兰、防腐层、安全阀、爆破片等检查有无缺陷,最后检查紧急切断阀以及安全连锁、报警装置等安全附件是否灵敏和可靠。定期检验,形成日常维护与保养机制,及时消除“跑、冒、滴、漏”现象。对于企业来说,企业负责人或总工对压力容器的安全技术工作负责,任命具有压力容器专业知识的工程技术人员负责安全工作。设备动力部门是企业对压力容器安全技术管理的职能部门。

4结语

压力容器论文篇3

关键词:三门核电厂;反应堆;堆内构件;压力容器;导向柱 文献标识码:A 

中图分类号:TG115 文章编号:1009-2374(2015)23-0027-03 DOI:10.13535/j.cnki.11-4406/n.2015.23.015 

1 概述 

在核电厂调试及大修过程中,反应堆上部堆内构件吊装、反应堆下部堆内构件吊装及反应堆压力容器顶盖吊装是核岛最重要的设备吊装作业,风险大,要求高,并且占据着主线时间,对核电厂的安全性和经济性有着至关重要的影响。在进行上下部堆内构件及反应堆压力容器顶盖吊装作业时,设备的精确定位和导向主要依靠导向柱来保证。三门核电1号机组作为全球首台AP1000,其反应堆压力容器配备有2根导向柱,用于在安装、调试和大修期间来导向反应堆压力容器顶盖和上、下部堆内构件的吊装。现有导向柱每根长4420mm,有效导向高度为4004.5mm,在吊装反应堆压力容器顶盖时可以完全满足导向要求,但在吊装上、下部堆内构件时长度不足,无法进行精确导向。 

首炉装料前的吊装操作过程中,此问题带来的不利影响不是十分明显,因为此时安装、调试人员可直接在换料水池底部观察确认堆内构件吊装的对中情况,在人工定位之后将堆内构件下降到压力容器内,当堆内构件下降到合适高度后,再由导向柱提供导向。而换料大修期间,堆内构件吊装时换料水池充满屏蔽水,吊装指挥无法进入换料水池底部,此时堆内构件在进入压力容器前就需要导向柱进行导向。在换料大修期间的上部堆内部件吊出过程中,当上部堆内构件堆芯上板吊离反应堆压力容器筒体法兰面约100mm时,需要检查堆芯上板是否带出控制棒组件。如果控制棒组件被带出,则需先将上部堆内构件回装到位,对问题进行处理后重新起吊上部堆内构件。现有导向柱高度不能满足此操作要求。

 

吊出下部堆内构件时,由于下部堆内构件高度较高,吊出和吊入压力容器过程中,现有导向柱高度不能满足下部堆内构件吊装操作的导向要求。 

另外,受到反应堆压力容器顶盖自身结构的限制,当顶盖在反应堆压力容器上时或在吊离/吊装至反应堆压力容器时,导向柱的高度不能超过5278.9mm。 

因此,需要通过优化导向柱解决以下两个问题:问题一:上、下部堆内构件吊装过程中的导向柱导向高度不足的问题;问题二:在保证上、下部堆内构件吊装时导向柱的导向高度满足要求的前提下,确保导向柱在反应堆压力容器顶盖吊装过程中不超过顶盖对导向柱的高度限值要求。 

2 优化方案一:配置长、短两套导向柱 

此优化方案配置的长、短导向柱有效导向高度分别为9100mm和4150mm。 

在反应堆压力容器顶盖和上部堆内构件吊装时使用短导向柱。当需要从压力容器内吊出下部堆内构件时,先降低系统水位至反应堆压力容器筒体法兰面以下,然后拆除短导向柱,再安装长导向柱,最后升水位进行下部堆内构件的吊出操作;在回装过程中,当下部堆内构件回装完成后,将系统水位降低至反应堆压力容器筒体法兰面以下,然后拆除长导向柱,再安装短导向柱,最后升水位进行后续操作。 

3 优化方案二:配置一套可拆分式导向柱 

此优化方案配置的一套导向柱,每根导向柱可以拆分为2段,按安装位置从下到上分为短导向柱和延伸导向柱。短导向柱的有效导向高度为4150mm,延伸导向柱的有效导向高度为4950mm,两段导向柱连接后总有效导向高度为9100mm。预计加上安装段与锥形头段的短导向柱长为4565mm,短导向柱和延伸导向柱连接后总长9515mm。在反应堆压力容器顶盖和上部堆内构件吊装时使用短导向柱,并在短导向柱顶部安装锥形头。当需要吊出下部堆内构件时,在不降水位的情况下,操作人员借助装卸料机或堆腔辅助平台进行操作,拆除短导向柱顶部的锥形头,将延伸导向柱安装在短导向柱顶端,再吊出下部堆内构件;待下部堆内构件回装完成后,拆除延伸导向柱并安装短导向柱顶部的锥形头以进行后续操作。 

4 两种优化方案的比较 

无论采用上述方案中的哪种,在反应堆压力容器顶盖和上部堆内构件的吊装过程中都是使用短导向柱进行导向,两者的工艺流程也都一致。但是,当进行下部堆内构件吊装作业时,两者的工艺流程就产生了较大的差别,从而在占用大修主线时间的长短、人员接受的辐射剂量的多少等方面均有较大的不同。 

4.1 占用大修主线时间对比 

下部堆内构件的吊装占用大修主线时间,因此吊装下部堆内构件时,更换导向柱占用着大修主线时间。方案一占用大修主线时间包括为长短导向柱更换增加必要辐射防护措施的时间(约1小时)、降和升换料水池7.6m水位的时间(约3.92小时)以及长短导向柱的两次更换操作时间(约10.5小时),总计约15.42小时;方案二占用大修主线时间包括短导向柱顶端锥形头拆装时间(约1小时)和装拆延伸导向柱时间(约4小时),总计约5小时。 

