线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

故障检测与诊断8篇

时间:2023-06-07 09:01:51

故障检测与诊断

故障检测与诊断篇1

【关键词】设备;故障;检测;预防;维修方法

本文从设备检测诊断的基本方法、内容和技术手段等多方面对我国机械设备检测和诊断技术的现状进行综述,并在此基础上提出了该技术今后的发展趋势。企业要实现设备管理现代化,应当积极推行先进的设备管理方法和采取以设备状态监测为基础的设备维修技术。

1.设备检测的一般常用方法概述

设备检测一般是指采用各类检测仪器对设备各项指标进行检测,以达到保障安全使用的目的。根据相关技术人员的经验,设备检测尤其是特种设备的检测需要符合国家、地方及行业协会的相关规定。

设备检测常用的方法是无损检测,无损检测就是利用声、光、磁和电等,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿命等)的所有技术手段的总称。与破坏性检测相比,无损检测不会损害被检对象的使用性能,因此,无损检测又称为非破坏性检测。无损检测分为常规检测技术和非常规检测技术。常规检测技术有:超声检测、射线检测、磁粉检测、渗透检验、涡流检测。非常规无损检测技术有:声发射、 红外检测、激光全息检测等。

2.下面对以上所说的检测技术做一下简要的介绍

2.1超声检测

超声检测的基本原理是:利用超声波在界面(声阻抗不同的两种介质的结合面)处的反射和折射以及超声波在介质中传播过程中的衰减,由发射探头向被检件发射超声波,由接收探头接收从界面(缺陷或本底)处反射回来超声波(反射法)或透过被检件后的透射波(透射法),以此检测备件部件是否存在缺陷,并对缺陷进行定位、定性与定量。

2.2射线检测

射线检测的基本原理是:利用射线(X 射线、γ射线和中子射线)在介质中传播时的衰减特性,当将强度均匀的射线从被检件的一面注入其中时,由于缺陷与被检件基体材料对射线的衰减特性不同,透过被检件后的射线强度将会不均匀,用胶片照相、荧光屏直接观测等方法在其对面检测透过被检件后的射线强度,即可判断被检件表面或内部是否存在缺陷(异质点)。

2.3磁粉检测

磁粉检测的基本原理是:由于缺陷与基体材料的磁特性(磁阻)不同,穿过基体的磁力线在缺陷处将产生弯曲并可能逸出基体表面,形成漏磁场。若缺陷漏磁场的强度足以吸附磁性颗粒,则将在缺陷对应处形成尺寸比缺陷本身更大、对比 度也更高的磁痕,从而指示缺陷的存在。

2.4红外检测

红外检测的基本原理是:用红外点温仪、红外热像仪等设备,测取目标物体表面的红外辐射能,并将其转变为直观形象的温度场,通过观察该温度场的均匀 与否,来推断目标物体表面或内部是否有缺陷。

3.设备故障诊断技术的概述

设备故障诊断是指设备在运行中或在基本不拆卸的情况下,通过各种手段,掌握设备运行状态,判定产生故障的部位和原因,并预测设备未来的状态,从而找出对策的一门技术。

设备故障诊断的任务是监视设备的状态,判断其是否正常;预测和诊断设备的故障并消除故障;指导设备的管理和维修。

(1)设备故障诊断的内容包括状态监测、分析诊断和故障预测三个方面。其具体实施过程为信息采集、信号处理、状态识别、诊断决策。

(2)设备故障信息的获取方法包括直接观测法、参数测定法、磨损残渣测定法及设备性能指标的测定。

(3)设备故障的检测方法包括振动和噪声的故障检测、材料裂纹及缺陷损伤的故障检测、设备零部件材料的磨损及腐蚀故障检测及工艺参数变化引起的故障检测。

(4)设备故障的评定标准常用的有三种判断标准,即绝对判断标准、相对判断标准以及类比判断标准。可用平均法制定相对判断标准。

(5)从某种意义上讲,设备振动诊断的过程,就是从信号中提取周期成分的过程。组成周期成分的简谐振动可用位移、速度和加速度三个参量来表征,每个参量有三个基本要素:即频率、振幅和初相位。

(6)试验数据处理的目的就是去伪存真、去粗取精、由表及里、由此及彼的加工过程,提高信噪比,找出客观事物本身的内在规律和客观事物之间的相互关系。

(7)振动信号频率分析的数学基础是傅里叶变换;在工程实践中,运用快速傅里叶变换的原理制成频谱仪,这是故障诊断的有力工具。

4.设备故障诊断技术的分类,有三种分类方法:

4.1按照诊断的目的、要求和条件分类,分为功能诊断和运行诊断、定期诊断和连续监测、直接诊断和间接诊断、在线诊断和离线诊断、常规诊断和特殊诊断、简易诊断和精密诊断等等

(1)功能诊断和运行诊断。功能诊断主要是针对新安装的设备或刚刚维修过的设备,而运行诊断更多是起到状态监测的功能。

(2)直接诊断是直接根据关键零部件的状态信息来确定其所处的状态,例如轴承间隙、齿面磨损.直接诊断迅速可靠,但往往受到机械结构和工作条件的限制而无法实现。

(3)间接诊断是通过设备运行中的二次效应参数来间接判断关键零部件的状态变化。由于多数二次效应参数属于综合信息,因此在间接诊断中出现伪警或漏检的可能性会增加。

(4)在线诊断和离线诊断。

在线是指对现场正在运行设备的自动实时监测;而离线监测是利用磁带记录仪等将现场的状态信号记录后,带回实验室后再结合诊断对象的历史档案进行进一步的分析诊断或通过网络进行的诊断。

(5)常规诊断和特殊诊断。

常规诊断是在设备正常服役条件下进行的诊断,大多数诊断属于这一类型诊断。但在个别情况下,需要创造特殊的服役条件来采集信号,例如,动力机组的起动和停机过程要通过转子的扭振和弯曲振动的几个临界转速采集起动和停机过程中的振动信号,停车对诊断其故障是必须的,所要求的振动信号在常规诊断中是采集不到的,因而需要采用特殊诊断。

