线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

光谱技术论文8篇

时间:2022-11-14 10:02:30

光谱技术论文

光谱技术论文篇1

英文名称:Spectroscopy and Spectral Analysis

主管单位:中国科学技术协会

主办单位:中国光学学会

出版周期:月刊

出版地址:北京市

种:中文

本:大16开

国际刊号:1000-0593

国内刊号:11-2200/O4

邮发代号:82-68

发行范围:国内外统一发行

创刊时间:1981

期刊收录:

CA 化学文摘(美)(2009)

SA 科学文摘(英)(2009)

SCI 科学引文索引(美)(2009)

CBST 科学技术文献速报(日)(2009)

Pж(AJ) 文摘杂志(俄)(2009)

EI 工程索引(美)(2009)

中国科学引文数据库(CSCD―2008)

核心期刊:

中文核心期刊(2008)

中文核心期刊(2004)

中文核心期刊(2000)

中文核心期刊(1996)

中文核心期刊(1992)

期刊荣誉:

联系方式

期刊简介

光谱技术论文篇2

关 键 词: 遥感地质 光谱地质矿产资源勘查

中图分类号:F407.1 文献标识码:A 文章编号:

1 前 言

现代遥感不仅能提取地质和蚀变信息, 还能进行其他手段无法进行的有效填图, 结合地球物理、地球化学、野外和实验室光谱等, 并且加深对矿床成因的理解。

2 测谱学基础

反射光谱是化学家和矿物学家在1900年就开始应用的技术,WW Coblenz 1905) 1910年出版了矿物红外光谱数据Farmer出版了理论和实用方面的专著,Marel等编纂了粘土矿物光谱; Hunt等 出版了主要是土壤中的矿物的光谱, 包括氢氧化物, 氧化物, 层状硅酸盐, 碳酸盐和硫酸盐; Hunt等 编辑了矿物短波红外光谱, 目前被广为应用。

除VN IR-SW IR 识别的铁氧化物赤铁矿、针铁矿、褐铁矿和硫酸盐黄钾铁矾外, Thompson等[ 16] 综述了用PIMA-II进行蚀变矿物填图的技术与实例。PIMA-II主要识别粘土矿物、碳酸盐矿物和硫酸盐矿物(表1, 2)。没有识别铁氧化物的波段, 不如ASD光谱仪全面。

表1 SW IR 识别矿物的勘查应用实例

表2 用于矿产勘查的在SW IR有特征吸收的矿物(黑体字为关键矿物)

3 宽波段遥感

TM /ETM是我们工业的关键技术, 主要识别粘土矿物和铁氧化物。1999年发射升空的ASTER, 在粘土区SW IR有5个波段, 提供了区分粘土矿物类型。

3.1 Landsat TM 信息提取技术

用于蚀变填图和区域地质概览和靶区选择。1972年发射MSS, 80 m分辨率, 没有SW IR 波段, 能探测铁氧化物和区域地质概览, Landsat1-4 类似;1982年发射的Landsat5有30m 分辨率, 在SW IR有7波段;999年发射的Landsat7加上了15m分辨率的Pan波段, 探测简单的铁氧化物和粘土;2003年因扫描线校正仪( SLC )故障, ETM 不再接收。Sab ine 对处理技术进行了综述, C rosta等综述了主要的处理技术如下:

(1) Abrams 波段比值算法: 使用指定的影像创建RGB 合成图。R 图层对应粘土比率( B and 5 /Band 7), G 图层对应铁比率( Band 3 /Band2) , B图层对应植被比率( Band 4/Band3)。

(3) 选择性主成分分析: 选择2个波段做主成分分析; 选择B and1和Band3做PCA 变换, 其中第二主成分PC2代表铁比率;PC2中Band1对应的成分为负值, 应该对PC2* ( - 1), 这样才能使像素值大的像元对应高铁比率;选择Band5 和Band7做PCA 变换, 其中第二主成份PC2代表粘土比率;如果PC2中Band5对应的成分为负值, 应该对PC2* (-1) , 这样才能使像素值大的像元对应高粘土比率。

(4) 定向主成分分析 : 将Band4 /B and3 的结果和Band5 /Band7的结果进行PCA 变换, 其中第二主成分PC2代表粘土比率; 将Band3 /Band1 的结果和Band4 /Band1的结果进行PCA 变换, 其中第二主成分PC2代表铁比率。

3.2TM /ETM 应用

3.2.1Crosta技术的国外应用

Crosta技术是TM 数据处理的成功突破, 可避免如植被等假信息, 保留原始信/噪比。自Crosta技术提出以来, 该技术被持续应用于矿床蚀变岩增强中 。

内华达是新发现的金矿区。用Crosta技术在详细地质填图的密集勘探区, 新发现了表生蚀变带: 400 m ×600 m 的沸腾脉群, 即方解石后的叶片状石英和角砾。这里从未被填图出来和立桩标界与钻探, 2004年首选钻探。表明1982年来的TM仍可导致新的发现 。

3.2.2 ASTER应用和ASTER与TM /ETM联合应用

ASTER提供UTM投影, 但需要线性移动200 m保证精度。ASTER 矿物提取要结合野外光谱测量。用经验线法等大气校正后的光谱与原始像元光谱往往有大的差异在发射仅2年后的2001年在N evada识别了石膏及其2个矿物种, 鼓舞人心, 后继持续应用。

4 高光谱遥感

4.1高光谱技术的发展

过去40年, 测谱学、机载、星载传感器技术和软件技术长足发展, 使高光谱成为常规的矿产勘查技术。

实验室和野外光谱测量学: 20世纪60~ 70年代Hunt等开始岩矿光谱测量。

20世纪70年代开始用TM 探测粘土矿物和铁氧化物; 80年代JPL 开发了50 kg 重至少2人操作的野外光谱仪: PFRS, GER 也开发了很重的红外智能野外光谱仪: IR IS;10年后, JPL 又开发了便携式红外辐射仪: PFES; 90 年代私人公司开发了轻便的光谱仪: ASD、PIMA, D&P 开发了野外热辐射光谱仪; 野外测量光谱用于定标机载和星载光谱数据。

( 3) 高光谱数据: 高光谱数据量在1景10 km2以1m 分辨率、最小12-b it辐射分辨率要获取5 GB数据, 只有90年代后的计算机才可处理, 数据需要定标、校正, 需要ENV I这样的软件处理。

(4) 高光谱测量科学: 过去20年的经验表明:10 nm光谱分辨率1 000 /1信噪比适合探测大部分端元矿物。但总存在光谱与空间分辨率的交易( T rade-off)。还有大气的影响, 应用4 款软件进行大气校正: ATREM、ACORN、FLAASH、MODTRAN。