由此可见,采用方案二比采用方案一每次大修可节省主线时间10.42小时,具有更好的经济性。 

4.2 操作人员受到的辐射剂量对比 

方案一:拆除短导向柱时需要4名操作人员站在换料水池底部工作3小时,人员总辐射剂量为0.6mSv;导向柱安装时需要6名操作人员站在换料水池底部工作2.25小时,人员总辐射剂量为0.675mSv。大修期间要进行两次导向柱的更换操作,正常情况下采用方案一时操作人员接受的总辐射剂量为2.55mSv。 

方案二:拆装短导向柱锥形头需要4名操作人员站在装卸料机人员通道工作1小时,人员辐射剂量为0.10mSv;将延伸导向柱安装到短导向柱顶端需要4名操作人员站在装卸料机或堆腔辅助平台工作2小时,人员辐射剂量为0.2mSv。正常情况下采用方案二操作人员接受的总辐射剂量为0.6mSv。通过对比可知,采用方案二时,操作人员受到的总辐射剂量比采用方案一要少约1.95mSv。 

4.3 导向柱更换操作对比 

采用方案一时,每次更换导向柱的主要操作步骤如下:(1)安装导向柱吊耳;(2)将手拉葫芦联接到环吊副钩上,测力计悬挂在手拉葫芦吊钩上,将导向柱吊耳与测力计连接;(3)提升手拉葫芦,保持合适的提升力,拆除导向柱;(4)利用环吊将导向柱吊至135′平台并倾翻至水平状态储存;(5)清洗检查过渡套螺纹,涂抹润滑脂,对新的O型密封环涂抹润滑脂,清洗导向柱安装孔,并目视检查其螺纹,不得有损伤;(6)将手拉葫芦联接至所需更换的导向柱上,提升环吊副钩将导向柱吊从水平状态倾翻至垂直状态;(7)将导向柱吊装至安装孔位置,对中后安装导向柱;(8)拆除手拉葫芦、测力计等工具。 

方案二的操作分为以下步骤:(1)拆除短导向柱的锥形头,将专用工具联接到环吊副钩上并就位至短导向柱顶端,操作专用工具拆除锥形头并吊至135′平台储存;(2)将导向柱吊耳旋入延伸导向柱吊装孔,拆下专用工具,将手拉葫芦环吊副钩连接,将测力计悬挂在手拉葫芦吊钩上,将导向柱吊耳与测力计连接;(3)操作环吊副钩,将延伸导向柱翻转至竖直状态,并移动至压力容器短导向柱安装孔正上方。下降导向柱,当下端进入短导向柱顶部后要特别小心,当延伸导向柱底部接触到短导向柱顶部后(测力计读数开始降低),停止下降;(4)将导向柱拆装把手插入导向柱插孔,手动下压延伸导向柱到位,旋转把手使延伸导向柱与导向柱啮合;(5)拆除手拉葫芦、测力计等工具。 

对比两种方案,方案一工作较为简单,但工作步骤多,工作量较大,花费时间和人力较多;方案二工作步骤较少,花费的时间和人力较少,涉及水下操作,对操作人员技能要求较高,操作难度相对较大,但可以通过加强培训来提高人员的工作技能。 

4.4 导向柱运输安装对比 

根据目前工程实际,三门核电1号机组在大型设备(蒸汽发生器、反应堆压力容器、稳压器等)吊装完成以后已经将反应堆厂房穹顶安装就位并焊接完成,屏蔽墙浇筑完成。因此,更换的导向柱需要通过附属厂房吊装口和设备闸门运输至反应堆厂房换料水池。 

导向柱运输的路径:导向柱运至107′平台,通过附属厂房吊装口运至附属厂房135′平台,再通过设备闸门运至135′平台,最终运输至换料水池。设备闸门的直径只有4.9m,吊装区域空间有限,方案二中长度为4950mm的延伸导向柱比方案一中长度为9515mm的长导向柱导更容易倾翻,吊运难度更小,更容易实现导向柱的吊入、安装工作。 

压力容器论文篇4

关键词:压力容器;蒸汽爆炸;现象研究;进展介绍

压力容器在现代社会中应用广泛,涉及化工、能源、石油等行业,因装载的物料不同,其实际使用危险种类较多。蒸汽爆炸是一种发生于压力容器内部的物理爆炸形式,自从相关人员于1957年首次发现沸腾液体蒸汽膨胀爆炸后,即围绕蒸汽爆炸展开了一系列的研究,包括现场模拟实验、理论计算等,并取得了相应的成绩。由于,蒸汽爆炸过程较为复杂且剧烈,现阶段的蒸汽爆炸分析模型仍较为粗糙。因此,通过分析蒸汽爆炸研究进展,探索进一步研究方向,对于促进蒸汽爆炸研究发展意义重大。

一、蒸汽爆炸基本机理分析

BLEVE(Boiling Liquid Expanding Vapor Explosion)直译为“沸腾液体急速扩展为蒸汽引发爆发”,简称蒸汽爆炸。这一概念来源于一起由甲醛和苯酚制取酚醛树脂的反应器爆炸事故,事故分析时将此次事故定义为蒸汽爆炸。随着后续的调查、研究不断深入,参与研究的学者不断补充、完善蒸汽爆炸内容,并且该定义仍存在被进一步完善的可能。