(6)简易诊断和精密诊断。

简易诊断一般由现场作业人员进行。凭着听、摸、看、闻来检查。也可通过便携式简单诊断仪器,如测振仪、声级计、工业内窥镜、红外测温仪等对设备进行人工监测,根据设定的标准或凭人的经验确定设备是否处于正常状态。

精密诊断一般要由专业人员来实施。采用先进的传感器采集现场信号,然后采用精密诊断仪器和各种先进分析手段(包括计算机辅助方法、人工智能技术等)进行综合分析,确定故障类型、程度、部位和产生故障的原因,了解故障的发展趋势。

4.2按诊断的物理参数分类

振动、声学、温度、污染、无损诊断、压力诊断等等,都是按物理参数分类。

4.3按照按诊断的直接对象分类

各种不同的对象,诊断方法、诊断的技术、诊断的设备都有很大区别,按照机械零件、液压系统、旋转机械、往复机械、工程结构等等来进行区分。

综上所述,设备的检测和故障诊断技术,可以迅速、连续地反映设备的运行状态,预示运行设备存在的潜伏性故障并提出处理措施,是保障设备安全经济运行的有力措施,应大力推广。然而,设备的检测与故障诊断技术毕竟为新兴的多学科高新技术,其发展和实施还存在许多困难,距离替代预防性定期检修还有较长历程。所以,既要积极开发、推广这一技术,也要客观对待,避免盲从,不断总结经验并完善系统。

【参考文献】

[1]李国华,吴淼.现代无损检测与评价.化学工业出版社.

故障检测与诊断篇2

【关键词】数字电路;故障;排查与诊断;分析

1.数字电路出现故障的常见的原因

数字电路是处理和变化这些离散信号的电路,工作原理主要是应用两个元器件来表示离散信号,其中的每一个元器件的参数值都有很大的差异,所以在实际的应用的时候,数字电路虽然能够发挥很强大的功能,但是数字电路出现故障的状况是一件十分常见的事情,下文详细的介绍数字电路出新故障的原因。

1.1 数字电路元件出现老化造成故障

任何东西在长时间的使用之后都会出现或多或少的损坏,其中数字电路中使用的材料都是金属材质,在长期的使用过程中,电路元件变得老化,电路材料参数性能也逐渐的下降,使得数字电路受到天气以及温度等状况影响变大,非常容易造成数字电路出现故障。

1.2 数字电路元器件出现接触不良的状况造成故障

数字电路由于接触不良而出现故障是最常见的问题,造成数字电路接触不良的原因是多种多样的,数字电路在日常生活中的使用经常会出现非专业人士保管不善,或者是电器的外壳损坏导致数字电路的元件长时间的暴露在空气之中,造成数字电路出现进水或者是电器内部的焊点被氧化的状况,这些问题的出现都会导致数字电路出现故障。

1.3 数字电路设备所处的工作环节不稳定造成了故障

数字电路的安全使用是需要一定的环节条件的,但是在实际的应用中,电路设备的使用环境并不是十分的完美,数字电路所处的工作环境时常达不到设备工作的状态,例如实际的温度、磁场的改变等等,这些因素都会导致数字电路发生故障,导致数字电路不能正常的工作。

1.4 数字电路内的元件过了使用期造成故障

数字电路内部的电路元器件都存在着保质期的,关于保质期的常识并不是所有的数字电路的使用者都了解的,所以造成故障也比较常见。数字电路内的元器件只有在规定的年限内才能发挥出最佳的效果,倘若元器件过了使用期限,数字电路内部会出现超负荷的状况,元器件也会出现老化、性能降低等现象,导致数字电路故障的发生率增加。

2.数字电路故障检测与诊断的方法

2.1 采取有效的方法将故障检测的过程与诊断这两个过程分开

在对数字电路进行故障检测之前,应当先对数字电路常见的故障的特征进行了解,在对其中一些基本特征进行对比之后,可以尽可能的缩小数字电路故障排查的范围,当然在初步对比故障的基本特征之后并不能武断的确认数字电路的故障,而是要进一步的进行诊断,使得这两个过程能够有效的隔离。使用逻辑检测与诊断对数字电路中出现的故障进行初步的确认。例如:当数字电路的信号消失之后,可以借助检测探头在电路的连接点上进行检测与诊断,也可以在发现数字信号之后能够使用脉冲存储器进行存储,可以有效的缩小数字电路的护长范围。

2.2 使用分块测试法对数字电路进行诊断

目前对于数字电路中出现的故障检测方法中最常使用的方法就是直接观察法,使用直接观察法进行故障检测,故障检测的准确率有所下降,对于故障的排查以及处理的效率很低,所以采用分块检测法是代替直接观测法最有效的方法。使用分块测试诊断法的时候,应当对数字电路的设计结构有一个初步的了解,并根据电路的实际情况,将电路分为若干个独立的电路,分别进行通电测试,通过观测结果对数字电路的故障状况进行分析,之后便可以提出具有针对性的数字电路的故障的解决方法,能够有效地提高数字电路故障检测与诊断的效率,在复杂的数字电路的故障检测与诊断中应用也十分的广泛。

2.3 使用电阻检测诊断的方法进行诊断

在日常的使用中,数字电路一旦出现任何的异状的时候,首先需要做的就是要切断电源,之后进行短路与否的检验,这时候最常使用的方法就是使用电阻检测诊断法。电阻检测法能够有效的检测出数字电路底板内部和电路连接之间是否有接触不良或短路的状况,在使用此方法的时候操作过程非常的简单,即便不是专业的电路维修人员也能够轻松的完成数字电路故障检测的事情。使用电阻检测法的时候,一定要注意的就是用电安全,在切断电源的基础上进行检测装置的设计安装,之后再一一进行故障检测。