4. 2航空高光谱应用

热红外遥感的物理基础是Planck定律, W ien置换定律和K irchoff定律。光谱范围为2. 5 ~ 14 μm。热红外传感器从宽波段、多波段、高光谱测量地表热发射。宽波度热红外测量地面温度和热惯量, 多波段和高光谱作发射率填图。应用于火山、地热温度填图, 岩石、土壤物理性质分析, 岩、矿和火山气体成分分析。闫柏琨等对此进行了综述。热红外遥感对硅酸盐、碳酸盐、硫酸盐、磷酸盐、粘土等进行地表矿物填图, 识别蚀变带, 数据处理流程是ENV I 软件上的高光谱数据处理流程。

4.3高分辨率图像

有同行在内蒙古乌拉特后旗三贵口超大型锌铅矿床的勘查和矿山建设设计中制作了1 B5000 和1B2000比例尺Qu ickB ird 图像(图5),

图5 紫金乌拉特后旗三贵口超大型锌铅矿床Quickbird影像

在图像中, 可以清晰地看到不同的岩石地层单元、断层分布、钻机机台、车辆以及以前施工的探槽等, 为勘查钻孔等工程的布设以及矿井选厂布设以及建设提供了强有力的依据。另外, 在坦桑尼亚一些矿权区为新区, 工作程度很低, 借助高分辨率遥感图像, 对矿区的快速评价以及下一步的勘查部署起到事半功倍的作用, 节省了大量的人力、物力和和时间。也就是说高分辨率遥感图像对无论是工作程度很低的地区、高级勘查区以及矿山建设都可以提供快捷有效的帮助。

6 结 语

应用Crosta等技术找矿, 需要围绕主成矿带, 系统研究成矿背景、普适与

局部成矿模型, 选择能形成大富矿床的工业类型, 作为找矿目标, 运用ETM、ASTER、ALOS、Quickb ird等数据和地面、航空高光谱, 系统制图, 凝炼靶区, 集中在不大的重点区, 开展系统深入的野外验证工作。找到矿床, 野外是关键。而且, 野外人员与数据处理人员需要互动。

遥感技术主要应用于前期勘查, 但目前的宽波段、高光谱、高分辨遥感数据也可以应用于“新区开拓”、“老区扩边”、勘探工程规划部署等各个环节。遥感可以从成矿靶区的圈定明确从地面开始的目标;高空间遥感数据, 如Qu ickb ird, 可以应用于1B5 000, 1B2 000大比例尺制图, 应用于大比例尺勘探和勘探工程部署。尤其是在主成矿区(带) , 在不同的矿产勘查、勘探阶段, 可以运用从宽波段到高光谱、高分辨遥感数据, 从1B100 000到1B2 000系统填图、勘查。

参考文献

遥感技术与经济A.全国遥感技术研讨论文集体C.

光谱技术论文篇3

关键词:红外技术 光谱测试

中图分类号:G64 文献标识码:A 文章编号:1672-3791(2014)11(c)-0042-02

1 技术背景

红外技术作为一种现代高科技技术,与激光技术并驾齐驱。它是研究红外辐射的产生、传播、转化、测量及其应用的技术科学。红外技术的主要发展体现在红外探测技术方面。

红外技术的发展始于1940年,但到60年代中叶,才真正出现了红外探测系统。随着该技术的不断成熟,红外技术被应用于很多领域。在军事上的应用有红外制导、红外通信、夜视仪、探测隐身武器装备和红外预警,在国民经济方面的应用有红外测温技术、红外遥控技术、红外遥感技术、红外理疗、红外辐射加热技术和红外光谱技术等[1]。

2 红外辐射源能量光谱分布测试的原理及装置

红外辐射波长在0,78~1000μm的一段电磁波谱,这其中还被分为近红外波段(0.78~3μm),中外波段(3~40μm)和远红外波段(40~1000μm)[2],属于人眼看不见的波段,需要通过仪器才能探测到需要信息。

凡温度在绝对零度以上的物体均能够发射出红外辐射,其辐射的峰值波长与物体的温度有确定的关系,即维恩位移定律(Wien's displacement law)[2-3]:

另外,光频率和波长的关系为,其中c为光速,也有波数表示波长,即(cm-1),这也是现代光谱仪常用的表示方法[1],该文涉及的光谱仪就是使用这种方法表示波长的。

在韦恩定律的基础上,人们发明了红外光谱仪,它能将红外辐射源的辐射能量按波长的分布以曲线的形式表示出,从而使我们看到清晰的红外辐射源在某个波长处的相对辐射能量,获得辐射波长位置,进而可以对红外辐射源进行更深入的研究。图2为红外系统和红外单色仪的光学原理图。

M1和M4为反射镜,M2准光镜,M3为物镜,M5为深椭球镜,G为平面衍射光栅,S1为入射狭缝,S2和S3为出射狭缝,T为调制器单色仪使用的入射狭缝、出射狭缝均为直狭缝,宽度为0~2 mm连续可调。光源发出的光束进入入射狭缝S1,S2位于反射式准光镜M2的焦面上,通过S1射入的光束经M2反射成平行光束投向平面光栅G上,衍射后的平行光束经物镜M3成像在S2上。

3 实验及结果

选取红外光源和硅土样品作为测试样品,对红外光源的测试,温度选定为常温,对硅藻泥的测试,温度控制在200 ℃左右,设定扫描参数,扫描波长为4000~650 cm-1,即0.25~1.5 μm,间隔设定为5 cm-1和2 cm-1。

设定好参数后,分别对样品的辐射能量进行采样,得到样品辐射能量光谱曲线,见图3和图4。

从图3可以看到红外光源的最大相对辐射波长在1.1μm处,而从硅土的辐射分布图中可以看出样品的辐射波段在0.8~1.3μm之间,属近红外波段,但由于硅土中掺杂了其他元素,其红外辐射能量分布图的噪声比较大。

4 结语

利用该系统,可以对不同材料的辐射能量光谱进行测试,了解不同温度下材料红外辐射能量光谱分布情况,确定近红外辐射波长位置。除此之外,利用该系统还可以设计透过率和吸收光谱的测试,对红外辐射材料的光学特性研究有重要的作用。

参考文献:

[1] 石晓光,王蓟,叶文.红外物理[M].北京:兵器工业出版社,2005.