美国化学过程安全中心给出的蒸汽爆炸定义为:大量承压的过热液体,在某种泄压因素的影响下,压力突然降至大气压引发的爆炸。泄压因素具体包括撞击、受火、腐蚀、内部过热等;Cunningham和Birk AM认为蒸汽爆炸现象,是因装有压缩液化气体的压力容器发生灾难性失效现代,导致的沸腾液体及膨胀气体的爆炸性释放现象。Birk AM等研究人员,曾于2006~2007年进行了一系列的丙烷储罐在受火加热条件下的蒸汽爆炸研究,并提出了蒸汽爆炸两阶段机理。Manu CC等研究人员,于2009年利用三位有限元相关知识,对丙烷储罐的受火爆破过程进行了分析。Venart J与俞昌铭针对蒸汽爆炸,给出以下定义:气液容器在高压饱和状态下,受手中原因影响,导致容器内部液体段时间内发生气化膨胀,使容器内部压力上升,产生爆炸。并针对容器内部气相空间存在小孔的蒸汽爆炸现象,进行了深入探讨,最终形成了沸腾液体压缩气泡爆炸理论,即BLCBE(Boiling Liquid Collapased Bubble Explosion)。

部分学者认为蒸汽爆炸,仅发生于容器气相空间出现泄漏的情况。Mcdevitt C等研究人员,于1988年经过多次的蒸汽爆炸实验,验证了容器液相泄漏发生爆炸的可能性。

二、蒸汽爆炸压力

压力容器发生蒸汽爆炸的过程极为复杂,多种物性参数在短时间内,会发生多种变化,严重限制了理论研究的有效进行。在蒸汽爆炸研究过程中,部分工业较为发达的国家,为研究蒸汽爆炸特性,投入量大量资源进行模拟实验研究,期望通过重复试验,探明爆炸过程中介质经历的复杂的物理变化,并获取相关实验数据,以建立爆炸模型,分析爆咋事故机理。

(一)试验测量

北川彻三等科研人员,在1972年的试验中,选用了一个容积15L,高220.0mm,直径300.0mm的竖式圆筒压力容器注满水,并在其上盖部门安置一个直径为71.0mm的铝质破裂板。试验过程如下,首先对容器进行加热处理,当水温加热至100.0℃时,容器发生蒸汽爆炸,破裂板被内部压力顶破。容器内部压力在破裂板损坏时有所下降,经过5s左右,内部压力再次上升。发生蒸汽爆炸时的压力峰值与初始压力相比,前者约为后者的2.5倍。

Venart J等科研人员,于1993年利用R11制冷剂,进行了相应的蒸汽爆炸试验。实验过程如下,首先在实验容器炔砍渥70.0%左右的R11液体,然后使用外部加热能源对容器进行加热,并加压至770.0kPa左右。此时试验容器在气相区域出现喷射小口,导致容器内部压力下降35kPa左右。实验人员利用丙烷火焰喷嘴在容器表面人工制造了一个10.0mm长的裂纹,经约200μs后,容器发生蒸汽爆炸。最大峰值测定约为175.0kPa.

Venart J和Ramier等研究人员,于2000年针对水介质在过热条件下的蒸汽爆炸现象进行试验探究。通过对比多次试验数据,总结出容器内部压力在爆炸过程中的一般变化趋势,即在0.1s左右的时间内,由于爆炸引起的压力峰值可达到2~3倍的初始压力数值。

Stawczyk J于2003年,围绕盛装有丙烷的压力容器,进行了一系列的蒸汽爆炸试验,并相应记录了爆炸压力及温度等内容。数据表明,容器内部压力在爆炸过程中,共出现三个压力峰值,升压时间约为0.5s,最大压力约为失效压力的3.0倍。

针对压力容器蒸汽爆炸特点,在压力容器实际安全管理工作中,对于压力容器的日常养护维修有着较高的要求。如所有压力容器设备均应依据国家相关规定定期进行安全检查,具体规定如下:安全状况等级属于1~2级的压力容器,至少每6年进行一次安全检查;安全状况等级属于3级的压力容器,至少每3年进行一次安全检查;安全状况等级属于4级的压力容器,安全检查周期有相关机构确定。

上述BLEVE试验,多数试验的讨论重点在于,火灾条件下,承装液化石油气的压力容器,发生热源持续流入时的BLEVE情况。

(二)理论计算

俞昌铭、Venart J、Yu CM、林文胜、马小茜、王海荣、徐书根等人先后利用不同的理论,针对BLEVE现象进行了建模分析,普遍由容器裂缝作为切入点,分析爆炸过程中各项物性参数的变化情况。

(三)BLEVE现象压力特点分析

压力容器气象区间或液相区间,存在泄漏破口,在一定条件下,就会发生BLEVE现象。而BLEVE现象发生的关键就在于,容器内部是否能顺利发生一系列的降压及液体容积沸腾变化。

通过现场模拟试验和物性参数理论分析,可得如发生BLEVE现象,容器内部必将经历压力先降后升的过程,且峰值压力与初始压力相比,会得到3倍以内的提升,升压时间短暂,约为ms级。

三、BLEVE现象研究中存在的问题分析

就目前的BLEVE现象研究而言,可得出BLEVE压力变化一般规律、BLEVE现象成因以及BLEVE现象一般过程规律等内容,但仍存在问题尚未得到解决,具体内容如下:

一,当前BLEVE现象的研究对象多为单一组分物质,在混合物料BLEVE现象研究方面,并未进行深入的研究。并且,针对BLEVE现象缺少相应的发生判断依据,并不能由研究结果形成相应的缺陷评定体系。

二,当前BLEVE现象理论分析模型过于粗糙,多是一、二维分析模型。针对某些BLEVE现象,只有通过建立三维模型,才能保障理论分析的真实性和准确性。

三,目前BLEVE现象研究条件较为固定,缺乏代表性。

结语:

综上所述,关于BLEVE现象的研究,经过多位科研人员长时间的探索,已经可以得出BLEVE压力变化一般规律、BLEVE现象成因以及BLEVE现象一般过程规律等内容,但对于BLEVE的分析仍比较粗糙。下一步BLEVE的研究重点,可放于耦合研究及多物理场方面,以促进对BLEVE现象的研究发展。

参考文献

[1]徐书根,王威强.压力容器蒸气爆炸现象研究进展[J].化工机械,2011(06).