2.4 使用波形检测方法进行故障检测

波形检测诊断方法对数字电路进行故障的检测以及诊断对于检测人员的专业素养要求很高,要求维修人员能够熟练的掌握电路维修的相关的理论知识和拥有一定的实际操作经验,熟练地使用示波器观察电路故障检测过程中所反映出的波形,也就是数字电路故障检测过程中在示波器上显示的数字电路板的各级输出波形的状况,观察示波器上所出现的波形是否表现正常,在这样的过程中得到的数字电路故障检测的结果更加的具有科学性以及具有说服力,在使用波形检测诊断法进行数字电路故障检测的时候,数字电路内多数是脉冲电路,由于脉冲电路的复杂程度,其他的检测方法并不是十分的准确与科学,所以波形检测诊断法形成的检测结果更加的准确,在进行故障检测的过程中对于维修人员的安全保障性能也是最强的,不仅提高了数字电路故障检测与诊断的效率,也有助于制定数字电路维修策略,制定的策略也更加的具有针对性。

3.总结

当今时代科学技术飞速的发展,对于数字电路的研究的投入也变得更大,数字电路在生活中的使用也变得更加的普遍,但是数字电路的使用出现的问题也困扰着现代人,所以为了更好地使用数字电路,提高使用效率,就一定要选择有效的方法对于数字电路中出现的故障进行检测与诊断,因此应当针对数字电路产生的原因进行研究,并且积极地进行故障检测的技术,使得数字电路的使用能够更加顺时代的发展,使得数字电路能够为现代人们的生活提供更多的便捷服务。

参考文献

[1]郭希维,苏群星,谷宏强.数字电视测试中的关键技术研究[J].科学技术与工程,2008.

故障检测与诊断篇3

【关键词】电器 电机 检测与故障诊断 流程 技术

前言

电机在机械设备操作过程中容易发生故障,影响生产的正常进行。熟练掌握电机状态的检测与故障诊断能及时有效的预防故障的发生,降低企业损失,并及时寻求出解决方案。

1 电机状态与故障诊断技术的特点

1.1 涉及的专业多

由于电机内部结构较为复杂,涉及到电力、电磁、机械以及通风散热等方面,因此如果发生故障就需要对各个可能的方面进行检测,再加上可能出现的故障不是单一方面原因造成的,就更造成了故障检测的难度,电机故障诊断涉及到电机学、空气动力学、传热学、高压电技术、弱电技术、材料技术、计算机技术、机械加工技术等等多个学科,因此就要求相关工作人员必须具备全方位的综合素质方能合格。

1.2 对电机工作状态记录依赖性较大

电机的运行状态是不断改变的,虽然这种改变非常轻微,但一般来说形成故障都是有一定征兆的,同时引起电机故障的原因来说也是多方面的,因此对电机状态检测与故障诊断很大程度上要依赖日常工作对电机工作状态的记录文件作为参考,工作人员只有在充分了解电机的运行特点以及工作负载情况的基础上,才能有针对性地进行故障诊断,达到事半功倍的目的。

1.3 可根据实时状态对故障进行预判

与继电保护系统不同的是,电机故障检测和诊断可根据当前检测的运行状态对可能发生的故障进行预判,对故障的发展趋势进行分析后可制定出最佳的检修方案,而不用等到故障发生后才采取相应手段,因此将可能由故障带来的损失降为最低。

2 电机状态检测与故障诊断的方法与流程

电机状态检测与故障诊断工作的进行需要借助于先进的分析仪器和设备以及丰富的理论知识和相关经验。首先,用传感器对电机的实时技术状态参数进行采集,然后将数据传输到主机进行数据的处理和诊断分析,利用工作人员扎实的知识和丰富的经验,并结合当前数据分析结果对当前电机可能发生的故障提出相关技术措施,尽量做到故障的事前控制,将损失降为最低。电机的状态检测和故障诊断流程如图1 所示:

3 常用的检测与故障诊断技术分类

3.1 铁谱技术

铁谱技术是通过铁谱仪对电机零部件磨损颗粒的形态、粒径和化学成分进行分析(金属磨粒一般是从易损部件的油样中分离出来得到),从而得出电机当前的磨损状况,以便在磨损的初期得到情报,及时采取有效措施防止进一步的磨损,预防故障的产生。在电机检测中,利用铁谱仪将磨损颗粒的谱图呈现在基片上,供工作人员分析使用。

3.2 红外测温和热成像技术

在电机状态检测中,红外测温与热成像技术是通过检测电机向外辐射出的红外光谱来显示出电机的温度,是非接触式的测温方法,由于物体的温度越高其辐射的功率就越大,因此可根据测量得到的辐射量将温度呈现出来,在实际工作中,电机某一个部位出现温升过大的情况就可通过红外热成像的技术准确检测出来。

3.3 声发射技术

在电机中如果某一个部件有发生变形或断裂等,其声传播与在正常金属材料中传播的形式不同,此时形变或断裂处在受力的状态下就会以弹性波的形式释放出部分能量,这种能量以声音的形式发射出去,利用这种非正常的声音即可判断出是否存在故障以及故障发生部位,在实际工作中,仅凭人耳是无法分辨微弱的声音,因此一般要借助于灵敏的声检测仪器来测试。

3.4 力和扭矩的检测

力和扭矩检测技术是检测电机工作状态的一种重要手段,其方法为:将电阻丝固定在基片上制成应变片,而后将其粘接到需要检测的部位,当设备工作时应变片就会受到电机的影响,如果被检测部位承受力和扭矩的作用就会使应变片发生形变,改变电阻丝的横截面和长度,因此使之阻值发生改变,结果呈现在应变仪上,计算出该部位的应变量就得得知该检测部位的受力情况,从而判断故障的趋势走向。

3.5 电磁检测

在实际工作中经常利用电机内部和其周围的磁场分布情况来检测和判断电机的故障,通常的方法有直接测量电机内部和周围的磁场分布,以及测量谐波磁场和漏磁场等,其原理是利用探测线圈或霍尔元件等测磁元件测量磁场分布中各点的磁通量,其中探测线圈只用来测量交变磁场,而霍尔元件可测量交变磁场和直流磁场,根据磁通量变化情况来判定电机故障发生点。