光谱技术论文篇4

[关键字]差分吸收光谱技术 技术原理 大气环境检测

[中图分类号] X851 [文献码] B [文章编号] 1000-405X(2013)-5-209-1

随着世界经济的不断发展,工业气体排放日益加重,空气中充斥着大量的二氧化硫以及氮氧化物等有害气体,不但造成空气环境的极端恶劣,也给人们的身体健康造成了严重的影响。当前,各种检测技术方法或大或小的存在弊端、缺陷,随着环境检测理论与技术的进步,差分吸收光谱技术脱颖而出,成为大气环境检测领域的宠儿。

1差分吸收光谱技术在环境检测应用中的发展

自二十世纪八十年代以来,美国、瑞典、德国等诸多国家开发出以常规光源为基础的长光程光谱分析仪,并投入市场使用,我国开始自主研发差分吸收光谱技术则开始于1998年,在2002年一些科研机构开发出相应的环境监测系统,能有效检测出空气中的有害气体,包括二氧化硫、二氧化氮以及氨气等,目前这些仪器主要分布于南宁、北海、桂林以及张家港、怀化等地区。

2差分吸收光谱技术的基本原理

差分吸收光谱技术简称DOAS,根据分子吸收光辐射的原理,不同的分子吸收的光辐射也各不相同,因此当光穿过被检测气体样本时,会被样本中的分子选择性吸收,从而使得光在结构上与没穿过样本之前的光有所不同,通过与原先的光谱进行分析即可得到吸收光谱。分析吸收光谱能够确定样本中是否存在一些特定的成分,同样也可以分析出样本中这些特定物质的含量。

图1为典型的DOAS系统示意图,根据Lambert-Beer吸收定律,当光线穿过均匀且有一定厚度的气体介质时,假设该气体介质厚度为L,浓度为C,可得透射光强I(λ,T,P)和入射光强I0(λ)的关系公式为:

I(λ,T,P)= I0(λ)·e-σ(λ,T,P)·C·L ①

其中σ为气体的吸收截面。

在式②中,σi -第i种气体吸收的截面;Ci -第i种气体在光程L上的平均浓度;εM –米散射系数;εR –瑞利散射系数;A-测量系统与波长关系变换相对平缓的慢变结构

其中,式③中,σB –慢变结构;σ’-快变结构

接着把式③代入式②可得:

式④可改为:

把式④与式⑤相比较,可得差分光学密度OD’:

最后通过最小二乘法对式⑥求解,则可得到各污染物在气体内的平均浓度。

3差分吸收光谱技术在环境检测中的关键

3.1高质量吸收光谱的获取

差分吸收光谱技术作为一种弱光谱检测技术,对屏蔽噪声、杂散光等干扰有较高的要求,并且为了得到精确的分析检测结果,就需要确保测量光谱的质量。吸收光谱在差分吸收光谱技术中占有重要地位,因此为了提高吸收光谱的质量,可以采取以下措施。首先结构上,为了降低太阳光的干扰,可采用大焦距的望远镜;其次,使用双Czemy-Turner结构的单色仪,以减少内部的杂散光;第三,为了使扫描的时间缩短,可以采用快速扫描的方式;第四,使用光电二极管阵列测定谱段光谱可以降低大气扰动带来的影响;第五,保持探测器的恒温、低温,以便减少暗泄漏电流导致的噪声干扰。

3.2光谱的反演计算

反演计算在差分吸收光谱技术中占有重要地位,影响着该技术测量的成功与否。在差分吸收光谱技术中往往会涉及到三个光谱,第一是测量光谱;第二是背景光谱;第三是光源光谱。在计算差分吸收光密度的计算值时,需要对上述三种光谱进行去除暗电流干扰的处理。紧接着在测量光谱以及光源光谱中去除背景光谱,然后再用测量光谱除以光源光谱,所得结果即为预处理光谱。随后对这个预处理光谱进行高通与低通的快速傅立叶变换计算,可得两个光谱,即精细结构的预处理光谱和预处理光谱的慢变化走势光谱。然后在用前者与后者相除,多的结果的对数即为差分光学密度。

3.3差分吸收光谱技术测量精度的主要影响因素

在利用该技术进行环境检测时,还需要充分考虑影响测量精度的因素,具体包括以下两个方面。影响一是标准吸收截面。因为标准吸收截面不仅与波长有关,还受到压力以及温度的影响。所以在进行实时浓度的反演计算过程中,并没有该温度下标准差分吸收截面可供参考。此外,标准差分吸收截面的测定一般在实验室进行,而具体的实际操作中,因为仪器的精度问题,从而出现误差。影响二是噪声以及其他气体的影响。在进行测量时,各式各样的噪音、其他气体对光的吸收等,都会使得测量出现误差。

4总结

作为一种新兴的大气环境检测技术,差分吸收光谱技术有着无可比拟的优势。操作简单、运行成本低廉、维护方便、故障率较低等特点,使得差分吸收光谱技术在环境监测中被越来越多的运用。随着该技术的不断发展与研究,差分吸收光谱技术必将在大气环境检测领域取得良好的效果,成为防治环境污染、保护环境的尖端科技。

参考文献

光谱技术论文篇5

关键词:遥感地址勘查技术;具体应用;研究

中图分类号: P627 文献标识码: A 文章编号: 1673-1069(2016)31-152-2

1 遥感地质及勘查技术概述

遥感技术所取得的地面图像和数据及相应的数据和信息处理技术在地质学的应用 。又称地质遥感。遥感地质一般包括4个方面的研究内容:①各种地质体和地质现象的电磁波谱特征。②地质体和地质现象在遥感图像上的判别特征。③地质遥感图像的光学及电子光学处理和图像及有关数据的数字处理和分析。④遥感技术在地质制图、地质矿产资源勘查及环境、工程、灾害地质调查研究中的应用。

1.1 遥感地质勘查技术的概念

利用飞机与卫星等遥感器对检测地标的地质数据进行电磁、光谱的扫描与识别的技术称之为遥感地质勘查技术,其在地质勘探工作中的应用有助于对检测地标的地质特性进行深入分析,进而可通过摸清地质信息与地质特征为地质勘探提供更为科学可靠的理论与数据。较之传统地质勘查技术,遥感地质勘查技术具有多层次、综合性与宏观性的特点,因而地质勘查检测结果的精准性可得到大大提升。近些年,遥感地质勘查技术凭借技术先进、检测结果准确等优势在现代地质勘查工作中发挥了越来越重要的作用。

1.2 遥感地质勘查技术的特点

1.2.1 科学性

遥感技术在地质勘查工作中的应用为其数据采集环节提供了大量更具科学性的理论依据。以遥感地质勘查技术在我国的应用为例,使用卫星、飞机等高端遥感器可科学计算、检测出待检测地标的具体地质状况,有效结合电磁技术、光谱技术同现代化计算机技术以及现代化航拍器械可使地质扫描工作更具科学性,进而可为我国地质勘查与地质研究工作提供更为科学、准确的勘察数据与地质资料。

1.2.2 精确性

不断增大的矿产需求量使得我国地质勘查工作逐渐细化,这对地质勘查技术也提出了越来越高的精细化要求。遥感地质勘查技术可通过电磁技术与光谱技术的应用扫描并分析地质状况,现代地质勘查工作的精细化需求可得到满足。遥感地质勘查技术的应用实例显示,其可对地质状况进行全方位的检测与计算,这对现代地质勘查工作精确性以及矿产开采效率的提高均十分有利。