[2]沈华民.北川彻三“平衡破坏型蒸气爆炸”理论的热力学分析与讨论(一)[J].中氮肥,2015(04).

压力容器论文篇5

关键词:压力容器 安全性评定 趋势

中图分类号:TP2 文献标识码:A 文章编号:1672-3791(2013)05(a)-0084-01

压力容器作为广泛应用于电力、航天、化工、石油、能源等诸多工业部门的一个重要部件,同样也是一种极易发生重大事故的特殊设备。目前大部分压力容器都采用焊接方法制造,但是由于运行条件、焊接工艺以及焊接结构固有的缺点,几乎所有的压力容器都不可避免的存在各种缺陷,如母材中的冶金夹层、未焊透、夹渣、焊缝中的气孔等,因此,压力容器的安全评定技术的研究和应用历来受到各部门和有关学者的重视。本文中,笔者将阐述目前常用的压力容器安全评定技术,并探讨压力容器安全评定技术的发展趋势。

1 目前常用的压力容器安全评定技术

(1)弹塑性断裂力学评定方法。该方法以弹塑性断裂力学为基础,主要有J积分理论法和裂纹尖端张开位移法(COD法)。Rice于1968年提出J积分评定方法,该理论利用与路径无关的,避开裂纹尖端的能量积分J来描绘裂纹尖端的应力应变场,判断依据为,其中为材料相应的临界值,J积分评定方法不仅适用于大范围全面屈服的情况,还适用于小屈服、线弹性的情况,并且较裂纹尖端张开位移法更可靠;裂纹尖端张开位移法作为20世纪70年代国际缺陷评定规范主要采用的评定方法,该方法是WELLS于1965年提出,认为当张开裂纹位移达到时,压力容器的裂纹就会开裂,其中材料的临界张开位移以试验测量为准,与试件的形状、厚度无关,因此该方法在应用中存在一定的局限性。

(2)线弹性断裂力学评定方法。线弹性断裂力学将结构视为一个不发生屈服的完全弹性体,并假设结构存在裂纹,描述无限板中心穿透裂纹模型得到裂纹尖端应力场分布规律,研究材料临界应力强度因子与裂纹尖端的应力场强度因子K之间的关系,因此也称为K判据,其评定依据为≤。当计算得到的裂纹尖端的应力场强度因子K不满足上述依据时,压力容器就可能发生脆性断裂,此时就需要采取积极的预防措施。该方法适用于脆性材料或者塑性区尺寸较小的金属材料,当金属材料的塑性区很大,甚至端部塑性区尺寸已经接近裂纹本身尺寸时,该方法已经不再适用。

(3)失效评定图法。英国中央电力局在《带缺陷结构的完整性评定》中提出了失效评定图技术,随后美国电力研究院将材料应变硬化的阻力曲线应用于分析裂纹稳定扩展的全过程,并提出了严格的失效评定曲线,1986年,美国电力研究院以J积分为基础,考虑材料的应变硬化效应,抛弃通过立项塑性材料窄条区屈服模型得到失效评定图的方法,建立了失效评定的三种选择。目前世界各国的压力容器缺陷标准都在向美国1986年板的缺陷评定规范靠拢。

(4)疲劳断裂评定方法。疲劳裂纹稳定扩展阶段作为疲劳裂纹扩展的第二阶段,此阶段也决定了含裂纹压力容器的的疲劳寿命,目前疲劳裂纹稳定扩展阶段的扩展速度以及含裂纹构件的疲劳速度都可以由Pairs公式精确计算。对于压力容器接管处的高应变区疲劳寿命较短,最大应变接近屈服应变,应变幅度很大,此种应变疲劳问题可以应用裂纹尖端张开位移法理论或者J积分理论进行研究。

2 压力容器安全评定技术的发展趋势

(1)疲劳方法的应用。2000年PD 6539:1994与PD 6439:1991发表了合并后的BS 7910:1990修订版,该标准总结了近年来大量钢材在海水和空气总疲劳裂纹扩展实验数据,推出了新的疲劳裂纹扩展率,得到了更为准确的应力比R的修正法和两端Pairs关系式,并加入环境因素,给出了较高温度下的疲劳裂纹扩展,海水环境中无阴极保护和有阴极保护时的新的推荐方法。

(2)智能方法。因为工程结构一般存在大量的不确定性,然而传统的断裂力学研究都以确定性实践为前提,据研究采用模糊的数学方法对工程问题进行模糊处理,可以很大程度上提高压力容器的安全性评定的可靠性,随着智能方法在人工神经网络技术等领域的应用,针对影响压力容器的众多因素建立模糊模型必然成为下一步发展趋势。

(3)概率方法。美国一些研究人员于20世纪80年代将概率统计理论与确定性断裂力学理论想结合产生了概率断裂力学,并应用于压力容器的可靠性评估。基于概率断裂力学失效方法能够降低经验因素的影响,能够客观反映评定参数的不确定性,提高分析的安全性和准确性。近年来,Rahman.M建立的对含纵向腐蚀缺陷压力管道的结构可靠性理论,目前国外一些先进国家已将其应用于指定寿命下高可靠性主动设计中,具有较高的工程应用价值,但是我国新标准还未将其纳入其中。