3.6 光线传感器测温技术

光纤传感器测温技术是一种新兴设备检测和故障诊断技术,具有体积小、灵敏度高、重量轻、精度高、测温范围宽等优点,因此在电机状态检测和故障诊断中可推广应用,其主要是利用光纤测温系统对测量空间的温度场分布进行实时测量,并实时传递出来供工作人员参考使用。

4结束语

综上所述,电机的状态检测与故障诊断技术有多中,实际操作中需要专业人员根据具体的情况而定。科学规范的方法能够避免重复无用的过程以及错误的发生。

参考文献

故障检测与诊断篇4

关键词:状态监测;状态检修;故障诊断

一、电力系统状态监测的意义

第一、进行设备运行的历史档案的建立,从而使设备运行中所发生的情况中出现的资料和数据得到积累,以备后用。

第二、判断设备运行状态的正常与否,并对设备故障的性质和程度进行判断。判断的主要依据为以前所建立的历史档案,包括设备运行状态的等级、从前出现此种故障的过程中显示的特征等。

第三、为了能够在实施状态检修时为检修工作提供必要的依据,必须评估设备的运行状态,同时分析这些状态,分类评估,从而形成一定的评估标准。状态检测的评估的主要内容包括:评估设备运行状态、估计这杯异常状态、预测设备故障状态的未来变化。将这些内容都纳入评估的体系之中主要为提供一定的条件来进行评估,从而不断地健全、完善评估监测。

综上所述,设备的运行资料可以在状态监测过程中不断的被积累、完善、健全,突破了过去的管理体制的束缚,并对管理体制进行了完善。因而,笔者认为,在现代电力系统设备管理中,状态监测系统有着不可忽视的作用。

二、状态监测的关键技术的研究

第一、在信号采集方面

所谓电力设备的在线监测系统,其功能是持续地对设备的状态进行检查和判断,并对设备状态的发展趋势进行预测;系统运行的时间为设备的使用期,也就是说,只要设备还在进行使用就必须对其进行监测。

诊断对象的状态信息的获取是设备运行状态量反映设备运行情况中首要完成的任务,信息的内容除了包括电力设备的电压、电流、频率、局部放电量外,还包括磁力线的密度情况以及正常信号和故障信号。通常,信号的采集方法会随着表征设备状态量的信号的特性的不同而改变。信号采样主要有以下几种方法:

1、每次所采集的信号的样本的长度为处理一个足够数据所需要的长度,我们将这种采样称为一次性采样。

2、采样的时间为事先规定的好的,且采样频率为一个整定的周期,简单地说就是定时采样。

3、自动采样,采样发生的时间为随机的,采样以故障时信号突变为手段。

4、特殊采样,采样方式根据所诊断的故障的要求不同而不同,例如转速跟踪采样、峰值采样等。

第二、数据传送

信号处理系统通常距监测设备较远,因此,数据在传输过程中易受干扰、易损失及相移(受环境因素影响较大),需先对数据进行模数转换、预处理和压缩打包,再经通信路径传输到处理控制中心。通信设备现已广泛应用于电力领域,光纤传输数字信号可较好地抑制干扰,保证信号质量。

第三、数据处理

工控数据处理中心收到通信线路传输来的状态量数据包后,利用各种不同数学方法对数据解包处理。例如,频谱分析将时域连续时间信号转变为频域不同频率信号进行分析;在时域中由2个信号之间相关性采用相关分析搜索另一个信号的处理数据;小波分析;神经网络;人工智能。数字信息技术和智能技术应用到电力设备监测系统的数据处理使电力设备在线监测更加实时准确。

三、故障诊断的建议

第一、利用多传感技术和信息融合处理技术诊断某种故障不同的故障表象。多传感技术利用多个传感器从多侧面、多角度观测同一对象,即针对同一故障的多种故障表征,多层次多领域(时域、空间域、频域)采集不同的特征量,选择故障反映灵敏度高的状态信息量,从而较全面的分析诊断故障。

信息融合技术是将来自多传感器的数据按照一定的准则加以分析和综合的数据处理过程。因同一设备故障在不同特征空间的不同反映之间存在着内在的关联关系,利用融合技术“求同去异”可提高电力设备状态检测和故障诊断的准确性。但信息融合基本理论尚不完善,该诊断方法还有待研究。

     第二、基于特征空间矢量的故障诊断方法,可通过对故障误差的学习实时修正故障特征量。这种诊断方法具有一定的自适应能力,适合于具有不确定性和慢时变性的复杂对象的故障诊断。其实质是将每次的故障征兆矢量作为原先验征兆矢量集中的一个新的先验征兆矢量,并根据自适应算法修正故障特征矢量。故障先验征兆矢量不确定时,则需要人工判断第一次故障。

第三、针对电力设备的固有特性以及在线监测状态信息量不足导致的不确定性,可考虑采用模糊理论中的最大隶属度原则诊断故障原因,判断故障类型,将状态信号与模糊数学方法结合起来分析故障的随机性和模糊性问题。

除了上述方法外,还可以结合人工智能、专家系统、神经网络等方法诊断故障。

结语

在最近十年的电力系统的发展过程中,设备的状态监测技术和故障诊断技术作为一个新技术,持续着突飞猛进的发展趋势。无论是从发展前景方面看还是从应用前景方面看,都呈现着良好的发展势头。虽然,在我国这两个技术的发展的时间也持续了相当一段时间,并且已经有各种检测装置投入生产和使用的过程中,然而,还没有普及对状态监测和故障诊断技术的使用,并且无论在技术的认识方面还是使用过程中都存在着一些不可忽视的问题。我们应该继续大力探索研究这项技术,提高电力系统的稳定性和效率。

参考文献:

[1] 薛善成,朱杰. 电力系统的状态监测与故障诊断技术探讨[J]. 现代经济信息, 2009, (21).