2 遥感地质勘查技术的应用

2.1 获取地质构造信息

在应用遥感技术找矿的过程中,我们可通过空间信息观察到相关地质标志,而提取空间信息的过程中则需应用到遥感技术所呈现出的与检测区域成矿相关的线性图像,从推覆体以及断裂等相似类型中提取出有用信息是这一过程中需注意的部分。遥感地质勘查技术还可应用于获取酸性岩体、火山盆地等地质的信息。由于影响遥感技术成像的因素较多,因而其在地质勘查工作中极有可能会发生地质图像模糊的情况,这将直接导致地质线性形迹和地质纹理信息无法清楚显示出来,地质勘测工作随之面临困难。针对这一问题,目前主要采用人机交互、目视解译等方式来突出显示地质构造图像中的关键信息。

2.2 通过获取植被光谱来确定矿产位置

矿区感测区中的金属或矿物较易因地下水文因素和地下微生物作用的影响而改变底层结构,随之将会对土壤层中的成分造成矿物元素增加等影响,土壤成分受到的影响将直接体现在地表的职务上。土壤层中成分的变化将会改变地表植物对金属元素的剧集程度和吸收程度,继而将会使得植物内含水量及叶绿素也发生改变,后种变化将通过植物的反射光谱特征显示体现出来,遥感技术正是利用了这一系列的变化将检测区域地表植物的反射光谱特征显示出来,并通过分析植物异常光谱信息来确定该区域是否存在矿产。不同种类的植物,甚至是同种植物的不同器官在金属含量方面将会呈现不同的特点,因而需大量收集检测矿区的植被样品,并在分析植被光谱信息的基础上统计出具有良好金属吸收能力和聚集能力的植被。植物反射光谱的色调是应用光谱特征增强技术处理遥感图像的主要依据。分离提取出异常色调后,遥感技术可直观展现出这些异常色调,分析出植被对金属的吸收能力和聚集能力后则可为确定矿产位置提供一定的依据。

2.3 利用岩矿光谱技术进行识别

作为遥感地质勘查技术的理论基础,岩矿光谱技术适用于多光谱技术与高光谱技术,其主要是通过提取多光谱蚀变信息实现岩性识别与高光谱矿物识别的目的。多光谱技术较低的光谱分辨率使得岩矿的光谱特征表现力较弱,因此岩矿光谱技术在分析岩矿反射率差异时主要以图像线性信息与图像灰度特征为基础。较之多光谱技术,高光谱技术则既可获取到连续光谱信息,也可对地质类型加以直观地识别。综合使用多光谱技术与高光谱技术可对岩矿类型、与成矿作用有直接关系的矿物蚀变信息加以有效地识别,并可对蚀变强度进行定量,进而可为地质勘探工作提供强有力的技术支持。

3 加强遥感地质勘查技术应用的措施

前文笔者简要分析了遥感地质勘查技术的概念与特点,并探讨了其在地质勘探工作中的具体应用。由于我国在应用遥感地质勘查技术过程中仍存在不少问题,因而我们在实际应用过程中还需采取合理的措施来保证其应用效果。

3.1 加强对遥感技术理论研究

理论是实践的基础,遥感地质勘查技术的实际应用离不开有效的理论研究。因此我们首先需深入研究并分析大量与遥感技术相关的理论文献,为遥感技术的应用打下坚实的理论基础。除此以外,我们还需依据勘测区域的特点进行理论创新,不断丰富地质勘查技术应用的理论成果。

3.2 加强技术支持

技术支持在遥感地质勘查技术应用中处于十分关键的地位,因此我们首先需保持所应用的相关遥感设备的技术先进性,保证硬件基础;其次需加大引进与培养先进遥感技术人才的力度,以为遥感技术应用的准确性、合理性和科学性提供人才保证。

3.3 完善相关制度

遥感地质勘查技术的有效应用离不开相关制度的指导与规范,因此我们需积极完善诸如技术岗位责任制度的一系列制度,及时发现遥感地质勘查技术在应用过程中出现的问题,以促进我国遥感地质勘查技术的可持续发展。

4 结束语

综上所述,迅猛发展的国民经济使得国家对矿产资源的需求量越来越大,这对地质勘查技术的效率与精确度提出了越来越高的要求。对此,本文简单介绍了遥感地质勘查技术及其在地质勘探工作中的应用,并提出了加强其应用的具体措施,以期为相关人士提供理论参考。

参 考 文 献

[1] 王润生,熊盛青,聂洪峰,等.遥感地质勘查技术与应用研究[J].地质学报,2011,11:1699-1743.

[2] 易飞.遥感地质勘查技术探究与分析[J].住宅与房地产,2016,18:265.

[3] 罗庆霞,苏吉祥.遥感地质勘查技术在矿山中的应用[J].世界有色金属,2016,10:203+205.

光谱技术论文篇6

关键词:高光谱图像;检测;玉米种子;真伪

中图分类号:TP391.41;S513 文献标识码:A 文章编号:0439-8114(2016)21-5445-04

DOI:10.14088/ki.issn0439-8114.2016.21.002

Advance in Authenticity Detection of Corn Seed Based on

Hyperspectral Imaging Technology

WEI Li-feng1,2,JI Jian-wei1

(1.College of Information and Electrical Engineering,Shenyang Agricultural University, Shenyang 110866, China;

2.College of Economics and Management,Shenyang Aerospace University, Shenyang 100136, China)

玉米是中国三大农作物之一,在解决粮食短缺问题、保障国家粮食安全和经济发展过程中起到重要作用。玉米不仅产量大、经济效益高,而且还具有食用和饲用等多种工业用途[1]。但是,玉米种子的真伪直接影响到玉米种子的储藏、销售、育种和农业生产等各个方面,研究玉米种子的真伪问题已成为国内外研究的热点。随着现代科学技术的快速发展,计算机图像处理技术和光谱技术也越来越备受关注,采用机器视觉技术、近红外光谱技术在玉米种子检测真伪方面得到了较为广泛和深入的研究和应用,也取得了较好的成果。然而,传统的计算机视觉技术得到的是种子可见光的形态学特征信息,近红外光谱分析技术得到的是种子的光谱特征信息,两者获得的种子特征信息较少,制约着玉米种子真伪检测的后续分析以及研究[2]。近几年来,一些科研学者将高光谱图像技术应用于检测农作物种子真伪方面,并取得了较好的成果。高光谱图像技术可以同时获取研究对象的光谱信息和空间信息,是图像技术与光谱技术的完美结合,真正做到了“图谱合一”[3]。玉米种子的真伪可以通过表面的图像信息和光谱数据来进行分析和判断,从而能够为种子育种和农业生产提供有力和可靠的科学数据。所以,高光谱图像技术在玉米种子真伪检测方面的应用正逐渐成为研究的热点。