(4)体积型缺陷评定图方法。近年来,随着断裂力学评定技术的发展,特别是最新版的缺陷评定规范在有屈服平台的非连续屈服材料和无屈服平台的连续屈服材料中的应用,推动了失效评定技术向体积型缺陷评定图技术方向发展。

3 结语

综上所述,压力容器的安全性评定方法种类很多,包括弹塑性断裂力学评定方法、线弹性断裂力学评定方法、失效评定图法、疲劳断裂评定方法等,而且随着断裂力学理论、计算机技术、故障和缺陷在线诊断技术、传感技术的发展,压力容器安全评定技术也在不断的革新,相信不久的将来,我国也会形成自己的压力容器安全评定和监测监控技术体系。

参考文献

[1] 候向陶,王鹏,孙振超.压力容器安全评定技术研究综述[J].河南科技,2012(1).

[2] 淡勇,高启荣.压力容器安全性评定技术进展[J].化工机械,2011(6).

[3] 刘刚.薄壁缺陷结构及其可靠性与安全性[M].北京:人民交通出版社,2002.

压力容器论文篇6

【关键词】压力容器设计 应用力学 设计方法

一、引言

压力容器已经广泛应用于各行各业,其技术参数的进步将会进一步提升该行业的科技含量,因此为了推动我国压力容器的快速发展,由于我国一些尖端行业使用的压力容器更多采用的是进口设备,这显然不利于我国知识科技的进步,因此提升我国压力容器的设计水平就成了当前最为迫切的需求之一。早在上个世纪七十年代我国工业领域就已经充分意识到应用力学理论对改进压力容器设计,提升压力容器设计水平方面的重要性,并经过近四十年的努力和发展滞后,我国的压力容器设计方法方面取得了重要的成绩和巨大的进步,下面就结合具体的案例来分析我国压力容器设计方法的进步。

二、基于案例的压力容器设计方法进步的分析

(一)圆柱壳大开孔接管应力设计方法进步的分析

如果一个圆柱壳开孔接管同时受到多种载荷作用时,再加上支管和主壳连接的部位如果出现了几何结构的不连贯的问题之后,而且相贯的区域又产生了应力集中问题,如果产生了设备损坏,那么这写部位就会造成严重的灾害性书,所以需要解决这种圆柱壳开孔接管在多种载荷作用下的安全稳定性的问题,这同样也是提升压力容器设计进步的重要方法。欧美等国家针对这个问题的解决主要采用的是压力面积法,但是这些方法主要合适于小开孔的压力容器,同时还要受到压力容器内部压力空旷的情况下才能够起到效果,而我国采用的等面积补强法其效果和欧美的这些国家设计具有一定的相通性,并没有从技术上取得重大突破,不过在当前应力力学理论的发展下,已经开始从大开孔率下的薄壳理论解进行解决这个压力容器设计的隐患。

事实上我国经过很多专家多年的努力,已经在薄壳理论解方面已经取得了重要的突破,主要体现在,圆柱薄壳方程采用了修正的Morley 方程,经过修正的Morley 方程能够有效的对开孔问题进行相对准确的求解,这要比之前采用的相对简化的扁壳方程求解的准确性要高很多,同时也能够提升设计的精度。通过修正的Morley 方程对开孔问题的求解精度已经达到了O(T/R)量级。另一方面,因为精确性的连续性的条件和复杂的精确方程通过基于修正的Morley 方程克服了很多数学上的难题,这造成了无论是在三维有限的元解上,还是在近年的国际发表的实验结果,对于该理论的可靠性都进行相对全面的证明。最后通过薄壳理论解还能够得到内压和全部的外载进行统一的分量理论解,并且这个适用范围在这个理论解的支持下变得更加广阔。

(二)管壳式换热器管板压力容器设计方法的进步分析

在压力容器设计方法中,其中管壳式换热器的结构是非常复杂的环节,壳体以及管箱和换热管等都是构成管壳式换热器的基本元件,由于管壳式换热器在压力容器中能够承受绝大多数的压力,所以针对管壳式换热器管板的设计就显得非常重要。这主要原因主要包括了三个方面,其一是管板中间本身会开很多孔洞,并且会和换热管进行焊接,管板和壳体之间也会相焊接,管板和管箱也会进行焊接,某些地方则使用紧固件进行紧固。其二就是壳程和管箱内部所转载的流体介质会进行热交换,但是这两种流体介质都存在着明显的差别,主要体现在温度和压力方面。其三就是法兰的预紧力以及温差荷载和压差荷载等方面都会同时作用在管板上,这都说明了管壳式换热器管板的设计的重要性。在具体设计管壳式换热器管板压力容器中,要根据压力容器的相关结构和基本元件的构造进行合理的设计运用,一般从以下几个方面考虑:

1.可以将换热管看成了多个元件构成的弹性体系结构,采用相应的应力学理论对换热管进行分析,并对队形的元件在实际的工作状况下的荷载问题进行综合性考虑,确保了对影响因素的全面计算,从而有助于提升换热管的高效工作。

2.在计算当量板的削弱系数时,每个基本管板的单元都会包含几个六角形的孔板,有的则是正方形的孔板,这些还包括了管孔中的圆柱壳以及连接两者之间的圆环结构,这个模型有效优化了孔板的单元模型,因此能够更加合理的获得当量板的弹性系数。