故障检测与诊断篇5

关键词:状态监测;状态检修;故障诊断

一、电力系统状态监测的意义

第一、进行设备运行的历史档案的建立,从而使设备运行中所发生的情况中出现的资料和数据得到积累,以备后用。

第二、判断设备运行状态的正常与否,并对设备故障的性质和程度进行判断。判断的主要依据为以前所建立的历史档案,包括设备运行状态的等级、从前出现此种故障的过程中显示的特征等。

第三、为了能够在实施状态检修时为检修工作提供必要的依据,必须评估设备的运行状态,同时分析这些状态,分类评估,从而形成一定的评估标准。状态检测的评估的主要内容包括:评估设备运行状态、估计这杯异常状态、预测设备故障状态的未来变化。将这些内容都纳入评估的体系之中主要为提供一定的条件来进行评估,从而不断地健全、完善评估监测。

综上所述,设备的运行资料可以在状态监测过程中不断的被积累、完善、健全,突破了过去的管理体制的束缚,并对管理体制进行了完善。因而,笔者认为,在现代电力系统设备管理中,状态监测系统有着不可忽视的作用。

二、状态监测的关键技术的研究

第一、在信号采集方面

所谓电力设备的在线监测系统,其功能是持续地对设备的状态进行检查和判断,并对设备状态的发展趋势进行预测;系统运行的时间为设备的使用期,也就是说,只要设备还在进行使用就必须对其进行监测。

诊断对象的状态信息的获取是设备运行状态量反映设备运行情况中首要完成的任务,信息的内容除了包括电力设备的电压、电流、频率、局部放电量外,还包括磁力线的密度情况以及正常信号和故障信号。通常,信号的采集方法会随着表征设备状态量的信号的特性的不同而改变。信号采样主要有以下几种方法:

1、每次所采集的信号的样本的长度为处理一个足够数据所需要的长度,我们将这种采样称为一次性采样。

2、采样的时间为事先规定的好的,且采样频率为一个整定的周期,简单地说就是定时采样。

3、自动采样,采样发生的时间为随机的,采样以故障时信号突变为手段。

4、特殊采样,采样方式根据所诊断的故障的要求不同而不同,例如转速跟踪采样、峰值采样等。

第二、数据传送

信号处理系统通常距监测设备较远,因此,数据在传输过程中易受干扰、易损失及相移(受环境因素影响较大),需先对数据进行模数转换、预处理和压缩打包,再经通信路径传输到处理控制中心。通信设备现已广泛应用于电力领域,光纤传输数字信号可较好地抑制干扰,保证信号质量。

第三、数据处理

工控数据处理中心收到通信线路传输来的状态量数据包后,利用各种不同数学方法对数据解包处理。例如,频谱分析将时域连续时间信号转变为频域不同频率信号进行分析;在时域中由2个信号之间相关性采用相关分析搜索另一个信号的处理数据;小波分析;神经网络;人工智能。数字信息技术和智能技术应用到电力设备监测系统的数据处理使电力设备在线监测更加实时准确。

三、故障诊断的建议

第一、利用多传感技术和信息融合处理技术诊断某种故障不同的故障表象。多传感技术利用多个传感器从多侧面、多角度观测同一对象,即针对同一故障的多种故障表征,多层次多领域(时域、空间域、频域)采集不同的特征量,选择故障反映灵敏度高的状态信息量,从而较全面的分析诊断故障。

信息融合技术是将来自多传感器的数据按照一定的准则加以分析和综合的数据处理过程。因同一设备故障在不同特征空间的不同反映之间存在着内在的关联关系,利用融合技术“求同去异”可提高电力设备状态检测和故障诊断的准确性。但信息融合基本理论尚不完善,该诊断方法还有待研究。

第二、基于特征空间矢量的故障诊断方法,可通过对故障误差的学习实时修正故障特征量。这种诊断方法具有一定的自适应能力,适合于具有不确定性和慢时变性的复杂对象的故障诊断。其实质是将每次的故障征兆矢量作为原先验征兆矢量集中的一个新的先验征兆矢量,并根据自适应算法修正故障特征矢量。故障先验征兆矢量不确定时,则需要人工判断第一次故障。

第三、针对电力设备的固有特性以及在线监测状态信息量不足导致的不确定性,可考虑采用模糊理论中的最大隶属度原则诊断故障原因,判断故障类型,将状态信号与模糊数学方法结合起来分析故障的随机性和模糊性问题。

除了上述方法外,还可以结合人工智能、专家系统、神经网络等方法诊断故障。

结语

在最近十年的电力系统的发展过程中,设备的状态监测技术和故障诊断技术作为一个新技术,持续着突飞猛进的发展趋势。无论是从发展前景方面看还是从应用前景方面看,都呈现着良好的发展势头。虽然,在我国这两个技术的发展的时间也持续了相当一段时间,并且已经有各种检测装置投入生产和使用的过程中,然而,还没有普及对状态监测和故障诊断技术的使用,并且无论在技术的认识方面还是使用过程中都存在着一些不可忽视的问题。我们应该继续大力探索研究这项技术,提高电力系统的稳定性和效率。

参考文献:

[1] 薛善成,朱杰. 电力系统的状态监测与故障诊断技术探讨[J]. 现代经济信息, 2009, (21).