1 高光谱图像技术原理及采集系统

1.1 高光谱图像技术原理

通常认为,光谱分辨率在10-1λ数量级范围内称为多光谱(Multi-spectral),光谱分辨率在10-2λ数量级范围内称为高光谱(Hyper-spectral),光谱分辨率在10-3λ数量级范围内称为超光谱(Ultra-spectral)[4]。高光谱图像技术结合了图像技术和光谱技术两者的优点,可同时获得待测样品的图像信息和光谱信息。不仅可以对待测样品的外观表面特性进行检测,而且能对内部特性进行检测,同时也利用计算机图形与光谱技术两者的长处,对研究对象的内外部特征进行可视化分析[5]。高光谱图像技术获取的样品图像可以克服样品因化学信息分布不均造成的测试误差,同时样品的测试位置对测量的影响也会减少,其丰富的图像信息对玉米种子真伪的鉴定有很大帮助[6]。高光谱图像光源的波谱范围可以在紫外波段(200~400 nm)、可见光波段(400~760 nm)、近红外波段(760~2 560 nm)以及波长大于2 560 nm的波段获取大量窄波段连续光谱图像数据,为每个像素提供一条完整并连续的光谱曲线[7]。样本获取的图像是一个三维图像,二维是它的空间信息,三维是它的波长信息,其波长分辨率通常精度可达到2~3 nm[8]。高光谱图像技术获取三维图像的方法可以分为2种:一种是连续性采集一系列波段光谱图像完成三维立方图像;另一种是用一条线扫描完整光谱范围内的样本空间信息,即“推扫式”成像方法。高光谱图像具有样本的图像信息和光谱信息,图像信息可以反映样本表面特征信息,如特征不同,其对应的光谱信息也不同。在某个特定波长下,感兴趣区域(ROI)与正常区域之间的光谱值会有很大的差异,因此,可以根据光谱信息的不同来判断玉米种子的真伪。所以,利用高光谱图像技术这些优点,在检测玉米种子真伪方面具有很大的优势和研究空间。

1.2 高光谱图像采集系统

一个典型的高光谱图像采集系统装置如图1所示。整个系统是由高光谱成像光谱仪(ImSpector V10E,Spectral Imaging Ltd,Finland)、CCD相机(IGV-B1410M,IMPERX Incorporated,USA)、150 W的光纤卤素灯光源(3900 Illuminatior,Illumination Technologies Inc.,USA)、精密位移控制平台(IRCP0076-1 COM,Taiwan)、遮光暗箱和用于数据处理的高配计算机组成。高光谱摄像头的光谱范围为400~1 100 nm,光谱分辨率为2.8 nm,空间分辨率为0.2 mm。

1.3 高光谱图像数据处理

高光谱图像技术在信息量上有独特性和优越性,光谱响应范围广,光谱分辨率高,但高光谱数据众多,数据量巨大,由于相邻波段的相关性高,信息冗余度也增加,为应用和分析带来了很大不便。因此,如何获取高光谱图像有用的信息是首要关键问题。而数据降维是提取最佳波段的非常有效的方法,可以在不损失重要信息的前提下最大限度地反映原始信息。稻萁滴方法主要有主成分分析法、判别分析法、特征波段法等[9]。高光谱数据降维处理后,采用相关分析、主成分分析、独立分量分析、二次差分分析、逐步多元回归等方法来获取最优波段,最后选用支持向量机、人工神经网络、主成分回归分析法等方法建立基于光谱和图像信息的玉米种子真伪检测的识别模型,从而实现对玉米种子真伪的检测。

2 种子真伪的检测

2.1 玉米种子真伪的检测

种子真实性是指某一批种子实际所属品种与其标称的品种是否相符,即种子的真伪问题。种子检验鉴定起源于19世纪中期,直到上世纪90年代开始分子生物学技术及计算机模拟形态分析的应用。卢洋等[10]通过试验,综合PCA、LDA和BPR提出了一种基于近红外光谱短波段(833~1 087 nm)的玉米种子鉴别方法,针对37个玉米品种种子的近红外光谱数据,以833 nm波长作为起始波,选取了不同的截止波长,进而得到不同波段的数据。试验结果表明,在近红外光谱短波833~1 087 nm波段,识别率达到了97.6%,与全波段相比较,波段范围缩小了84.71%,这为后续大量数据的处理节省了存储和时间。但是该方法只是限定于部分地区的部分玉米种子,不能完全代表全部,所以还需后续大量的试验进行验证。

黄敏等[11]采用高光谱成像系统获取了9个玉米品种共432粒种子的高光谱反射图像,对获取的图像进行校正和预处理,提取每个样本图像在563.6~911.4 nm共计55个波段范围内的形状特征。分别利用单波段、多波段和全波段下的玉米种子形状特征结合偏最小二乘判别法进行模型分类。试验结果表明,全波段范围内训练集和测试集的平均正确识别率达到98.31%和93.98%,均优于多波段和单波段。该方法利用高光谱图像中可见光和近红外区域的有效特征信息,可较准确地鉴别玉米种子的品种,识别玉米种子真伪,为玉米品种真伪自动识别领域提供了一种新的方法。

朱启兵等[12]利用高光谱图像技术,针对17类玉米品种共1 632粒种子的高光谱图像,提取400~ 1 000 nm波长范围内233个波段的熵信息作为分类特征,又利用偏最小二乘(PLS)投影算法对玉米种子高光谱图像进行了最优波段的选择,共获得65个最优波段特征,最后结合偏最小二乘判别分析法(PLSDA)实现了对玉米种子准确识别分类的目的。试验结果表明,在仅为全波段27.90%的最优波段数情况下,其训练精度可达到99.19%,测试精度为98.90%,实现了高精度的玉米种子品种识别,为玉米种子真伪的快速检测提供了一个新方法。

冯朝丽等[13]对玉米种子的高光谱图像的光谱信息进行了深入的分析研究,利用波长范围为400~1 000 nm的高光谱图像采集系统采集11类共528粒玉米样本的高光谱图像,提取每个玉米样本上感兴趣区域并获取此区域的平均光谱信息,然后对光谱曲线进行分析,剔除了12个异常样本,并结合偏最小二乘判别分析法(PLSDA)对所选玉米种子样本进行识别分类。试验结果表明,在所选玉米样本的识别中训练集样本的识别精度可以达到99.22%,测试集样本的识别精度也达到了94.66%。研究结果表明,不同种类的玉米种子的光谱信息具有一定的差异性,利用高光谱图像技术对玉米种子品种进行无损识别分类是可行的,这为玉米种子真伪的检测提出了一个新思路、新方法。

杨杭等[14]利用地面成像光谱辐射测量系统(Field imaging spectrometer system,FISS)获取了5种玉米种子的图像光谱数据,在经过反射率反演、噪声去除和一阶微分预处理后,运用Wilk-lambda逐步判别法选择最佳波段并建立判别模型。交叉验证结果表明,玉米种子的平均识别精度为91.6%,随着选择波段数的增加,模型识别精度也逐步提高。因此光谱成像技术在玉米品种真伪的识别以及质量相关检测方面具有广阔的应用前景。