三、进一步推动我国压力容器设计方法进步的建议

(一)以科学的观念来分析国际通行标准

对于国外通行的压力容器设计规范标准,对于我国科技专家们而言,不是一味的照搬照收,而是采用合理使用,科学使用的态度,不能够迷信,应该在搞清楚其基本的含义和数学力学模型,然后在按照公认的基本力学原理和概念进行分析,充分汲取国外通行标准的科学性内容,对于一些不合理的内容则不需要全盘照收,这显然是一种不够科学的实验精神。

(二)加强自主创新能力

要在压力容器设计方法上要进一步增强自主知识产权的工作,因为压力容器在应用物理方面的重要性不言而喻,能够广泛的应用于各个行业中,因此我国有必要具备自主研发压力容器的能力,因此理论、实践和工程这三位一体的工作必不可少,没有严谨的理论基础,就不可能获得开创性的科研成果,没有严谨的实验自然就不能够判定压力容器设计的正确性,这三者之间是相辅相成的,是加强自主研发的源头活水。

四、总结

当前国际上能够设计非常合理且功能强劲的压力容器的国家并不多,我国经过数十年的努力在一些关键技术上已经拥有了一定的知识产权和设计制造能力,但是和国外的差距也非常明显,因此作为压力容器设计人员和研究人员,应该积极探索更加科学合理的设计方法和理论,从而提升我国压力容器的设计水平。

参考文献

[1]李兆锋;江楠;;基于有限元法对带接管压力容器的可靠性分析[J];石油化工设备;2011年01期

[2]高峰;;压力容器的常规设计和分析设计[J];科技致富向导;2012年21期

[3]秦叔经;;压力容器标准和规范中分析设计方法的进展[J];化工设备与管道;2011年01期

压力容器论文篇7

Abstract: Pressure vessel quality assurance system refers to the actuator of product inspection and supervision in the process of production, mainly including material, design, quality improvement, pressure test, and physical and chemical inspection. Only improving the quality assurance system of pressure vessel manufacturing can continuously enhance the quality of pressure vessel manufacturing. To achieve a certain effect of the work, it needs the common effort of each enterprise and the relevant departments, and establish and perfect quality assurance system. This paper mainly discusses the pressure vessel manufacturing quality assurance system and a pressure vessel manufacturing quality control measures, etc.

关键词: 压力容器;质量保证体系;质量控制

Key words: pressure vessels;quality assurance system;quality control

中图分类号:TH49 文献标识码:A 文章编号:1006-4311(2013)02-0047-02

0 引言

压力容器是现在工业生产过程当中必不可少的一种承压设备,在人们的日常生活、科学研究以及工业生产的过程当中都广泛被应用,常使用在有毒、易爆和易燃的工况中,在腐蚀介质和一定的压力、温度条件下,能够使设备受到破坏和失效,导致事故的发生,引起中毒、火灾、爆炸和环境污染等问题,给人民和国家的生命财产安全造成巨大的损失。

1 压力容器的概述

1.1 概念 所谓压力容器,指的就是盛装的液体或者是气体,是一种能够承载压力的设备,在电力、医药、化工和炼油等工业中都发挥着非常重要的作用,最高的工作压力范围等于或大于0.1MPa,容积与压力的乘机应当等于或者是高于标准的沸点、液点,设备的正常使用条件非常复杂,在运行、制造以及设计的过程当中,如果不能得到有效的质量保证,就很容易造成安全事故的发生,引起环境污染、中毒、火灾、爆炸等重大险情的发生。

1.2 结构组织 在压力容器的制造过程当中,必须要对工作的任务进行分组、分工和协调合作,建设有效的质量管理组织,任命质量管理工作的主要管理工程师,在质量管理的过程当中加强对质量检验人员的培训和资质管理,充分保证产品的质量。

2 压力容器制造的质量保证体系

压力容器的质量保证体系指的就是在生产过程中对产品进行检验检查和监督的执行机构,主要包括从材料、图样、质量改进、压力试验、理化检验等方面的环节,只有不断健全完善压力容器制造的质量保证体系,才能使得压力容器产品的制作质量不断提高,一方面,需要保证工作人员的质量,质量保障责任人也就是工程质量管理的主要责任人,在自己的岗位上需要行使自己的岗位职责,严格把好产品生产的质量关,很多企业借用的是外单位人员的报岗制度,加强对责任人队伍的建设,严格把好质量关,是保证压力容器产品制造质量的关键所在,另外,也需要给予质量保证工程师在质量上的否决权,在当前的很多私营企业当中,不少企业都存在着企业领导决定质量的原则,导致质量保障工程师并不能够根据实际的情况对产品质量进行保障。要想真正做到使质量控制师取得一定的工作效果,就需要各个企业和相关部门的共同努力,建立健全质量保证体系,在压力容器生产资质的申请过程当中,严格检查和督促取证企业的实际运行情况,对能够影响到压力容器制造质量的相关环节要求加强控制,保证压力容器的生产制造质量。

3 压力容器制造的质量控制

3.1 原材料的质量控制 压力容器能够被广泛应用到社会不同的行业当中,其工况恶劣且复杂,如易爆、易燃、剧毒、高腐蚀、疲劳载荷、高压、低温、高温等,这些恶劣的使用条件决定了其所用的原材料具有较多的种类,并且对其质量要求很高。根据压力容器所具有的这些特点,相关工作人员必须要从原材料的入厂检验着手,始终坚持所有零部件所使用原材料的可追踪性和可靠性。原材料在进厂之后,需要按照相关的订货协议对供货商所提供的证明书进行相关的质量复查,保证原材料的各项性能指标能够准确符合材料的供应标准,确定符合标准之后再对其进行入库的编号,建立原材料入库档案,并根据相关的标准规定为原材料打钢印,为了避免原材料出现锈蚀等现象,在打上钢印之后需要涂上一层防锈的涂料,之后对其进行合理摆放。