故障检测与诊断篇6

关键词:汽轮机;故障诊断;发电机组

通常的诊断技术有两种,振动分析和,油液分析。汽轮机发电机组是电力生产的重要设备,由于设备结构的复杂性和运行环境的特殊性导致汽轮机的故障经常出现,要对汽轮机设备进行诊断处理,了解设备的运行情况,查看隐患,故障导致的原因,提出维修的方案。信息技术和计算机技术的发展有效地提升了汽轮机故障诊断技术的能力。汽轮机转子的震动,使零件磨损严重,转子运行中的腐蚀、磨损和疲劳等,转子的不平衡,不对中,油膜涡动,油膜震荡,松动,动静破摩。

1振动分析法

仪表报警时,对故障数据进行分析,要诊断出设备故障原因,对振动参数分析竟然无法解决问题,对热力参数监测出现排气温度下降的现象。对振动信号进行分析处理可以采用,非线性、非平稳性,对传感器的检测主要在硬件冗余、解析冗余和混合冗余方面。并采用神经网络技术诊断汽轮机的系统性能,提高传感器的信号可靠性。信号容易受到干扰,如振动干扰,电气干扰,分析传感器信号振动的频域特征,振动故障的发生会引起信号结构频率的变动,所以状态参数有时稳定,有时不稳定。而且非振动信号的参数也有可诊断的依据,如汽轮机发电机组的运行温度、压力、真空度、电流等。信号的变化和处理需要在幅值、时间、频率等域进行。常用的技术有非线性补偿技术、信号预处理技术。

2故障的分析

总结仪表报警的原因有两点,一点是涡流传感器是随机运行的,二是探头的安装隐患。频谱分析时故障诊断的最广泛手段。诊断技术与仿真技术的结合,建立故障的决策表,准确辨别故障,还可以应用模糊诊断和层次模型。热力学分析手段以及频域变换法都是诊断中常用的方法,对产生原因和机理做出判断,确定措施和方案。转子的不平衡也是常见的故障,不平衡引起振幅或相位的变化,径向和轴向的碰磨产生振动,具有丰富的频谱特征,可以通过频谱分析监测状态。

3检测方式

汽轮机故障的监测技术,通常采用灰色理论、概率分布干涉模型,频域的变化有谱图显示,可以采用主元分析法分析机组的实际振动状况。振动故障状况很多,不同的故障可能特征相似,因此诊断相对复杂。这种不确定性,可以采用模糊性处理和预诊断以及对比以及统计和逻辑的诊断方式。正常状态和故障之间没有明显的划分界限。确定常见故障的模式和分布,获得故障的程度信息,用模糊C均值聚类分析方法,来识别故障类型,提高诊断的准确性。根据轴心轨迹、相位和振幅来模糊的诊断,也能缩小故障范围。排除变量的相关性和冗余性。用定型观测器、定性方针来进行故障定性,对材料和性能的检测可以帮助信号的相关处理,排除干扰的信息。降低变量的维数。

4复杂故障的机理

故障检测与诊断篇7

【关键词】变压器;在线检测;故障诊断

【分类号】TM407

0 引言

变压器是电力网中最重要的设备之一,其常见的故障有局部放电、局部过热、绝缘老化、铁心多点接地、调压开关失灵和套管故障、冷却装置故障等,尽管电网对主变压器配置了许多继电保护装置,但保护动作在变压器故障后用于切除故障,是避免事故扩大的有效措施,不足以可靠地监视变压器运行。因此,对运行变压器存在隐患和故障的预知、预测则显得尤为重要。下面笔者阐述了变压器常见故障及原因,探讨了变压器的在线监测。

1 变压器常见故障及原因

1.1 变压器的过热故障

变压器的过热故障是最常见的故障之一。因为其在运行中缺乏监视,巡视检查不到位使其过载的情况得不到及时掌握和控制。在正常运行负载下,其发生过热故障主要原因有:

绕组过热、分接开关接触不良、引线故障、漏磁导致的故障、变压器冷却装置故障。

1.2 变压器短路故障

指其出口或近区发生短路引起的故障。该异常运行是在其运行中常有的。据有关资料统计,近年来一些地区110KV及以上变压器遭受短路电流冲击直接导致损坏变压器约占全部事故的50%以上,与前几年比较呈大幅度上升的趋势,应引起人们的足够重视。

变压器突发短路可能引起绝缘热故障,因短路电流值将高达额定电流17倍以上,使绕组线圈产生很大热量,线圈等绝缘材料严重受损使其形成绕组击穿损坏事故。

1.3 变压器放电故障

主要是其内部放电对绝缘造成破坏。这是因为一方面放电质点直接轰击绝缘,使局部绝缘受到破坏并扩大至绝缘击穿,另一方面放电产生的热、臭氧、氧化氢等活性气体的化学作用,使局部绝缘受到腐蚀,介损增大导致绝缘热击穿。

1.4 变压器渗漏油故障

这种现象是变压器最常见的异常现象之一。其大多数是由于制造过程中形成的缺陷或者由于材质不良而引起的,此外因安装、检修时质量问题及环境、负载等因素影响,会造成变压器的渗漏问题。

变压器的焊点多、焊道长,焊接的工艺、技术及材料直接影响焊接质量;密封材料质量低劣、老化是变压器连接部位渗漏的主要原因。变压器油箱本体以及套管、冷却系统等连接处均采用橡胶密封件连接,这些橡胶密封件长期处于高温、挤压、油浸和局部暴露的条件下,容易老化、变质、龟裂、塑性变形,以至失效,这也是造成密封处渗漏的主要原因。而材质低劣,安装检修工艺不良是变压器早期出现油渗的主要原因;变压器的导电铜杆、导电铜板及安装座的铜焊处时常会发生渗漏,因铜焊的脆性较大,在安装或运行中可能发生裂缝而渗漏。

1.5 变压器进水受潮的故障

变压器由于进水受潮而引发绝缘事故占绝缘事故的10%~20%。进水原因有:套管顶部连接帽密封不良,水分沿引线进入绕组绝缘内,引起击穿事故;呼吸器的干燥剂失效;污爆管密封不严或潜水泵渗漏;油枕隔膜或胶串破损等情况,外界的潮气会通过这些途径进入变压器,使绝缘受潮。此外还有检修过程中,器身暴露空气中时间过长,空气中温度过大造成绝缘受潮。