2.2 其他作物种子真伪的检测

高光谱图像技术不仅在玉米种子的真伪和品种检测领域中获得了比较理想的效果,而且一些学者利用高光谱技术的优越性和独特性对其他作物种子的品种识别、真伪检测也做了深入的研究。程术希等[15]提出了一种基于高光谱信息的大白菜种子品种分类识别方法,利用近红外高光谱图像采集系统采集了8种共239个大白菜种子样本,分别提取样本15pixel×15pixel感兴趣区域平均光谱反射率信息作为样本信息,采用多元散射校正预处理方法对光谱进行消噪处理,验证了Ada-Boost算法、极限学习机(Extreme learning machine,ELM)、随机森林(Random forest,RF)和支持向量机(Support vector machine,SVM)4种分类算法的分类判别效果。通过载荷系数分析选取了10个大白菜种子品种分类判别的特征波长。试验结果表明,4种分类算法基于全波段的分类识别对81个预测样本的正确区分率均达到90%以上,ELM和RF为最优的分类判别模型,识别正确率达到了100%。因此,以载荷系数选取的特征波长是有效的。利用高光谱图像技术结合机器学习对大白菜种子品种进行快速、无损分类识别是可行的,为大白菜种子批量化在线检测提供了一种新的方法。

梁剑等[16]采用MPA傅立叶变换近红外光谱仪研究了水稻种子的漫反射光谱特征,利用种子品种特有的光谱特性,结合不同光谱预处理方法建立了多个聚类分析模型,比较它们对杂交F1代种子“03S/0412”和其父本种子“0412”的鉴别效果。试验结果最终显示,选择4 000~8 900 cm-1光谱范围,通过无预处理、矢量归一化、二阶导数(25点平滑)和二阶导数(25点平滑)+矢量归一化建立的模型校正集正确率分别为52.4%、65.2%、75.2%和100%。通过试验可得,对比无预处理,经过各种方法预处理后正确率都有提高,其中“二阶导数(25点平滑)+矢量归一化”建立的模型取得的效果最好,用该模型对预测集预测,分类正确率为100%,具有很好的预测性能。这为近红外光谱技术用于单粒水稻种子品种真伪性鉴别提出了一个比较理想的新方法,但是还需要用更多的组合来进一步验证和完善。

张初等[17]采用近红外高光谱图像技术,通过提取西瓜种子的光谱反射率,并结合Savitzky-Golay (SG)平滑算法、经验模态分解算法(Empirical modedecomposition,EMD)和小波分析(Wavelet transform,WT)对提取的光谱数据进行去除噪声处理,采用连续投影算法(Successive projections algorithm,SPA)和遗传-偏最小二乘法(Genetic algorithm-partial least squares,GA-PLS)进行特征波长选择。最后基于全波段光谱建立了偏最小二乘判别分析(Partial least squares-discriminantanalysis,PLS-DA)判别模型,基于特征波长建立了反向传播神经网络(Back-propagation neural network,BP NN)判别模型和极限学习机(Extreme learning machine,ELM)判e模型。试验结果表明,基于特征波长的BP NN模型和ELM模型的结果优于基于全部波长的PLS-DA模型,而基于SG预处理光谱提取的特征波长建立的ELM模型具有最优的判别效果,建模集和预测集的判别正确率达到了100%。结果表明,应用近红外高光谱成像技术对西瓜种子品种鉴别是可行的,这为今后研究更多的西瓜品种种子,建立适用范围更为广泛的西瓜种子品种判别模型提出了一个新的思路与方法。

Tan等[18]利用高光谱图像技术对不同的大豆品种进行了识别试验测试。利用高光谱成像系统获取大豆样本1 000~2 500 nm范围的光谱反射数据,采用主成分分析法(Principal component analysis,PCA)对获取到的光谱数据进行数据降维并去除冗余数据,同时在分类算法中将得分高的主成分值作为输入特征,通过PCA方法从每个特征图像中提取4个特征变量(能量、熵、惯性矩和相关性),从16个特征变量中提取8个重要特征参数,根据所选择的特征变量和参数,应用神经网络方法构建分类器,训练精度达到97.50%,平均测试精度达到93.88%以上。结果表明,利用高光谱图像技术结合神经网络建模方法可以对大豆品种进行分类,该方法为检测大豆种子的真伪鉴别拓展了一个新的方向,为以后更为广泛检测种子的真伪提供了一个新的方法。

3 结论与展望

高光谱图像技术应用于农业领域的无损检测是20世纪90年代末在国外发展起来的,在中国近几年才备受关注[19]。然而,研究结果表明该技术在农业领域的无损检测已成为新技术、新趋势、新方向。所以,针对玉米种子真伪的无损检测还有许多方面有待进一步研究。

1)目前,采用高光谱图像技术检测玉米种子真伪只是在验室内实现的,其应用到实际生产上会有一定局限性。通常采用的方法是利用高光谱技术识别3~5个特征波段,然后基于这些波段构建成本比较便宜的多光谱图像系统,从而实现快速、有效的种子真伪在线检测。因此,进一步研究高光谱图像的特征波段和低成本的图像系统是将来的发展趋势之一。

2)利用高光谱图像技术在检测玉米种子真伪时,由于高光谱图像信息量巨大、冗余量多,不利于数据的降维和快速检测。所以,优化和改进传统的分析方法,诸如主成分分析(PCA)、独立成分分析 (ICA)、偏最小二乘法(PLS)、人工神经网络(ANN)、支持向量机(SVM)等,或提出一种集成有效的算法,可以提高预测模型与实际值之间的相关性和精准度[20]。

3)高光谱图像技术已在遥感监测上应用广泛。在农业种子检测方面,高光谱图像技术多用于谷类作物的种子真伪的无损检测。因此,对其他作物类型的种子(花生、豆类、菜子等)真伪检测的潜力很大。

4)高光谱图像技术可以同时获取研究对象的空间及光谱信息,但目前无论国内还是国外大多数研究学者主要是应用高光谱成像技术独立对农产品外部或内部进行检测,很少有文献报道联合其他技术产生一种更为先进的检测玉米种子真伪技术。因此,有效地利用高光谱图像技术检测玉米种子真伪无论是在理论研究还是在应用研究上,都有进一步研究的空间,有望在理论和应用方法方面不断创新,以促进该研究方向不断向前发展,取得更大的成果。

参考文献:

[1] 路立平,赵化春,赵 娜,等.世界玉米产业现状及发展前景[J].玉米科学,2006,14(5):149-151,156.

[2] 杨锦忠,郝建平,杜天庆,等.基于种子图像处理的大数目玉米品种形态识别[J].作物学报,2008,34(6):1069-1073.

[3] 王 雷,乔晓艳,董有尔,等.高光谱图像技术在农产品检测中的应用进展[J].应用光学,2009,30(4):639-645.

[4] 刘木华,赵杰文,郑建鸿,等.农畜产品品质无损检测中高光谱图像技术的应用进展[J].农业机械学报,2005,36(9):139-143.

[5] 田有文.现代图像识别技术诊断农作物病害[M].北京:中国农业出版社,2010.145-155.