3.2 制作过程的控制 在压力容器的制作过程当中,加强对工艺的控制具有非常重要的作用,同简单的产品加工工艺相比较,压力容器的制造过程具有单台套多品种的特点,这就需要制造厂针对不同的压力容器编制不同的工艺文件,在制定出合理正确的工艺之后,在施工的过程当中要严格执行工艺流程,完成每个工序之后,检验员和操作者在工艺流程上要进行签字认可。

3.3 焊接质量的控制 在很大程度上,焊接的质量会直接关系到压力容器的使用寿命和安全,严格控制好焊接的质量是压力容器保证制作质量的关键所在,首先,必须要建立起焊接材料发放、回收、保管等的制度,保证所购进的材料能够有产品合格证和质量证明书,经过验收和检查之后,才能按照相关的要求对其进行入库登记。要求从事压力容器工业生产的焊工必须要持证上岗,在证件有效期内承担符合证件规定类别的焊接工作。

3.4 无损检测质量控制 无损检测也被称作探伤,压力容器在制造的过程当中常常会用到探伤的方法,主要包括渗透、磁粉、超声以及射线几种形式,在进行无损检测时,首先必须要明确设计要求的合格标准以及探伤的方法,分析看该方法是否可以执行,也可以根据图纸的具体要求来实行探伤的方法,另外,在进行无损检测时,实践经验会显得非常重要,不同的人利用同一个机器进行操作,所得到的结果可能就会不同,那些经验较为丰富的工作人员所得出的正确率往往会很高。探伤仪器的质量如何对于探伤的结果也能够产生很大的影响,使用质量不合格的仪器就很容易会造成误判。

3.5 焊后的热处理控制 压力容器在制造的过程当中往往会需要进行相应的热处理操作,在进行热处理操作时,必须要注意控制降温、保温和升温三个阶段的温度和速度,为了可以保证能够达到热处理的预期效果,就应当对热处理的工艺进行正确的编制,对关键的工艺参数作出较为严格明确的限制,严格执行热处理的工艺规范要求,做好记录凭证,并对热处理的仪表进行定期的检查。

4 结语

压力容器制造的质量主要包括安装质量、制造质量以及设计的质量,但影响最为关键的就是制造质量,为了能够尽量降低企业的生产成本,使质量管理体系能够更加系统化和科学化,生产出符合国家标准和设计要求的相关产品,就需要建立起符合本单位生产要求的压力容器制造质量管理体系,建立健全压力容器的质量保证体系,改变传统的管理方式,由传统的管结果转变为现在的管过程,把好产品的质量关,避免产生不合格产品,严格控制影响压力容器制造的生产环节,确保压力容器的制造质量。

参考文献:

[1]叶玉芬.改善SA387Gr11CL1(H)钢焊缝低温冲击韧性的试验研究[A].中国机械工程学会压力容器制造委员会2011年年会暨技术交流会论文集[C].2011.

[2]蒲亨前,陈泽盘.锅炉压力容器焊接质量控制系统的建立与质量控制[A].中西南十省区(市)焊接学会联合会第九届年会论文集[C].2008.

[3]周礼新,陈学坤.低温真空粉末绝热贮槽的焊接工艺研究[A].中西南十省区(市)焊接学会联合会第九届年会论文集[C].2008.

[4]飞,王建涛,陈育海.H_2S浓缩塔用SA203GrD钢的焊接[A].陕西省焊接学术会议论文集[C].2008.

[5]纪华亭,宋军.国内建筑钢结构、压力容器、管道、桥梁工程焊评对比与分析[A].全国焊接工程创优活动经验交流会论文集[C].2011.

压力容器论文篇8

要:基于电阻分压器的电子式电压互感器的原理、结构和输出信号等与传统的电压互感器有很大不同,其性能主要受电阻特性和杂散电容的影响。本文从等效电路的角度分析了电阻特性和杂散电容对电子式电压互感器测量准确度的影响;利用Ansoft 软件包建立分压器的有限元模型对杂散电容进行了计算分析,并根据杂散电容分布对屏蔽罩进行了设计。在理论分析基础上,研制了一台电阻分压式的10KV电子式电压互感器,并进行了准确度测试。

关键词:电阻分压器;电子式电压互感器;杂散电容

中图分类号:TM934.16 文献标识码:A

1概述

为了能够使电能正常的使用,不影响电网供电的稳定安全带的工作,所以需要用电压互感器来对其进行保护,无论是测量的准度还是自身使用的可靠方面都能够成为保护电能的重要组成并且对于电力的及时供应起到了一定的作用。最多使用在电力系统的电业互感器是电磁式,它的优点是能够测量到相对更大的范围,测量的结果准确度可以符合电能保护的需要,对于该种电压互感器生产技术比较成熟,自身性能很好,以及规范化的校验。因为受到了传感机理的约束使其也存在着诸多不便,首先体积庞大不易随时移动,其次动态范围小,最后容易因磁力震动导致短路现象的出现。之后出现的微电子技术虽然在一定程度上克服了电磁式装置的缺点,却不能够与电力的自动化相匹配。相继出现的集中形式都不同程度上存在着工作缺陷,最终出现了电阻式,它体积小重量轻可进行移动、但依然存在着影响因素不能使结果更精准。本文将着重分析其影响因素并对此进行解决分析。