1.6 变压器绝缘故障

变压器的寿命主要取决于变压器使用的绝缘材料的寿命,实践证明大多数变压器的损坏和故障大都是因绝缘系统损坏而造成的,据统计变压器绝缘故障形成事故约占全部变压器事故的85%以上。一般变压器的预期寿命定20~40年,但由于实际运行的负载较额定值为低,温升的累积较设计值低,因而变压器的实际寿命的预期的要长许多,现场运行经验表明,维护得好的变压器实际寿命可达50~70年。

1.7 变压器铁心故障

造成铁心故障原因有制造安装和检修过程中疏忽。将异物、杂物掉入油箱;铁心夹件、尺寸不对;铁心绝缘脱落;运输中定位钉未翻动或拆除;绝缘油泥污垢堵塞铁心散热通道;下夹件与铁扼的木垫及绝缘损坏受潮等等。

1.8 变压器分接开关故障

变压器的分接开关故障占有一定比例,约占全部故障的5%~10%,故障停运时间占整个非计划停运时间不到5%。分接开关故障常反映在开关弹簧压力不足,滚轮压力不足,压力不均,接触不良,接触面过小,接触电阻增大,烧伤,引线连接不良,此外分接开关相互绝缘距离不够等等。

2 变压器的在线监测

2.1 变压器油中气体监测

对绝缘油、绝缘材料长期在电、热、氧、水等各种因素的作用下会逐渐裂解变质,而通过对其裂解变质的生成物的化学分析,可以间接的诊断设备绝缘故障和老化的速度。

变压器油中气体检测是在变压器运行状况下进行,并且对故障初期有较好的灵敏度,因此被广泛采用,具有良好的经济效益和社会效益。

油中溶解气体分析判断故障的主要方法是阐值判断,即将监测到的各种气体组分的浓度和国家标准规定的注意值作对比,超过注意值时还应和历史数据作比较,确定气体浓度有无突然增长。必要时可缩短监测周期,进行追踪分析,主要应分析产气速率。另外,要注意检修后的变压器,由于油浸材料中残油所残存的故障特征气体释放至检修后己脱气的油中,导致在追踪分析初期,会发现故障特征气体明显增长的现象,从而判断为故障尚未消除。

2.2 变压器绕组在线监测

变压器绕组在线监测的基本原理是根据变压器绕组的短路电抗值的变化进行变形与否的监测和判断。因为绕组的短路电抗值与绕组的变形程度、几何尺寸以及位置变化密切相关,即短路电抗直接取决于绕组的几何结构。

在工频电压不变的情况下,短路阻抗及阻抗中的电感分量与变压器绕组的几何形状及位移相关。通过理论研究和实际测试,实时监测绕组短路电抗的变化对在线监测变压器绕组变形具有很好的实效性。

2.3 变压器局部放电在线监测

变压器局部放电是反映高压电气设备状态的一个重要标志。因为很多故障均产生局部放电。一般情况下,如果变压器油中发现了特征气体则表明其内部己经存在比较严重的局部放电。局部放电能有效反映变压器内部的绝缘状况。

2.4 变压器油性能指标在线监测

在变压器运行过程中,如果变压器的油质发生变化且达到一定程度,会使绝缘性能下降危及变压器安全运行。常规监测变压器油质变化的方法也很多,主要是测量油的各项性能指标和油中溶解气体的含量。

变压器油性能的在线监测专家系统由数据库、知识库、推理机、知识获取和人机接口等几部分组成。数据库的主要功能是存储并及时提供变压器油质变化的各项指标和历史数据。数据库中的各种指标和信息中还包括对油质的缺陷分析和处理结果,可以为监测维护人员提供详细的油性能数据。知识库用来存储与变压器分析相关的经验和知识。

3 结语

以上本文对变压器在线检测与故障诊断进行了粗略的探讨,由于篇幅和水平有限,还有许多内容没涉及到,比如:在线监测用于变压器的综合诊断等,在今后的工作中笔者将不断努力。

参考文献:

[1]王晓莺. 变压器故障与监测.北京:机械工业出版社,2004,3

[2]苑世光. 对低压配电变压器常见间题的探讨,黑龙江科技信息,2008,20

故障检测与诊断篇8

【关键词】电力变压器在线监测 故障诊断

[Abstract] the power transformer is one of the most important equipments for power transmission and distribution network, to ensure the safe operation of power system has play a decisive role effect. Due to the power transformer design and manufacture quality and operation and so on many aspects, m alignant accidents and faults have occurred, seriously affecting the safe operation of power grid. In this paper, based on the author's practical experience, discusses the fault detection and diagnosis of power transformer.

[keyword] power transformer online monitoring and fault diagnosis

中图分类号:TM41 文献标识码:A文章编号:2095-2104(2013)

引言

电力变压器是电力系统中重要的电气设备之一,它一旦发生事故,则所需的修复时间较长,造成的影响也比较严重。随着我国电力工业的迅速发展,电网规模不断扩大,电力变压器的单机容量和安装容量随之不断增加,电压等级也在不断地提高。一般而言,容量越大,电压等级越高,变压器故障造成的损失也就越大。近年来,电力变压器虽然由于材料的改进、设计方法和制造技术的提高,运行可靠率有所提高,但仍会发生料想不到的事故。

一、变压器故障运行时的特征

电力变压器在运行中发生故障时,除油中气体成分和电气参数发生变化外,一般常伴有某些部位的外表颜色、气味、声音、温度、油位等的变化,结合这些变化对分析与综合诊断变压器的故障部位性质、程度、趋势和严重性等起到一定的作用。

1、外观异常

(l)防爆筒薄膜龟裂破损。当油枕呼吸器发生堵塞,变压器不能进行正常的呼吸,会使得油枕上方空气压力变化,引起防爆筒薄膜破损,防爆管失去作用,水和潮气进入变压器内使绝缘受潮。