[6] 贾仕强,刘 哲,李绍明,等.基于高光谱图像技术的玉米杂交种纯度鉴定方法探索[J].光谱学与光谱分析,2013,33(10):2847-2852.

[7] 马本学,应义斌,饶秀勤,等.高光谱成像在水果内部品质无损检测中的研究进展[J].光谱学与光谱分析,2009,29(6):1611-1615.

[8] 彭彦颖,孙旭东,刘燕德.果蔬品质高光谱成像无损检测研究进展[J].激光与红外,2010,40(6):586-592.

[9] 刘燕德,张光伟.高光谱成像技术在农产品检测中的应用[J].食品与机械,2012,28(5):223-226,242.

[10] 卢 洋,梁先扬,李卫军,等.基于近红外光谱短波段的玉米品种鉴别研究[J].河南大学学报(自然科学版),2012,42(3):239-243.

[11] 黄 敏,朱 晓,朱启兵,等.基于高光谱图像的玉米种子特征提取与识别[J].光子学报,2012,41(7):868-873.

[12] 朱启兵,冯朝丽,黄 敏,等.基于图像熵信息的玉米种子纯度高光谱图像识别[J].农业工程学报,2012,28(23):271-276.

[13] 冯朝丽,朱启兵,朱 晓,等.基于光谱特征的玉米品种高光谱图像识别[J].江南大学学报(自然科学版)2012,11(2):149-153.

[14] 杨 杭,张立福,童庆禧.采用可见/近红外成像光谱技术的玉米籽粒品种识别[J].红外与激光工程,2013,42(9):2438-2441.

[15] 程术希,孔汶汶,张 初,等.高光谱与机器学习相结合的大白菜种子品种鉴别研究[J].光谱学与光谱分析,2014,34(9):2519-2522.

[16] 梁 剑,刘斌美,陶亮之,等.基于水稻种子近红外特征光谱的品种鉴别方法研究[J].光散射学报,2013,25(4):423-428.

[17] 张 初,刘 飞,孔汶汶,等.利用近红外高光谱图像技术快速鉴别西瓜种子品种[J].农业工程学报,2013,29(20):270-277.

[18] TAN K,CHAI Y,SONG W,et al. Identification of soybean seed varieties based on hyperspectral image[J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(9):235-242.

[19] 李江波,秀勤,应义斌.农产品外部品质无损检测中高光谱成像技术的应用研究进展[J].光谱学与光谱分析,2011,31(8):2021-2026.

[20] 田有文,牟 鑫,程 怡.高光谱成像技术无损检测水果缺陷的研究进展[J].农机化研究,2014(6):1-5.

光谱技术论文篇7

关键词:特征提取 红外光谱 茶叶 识别 产地

中图分类号:TN93 文献标识码:A 文章编号:1674-098X(2013)03(a)-00-02

茶叶是世界三大饮料作物之一,营养、保健和食用价值丰富,深受人们的喜爱。我国茶树种类繁多、茶叶产地分布广,给茶叶产地等的鉴别工作带来很大的困难。目前,色谱一质谱联用技术、毛细管电泳一质谱联用技术以及多维色谱技术等新兴分析技术在茶叶原产地鉴别领域的广泛应用,以及各种计量学手段的不断完善将会极大丰富茶叶指纹图谱研究的技术与数据处理方法,使茶叶的信息更加全面、更具科学性。红外光谱分析技术是综合分析茶叶品质,而且分析速度快、效率高、无污染、重现性较好[1-4]。红外光谱技术显示不同品质的同种茶叶在谱图上的特征谱带会出现了细微差异,该发现证明了傅里叶变换红外光谱法用于鉴别茶叶品质的可行性。该文利用红外光谱技术讨论了茶叶产地分布特征。

1 材料与方法

1.1 实验材料

1.2 仪器设备与参数设置

TENSOR27型傅立叶红外光谱仪(BRUKER公司),波数范围:400~4000 cm-1,扫描次数:16次,分辨率:4 cm-1。

1.3 实验过程

样品的制备大致分为5个过程:烘干、粉碎、研磨、压片和光谱采集。首先,标准茶叶样品将在40 ℃恒温箱中烘12 h,然后经粉碎机粉碎,过200目筛子后收集。茶叶样品粉末要与KBr按1∶120比例进行研磨、压片,最后即可对压片进行光谱采集。

2 结果与分析

2.1 特征基理论

主成分分析(Principal Component Analysis,PCA)是以样品数据统计特征为基础的正交变换,是最小均方误差意义上的最优变换。

这种方法的优点是可以用数量很少的几条本征谱,在不丢失主要光谱信息的前提下,取代原来复杂的原始光谱,解决了由于谱带的重叠而无法分析的困难。

特征基理论是基于主成分分析法提出的一种降低茶叶红外光谱图原始数据的维数、提取反映茶叶信息的主要因素的多元统计分析方法。

每进行一次特征提取就好比是一次主成分分析过程。特征提取是为了建立茶叶的光谱特征基,在主成分分析的最后就是选取变量建立特征基的过程,建立特征基后即可对所要分析指标进行投影分析。

二次特征提取是在一次特征提取基础上再进行一次主成分分析过程,即特征提取过程,也相当于再一次剔除冗余变量,提取变化相差较大变量的过程。在二次特征提取后,再根据不同的特征因子所含信息量的情况建立特征基。

2.2 二次特征提取用于红外光谱分析茶叶产地分析

建立有关茶叶产地的特征基时,首先,考虑参与建基茶叶原产地的问题,既包含我们所要研究的几种茶叶(君山银针、祁门红茶、政和白茶、安溪铁观音、四川藏茶等),又要包括中国其他各个茶叶产区的特征茶叶品种。

在研究中选取福建茶区茶叶时,将福建茶区分为闽北和闽南两个区域分别区分。选取安徽茶叶时,将其分为黄山和祁门两个茶区。这主要基于茶叶产地的地域特征不同,每个地域的气候、降水、海拔等地域特征相差太多。

因此该特征基要有对应每个区域茶叶的信息,也就是每个茶叶要在基上能找到对应的“坐标轴”,如闽南和闽北茶叶要分别投影在代表各自区域信息的“坐标轴”上。

3 结语

茶叶的基本成分是稳定的,所以样品的红外光谱有很大的相似性,该文基于主成分分析的特征提取思想,提出了特征提取方法并应用在不同茶叶产地的识别上,结果很好的把不同产地区域的茶叶区分开。此法具有一定的可行性,该方法将对分析茶叶产地有指导作用。

参考文献

[1] 蔡健荣,吕强.利用近红外光谱技术识别不同类别的茶叶[J].安徽农业科学,2007,35(14):4083-4084.

[2] 李红莲,赵志磊.近红外光谱法快速鉴别花生油真伪及掺伪成分[J].食品安全质量检测学报,2010,27(1):24-29.