2 原理及结构

10kV电子式电压互感器的结构如图1所示。互感器主要由电阻分压器、传输系统和信号处理单元组成。电阻分压器由高压臂电阻R1、低压臂电阻R2 和过电压保护的气体放电管S 构成,低压臂电阻R2 的下端与带螺纹的接地嵌件连接,从而通过接地嵌件实现可靠接地。电阻分压器作为传感器头,主要将一次母线电压成比例转换为小电压信号输出;传输单元由双层屏蔽绞线和连接端子构成,主要将分压器输出信号传递到信号处理单元,同时实现外界电磁干扰屏蔽功能;信号处理单元主要由电压跟随、相位补偿和比例调节电路组成,实现电压互感器的阻抗变换、相位补偿和幅值调节功能,使得互感器输出信号满足IEC6004-7 的准确度要求。

3 传感器误差分析

3.1 电阻特性影响

由图1可知,理想电阻分压器的二次输出电压为

U2=■U1(1)

式中 U1-一次母线电压;U2-电阻分压器低压臂输出电压

电阻分压器的分压比为

k=1+■(2)

分压器电阻在外加电压增加到一定值后,电阻的阻值随电压的增加而减小,从而影响分压比的稳定性。电阻随外施电压的变化阻值发生改变的非线性程度用电压系数αV 表征

aV=■(3)

式中R,R0-外施电压为U和U0时电阻的阻值由于电阻分压式互感器在运行时,电压主要降落在高压臂电阻R1上,考虑电阻电压系数影响时分压器的分压比为

k=1+|■(4)

电压互感器在受到系统运行过程中因断路的电压谐振电压以及雷击等电压而强大冲击,从而影响其使用的稳定性,过压会超过高压臂的系数的波动范围。基于这种情况,在使用时可以将打压系数大的电阻器更换为电压系数小的电阻器,并且电阻分压器自身的稳定性能一定要符合要求。同时,分压器的电阻还会因为外界的自然温度的变化而随之变化,也不利于互感器正常的工作。温度对分压器影响可表示为

?坠k=1+■(5)

式中 α T1,α T2-高低压臂电阻的温度系数从式(5)可知,传感器的分压在分压器高低压臂温度值相同的情况下是不会变化的,而这仅仅在公式理论中成立,到现实的工作中,很难使得二者的数据完全吻合,所以为了避免此类事情发生,虽然不能保持一致,但可以为分压器高低压臂选择小温度系数的电阻器已达到相对比较稳定的效果。

通过以上分析我们可以得出以下结论,首先在使用电子是电压互感器时,需要注意的因素有阻温度系数、电压系数、电阻性能稳定性和可靠性等,只有使各个因素满足具体的实际情况才能保证测量的稳定性和准确性。

10kV 和35kV 电压等级的电子式电压互感器主要选用高稳定性的厚膜电阻作为分压器的高低压臂电阻。根据IEC 60044.7《电子式电压互感器》的要求,对厚膜电阻进行了1min 的交流耐压试验和正负极性各15 次的标准雷电冲击试验,试验前后阻值的相对变化小于10.5,满足测量0.2 级准确度要求;考虑到电阻经受的电压冲击主要来自于中压系统的开关操作过电压,而且开关柜正常运行的时间为几十年,电压冲击次数相当多,同时对厚膜电阻进行了冲击次数在104~105 量级的双极性和单极性冲击电压试验,试验结果表明选用高稳定性的厚膜电阻,冲击试验前后阻值相对变化为10.3,厚膜电阻适合用于电力系统中压等级的电压测量。

3.2 杂散电容影响

在高压测试中,电阻对地杂散电容也对分压器性能产生很大的影响,图2 为考虑分压器本体对地杂散电容和对高压部分的杂散电容时的等效电路。

从图中我们可以看出,经过对地杂散电容使原本应通过电阻的一部分改为经对地杂散电容而直接分到地,造成分压器低压臂运行的时实际值与理论估算值相差的原因是分流使更多的电压停留在分压器的上部,所以如果在使用过程中出现对地杂散电容那么对于电压互感器有很大的影响力,为了保证互感器能够更精准在实际中应该尽量减少分压器对地杂散电容的出现率。而无法减少数量的时候可在分压器上加入屏蔽系统,是电压不再集中,四散分布开,同时产生更多的电流来弥补被引入地的电流。需要注意的事,对地杂散电容不仅仅只停留在表面,还有很多隐藏在运行的环境之中需要引起我们的注意,比如墙壁内、金属板以及很多电压设备等都可能存在,如果没能及时注意就会对最终的测量结果有影响,如果发现了这类问题可以通过低压屏蔽,从而降低对于互感器的影响。

结语

本文实现了一种基于电阻分压器的电子式电压互感器,测试结果表明其准确度满足IEC60044-7的0.2 级要求。对于电阻特性、互感器杂散电容对电子式互感器性能的影响,采取了以下措施提高基于电阻分压器的电子式电压互感器的测量准确度:

采用高稳定、低电压系数和低温度系数的厚膜电阻器作为分压器的高低压臂,从而减少冲击电压和环境温度对EVT 的性能影响。

在电阻分压器的高压部分安装屏蔽罩,可以补偿传感器对地杂散电容的分流,减小对地杂散电容对电子式电压互感器准确度的影响。

在电阻分压器的低压部分装设屏蔽罩,可以有效控制传感器的对地杂散电容,减少互感器运行环境不同对其性能的影响。

参考文献

[1]方春恩,李 伟,任 晓,王 军,张彼德.基于电阻分压器的10kV电子式电压互感器的研制[J]. 西华大学学报(自然科学版),2010(02).

推荐期刊