(2)套管闪络放电。套管闪络放电会造成发热、老化、引起短路甚至爆炸。

(3)渗漏油。渗漏油是变压器常见的问题。渗漏油的主要部位为大盖与本体结合部、放油门、散热器间阀接口、气体继电器及套管基座等处。

2、颜色、气味异常

变压器的许多故障都伴随有过热现象,使某些部件局部过热,引起有关部件颜色变化或产生特殊焦臭气味等。

(l)线卡处过热引起异常。套管与设备卡线连接部位螺丝松动、接触面氧化严重等使接头过热、颜色变暗并失去光泽。套管污秽严重或有损伤引起异常。套管污秽严重有损伤而发生闪络放电会产生一种特殊焦臭气味。

(2)呼吸器硅胶变色。呼吸器的硅胶一般为变色硅胶或掺有变色硅胶的无色硅胶,其目的是便于运行人员监视。硅胶的作用是吸附进入变压器油枕中的潮气,以免变压器绝缘受潮。正常情况下变色硅胶应呈浅蓝色,若变为粉红色说明已经失效。

(3)变压器气体继电器内有气体。正常情况下,变压器气体继电器内充满了变压器油。若气体继电器内有瓦斯气体,会造成轻瓦斯保护动作,严重时则会造成重瓦斯跳间。

3、声响异常

变压器故障运行时,从运行中声音的变化可发现与正常运行时有明显差异。变压器是静态运行的电力设备,正常运行时在交流电磁场的作用下,变压器器身会发出轻微连续的“嗡嗡”声,常被称为交流电磁声,简称交流声。正常运行中变压器发出的“嗡嗡”声是连续均匀的,如果产生的声音不均匀拥特殊的响声,应视为不正常现象。

4、温度异常

(l)内部故障引起温度异常。变压器内部故障,如绕组匝间或相间短路、裸金属过热、铁心多点接地、涡流增大等,都会引起变压器温度异常。

(2)散热器阀门不通引起温度异常。新安装或大修后变压器散热器阀门如忘记打开,使变压器油不能正常循环散热,也会引起温度升高。

(3)呼吸器堵塞或严重漏油引起温度异常。变压器呼吸器堵塞或油量严重不足也会影响其散热效果,导致温度升高。

5、油位异常

变压器储油柜的油位表或油位计温度刻度,是标志变压器不同油温时的油面标志,根据标志可以判断是否需要加油或放油,运行中变压器温度的变化会使油体积变化,从而引起油位的上下位移。

二、电力变压器常规在线监测的方法

1、变压器绕组变形在线监测

变压器绕组变形(如轴向、径向尺寸变化、位移、扭曲、鼓包等)是由于绕组经受了轴向、幅向力的作用以及强大的短路力作用。常规的吊罩检查只能看到高压绕组的状况,而在高压绕组内部的中、低压绕组所发生的形变根本无法看到。变压器绕组在线监测的基本原理是根据变压器绕组的短路电抗值的变化进行变形与否的监测和判断。因为绕组的短路电抗值与绕组的变形程度、几何尺寸以及位置变化密切相关,即短路电抗直接取决于绕组的几何结构。在工频电压不变的情况下,短路阻抗及阻抗中的电感分量与变压器绕组的几何形状及位移相关。通过理论研究和实际测试,实时监测绕组短路电抗的变化对在线监测变压器绕组变形具有很好的实效性。

2、变压器局部放电在线监测

变压器局部放电是反映高压电气设备状态的一个重要标志。因为很多故障均产生局部放电。一般情况下,如果变压器油中发现了特征气体则表明其内部已经存在比较严重的局部放电。局部放电能有效反映变压器内部的绝缘状况。变压器局部放电在线监测技术借助先进的传感技术和电子技术,根据超声波原理将高频声学传感器放在油箱外部以便测取局部放电或电弧放电所产生的暂态声音信号。

3、变压器油性能指标在线监测

变压器油性能的在线监测专家系统由数据库、知识库、推理机、知识获取和人机接口等几部分组成。数据库的主要功能是存储并及时提供变压器油质变化的各项指标和历史数据。数据库中的各种指标和信息中还包括对油质的缺陷分析和处理结果,可以为监测维护人员提供详细的油性能数据。知识库用来存储与变压器分析相关的经验和知识。推理机的作用是从数据库中提取数据后再以逻辑方式对油状况进行推理分析。

三、 DGA故障诊断方法

1、油中气体色谱分析法(DGA)的原理

目前变压器几乎都是用油来绝缘和散热,变压器油与油中的固体有机绝缘材料(纸和纸板等)在运行电压下因电、热、氧化和局部电弧等多种因素作用会逐渐变质,裂解成低分子气体,由于含有不同化学键结构的碳氢化合物有着不同的热稳定性,所以绝缘油随着故障点温度的升高依次裂解生成烷烃、烯烃和炔烃,每一种烃类气体最大产气率都有一个特定的温度范围,故绝缘油在各不相同的故障性质下产生不同成分、不同含量的烃类气体。由此可见,油中溶解气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映电气设备电气异常的特征量。

2、三比值法

充油电气设备的故障诊断也不能只依赖于油中溶解气体的组分含量,还应取决于气体的相对含量。通过哈斯特的热力学研究结果表明,随着故障点温度的升高,变压器油裂解产生烃类气体按CH4C2 H6C2 H4C2 H2的顺序推移,并且指出低温时H2是由于局部放电的离子碰撞游离所产生的。三比值法的原理是根据充油电气设备内部油气体在故障下裂解产生气体组分含量的相对浓度与温度的相互依赖关系。从5种特征气体中选用两种溶解度和扩散系数相近的气体组分组成三对比值,以不同的编码表示。

结语

本文阐述了电力变压器故障运行时的特征,并分析了电力变压器常规在线监测的方法,此外还分析了DGA故障诊断方法,具有一定的实用价值。进入21世纪电力行业将有更大的发展,电力变压器的故障诊断与状态检修作为我国电力系统实现体制转变、提高电力设备的科学管理水平的有力措施,是今后在电力生产中努力和发展的方向。

参考文献:

[1]苑世光,对低压配电变压器常见问题的探讨,黑龙江科技信息,2008,20

推荐期刊