光谱技术论文篇8

关键词:IP板 激光喇曼 拉曼光谱

引言

传统的X线成像是经X射线透照被检查物件,将影像信息记录在胶片上,在显定影处理后,影像才能在照片上显示。计算机射线照相检测(简称CR)则不同,它是一种模拟数字照相成像系统,将透过物体的X射线影像信息记录在由辉尽性荧光物质制成的存储荧光板上,这种存储荧光板又称影像板或成像板(简称IP板),即用IP板取代传统的X射线胶片来接受X射线照射。拉曼光谱分析技术已经在化工 化学、生物医学、环境科学、和半导体电子技术等各种领域得到广泛应用。很多高 等学校都开设了拉曼光谱的实验课程。本论文主要对IP板的拉曼光谱进行测量,并 对结果进行分析,从而判断IP板的成分[1]。

一、成像板技术简介

(一)数字化的射线照相图像

IP板又称为无胶片暗盒、拉德成像板等,可以与普通胶片一样分成各种不同大 小规格以满足实际应用需要。IP板是基于某些荧光发射物质(可受光刺激的感光聚 合物涂层)具有保留潜在图像信息的能力,当对它进行X射线曝光时,这些荧光物 质内部晶体中的电子被投射到成像板上的射线所激励并被俘获到一个较高能带(半 稳定的高能状态),形成潜在影像(光激发射荧光中心),再将该IP板置入CR读出设 备(读出器,CR阅读器)内用激光束扫描该板,在激光激发下(激光能量释放被 俘获的电子),光激发射荧光中心的电子将返回它们的初始能级,并产生可见光发射,这种光发射的强度与原来接收的射线剂量成比例(IP板发射荧光的量依赖于一次激发的X射线量,可在 1:104 的范围内具有良好的线性),光电接收器接收可见光 并转换为数字信号送入计算机进行处理,从而可以得到数字化的射线照相图像[2]。 CR技术利用的IP板可重复使用(IP板经过强光照射即可抹消潜影,因此可以重复使用)。

(二)IP 板图像信息的读出经X射线曝光后保留有潜在图像信息的IP板置入CR读出设备内,用激光束以2510x2510 的像素矩阵(像素约 0.1mm大小)对匀速移动的IP板整体进行精确而均 匀的扫描,激发出的蓝色可见光被自动跟踪的集光器(光电接收器)收集,再经光 电转换器转换成电信号,放大后经模拟/数字转换器(A/D)转换成数字化影像信息,送入计算机进行处理,最终形成射线照相的数字图像并通过监视器荧光屏显示出人眼可见的灰阶图像供观察分析。读出器分为多槽自动排列读出处理式和单槽读出处理式,前者可在相同时间内处理更多IP板。读出器输出的图像格式符合国际通用影 像传输标准DICOM 3.0,因此可以经过网络传输、归档及打印。

二、激光拉曼光谱的发现与发展

(一)激光拉曼光谱的发现

激光拉曼光谱得名于印度物理学家拉曼(Raman)。1928 年,拉曼首先从实验中 观察到单色的入射光投射到物质中产生的散射,通过对散射光的光谱进行分析,他 发现散射光除了含有与入射光相同频率的光之外,还包含有与入射光不同频率的 光。以后人们将这种散射光与入射光不同频率的现象称为拉曼散射(Raman scattering)。拉曼本人也因此荣获 1930 年的诺贝尔物理学奖。

(二)激光拉曼光谱的发展

在 1928-1940 年期间。由于可见光分光技术和照相感光技术已经发展起来,拉 曼光谱受到广泛的重视,曾经是研究分子结构的主要手段。1940-1960 年,拉曼光 谱的地位一落千丈。主要是因为拉曼效应太弱(光强约为入射光强的 10-6),并要 求被测样品的体积必须足够大、无色、无尘埃、无荧光等等。所以到 40 年代中期, 红外技术的进步和商品化更使拉曼光谱的应用一度衰落。1960 年以后,激光技术 的发展使拉曼技术得以复兴。由于激光束的高亮度、方向性和偏振性等众多方面的 优点,成为拉曼光谱的理想光源。随探测技术的改进和对被测样品要求的降低,目前在物理、化学、医药、工业等各个领域拉曼光谱得到了广泛的应用,越来越受研究者的重视。

我国科学家在国内开展的拉曼光谱学研究已涉及了广泛的学科领域,并取得了 许多世界一流的研究成果,在高温超导体、新型碳材料、功能晶体和催化剂等方面 的成就举世公认,尤其是在低维纳米材料和过渡金属增强拉曼光谱研究领域已步入 世界前沿。在理论方面,黄昆于 1988 年发表了超晶格拉曼散射的微观模型-黄- 朱模型。该模型不仅正确地解释了选择定则问题,还揭示了界面模的物质本质,被人们广泛承认为超晶格拉曼散射的最正确的理论,也为更低维体系的拉曼散射理论 打下了基础。在实验方面,目前观察到的6种单声子模中,美国、德国和印度学者 各占一种,而我国学者却占了三种,并且张树霖教授还在国际上第一次观察到了超 晶格微观界面声子的单声子和多声子拉曼散射。因此可以说,我国低维结构的拉曼 光谱研究已进入世界最前沿。另外,我国是世界上最早开展表面增强拉曼光谱研究 的国家之一,近年厦门大学所做的过渡金属表面增强拉曼光谱研究,已两次被国际 拉曼光学大会安排作邀请报告。

(三)激光拉曼光谱的应用 拉曼光谱技术以其信息丰富,制样简单,水的干扰小等独特的优点,在化学、材料、物理、高分子、生物、医药、地质等领域有广泛的应用。拉曼光谱在有机化学方面主要是用作结构鉴定和分子相互作用的手段,它与 红外光谱互为补充,可以鉴别特殊的结构特征或特征基团。拉曼位移的大小、强度 及拉曼峰形状是鉴定化学键、官能团的重要依据。

在高聚物方面,拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单体异构、位置异构、几何异构和空间立现异构等)的研究中拉曼光谱可以发挥其独特作用。电活性聚合物如聚毗咯、聚噻吩等的研究常利用拉曼光谱为工具,在 高聚物的工业生产方面,如对受挤压线性聚乙烯的形态、高强度纤维中紧束分子的 观测,以及聚乙烯磨损碎片结晶度的测量等研究中都采用了拉曼光谱。

拉曼光谱是研究生物大分子的有力手段,由于水的拉曼光谱很弱、谱图又很简 单,故拉曼光谱可以在接近自然状态、活性状态下来研究生物大分子的结构及其变化。拉曼光谱在蛋白质二级结构的研究、DNA 和致癌物分子间的作用、视紫红质在光循环中的结构变化、动脉硬化操作中的钙化沉积和红细胞膜的等研究中的应用均有文献报道。在表面和薄膜方面,拉曼光谱在材料的研究方面,在相组成界面、晶界等课题中可以做很多工作。

参考文献:

[1]李大鹏.浅析 IP 板的使用[J].实用医技杂志,2008(12):1570-1571

推荐期刊