线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

铁路勘察设计论文8篇

时间:2023-01-05 08:20:54

铁路勘察设计论文

铁路勘察设计论文篇1

【关键词】铁路工程;勘察现状;技术研究

1引言

在经济迅速发展的今天,交通运输业在不断地发展,这使得铁路的建设也更加普遍,铁路交通作为现今轨道交通的一种,具有省时、节能等优点,存在巨大的发展空间。但是,作为重要的交通方式之一,铁路的建设过程中安全问题应该放在首位,这就需要在施工之前对线路进行合理的勘察。在实际铁路的勘察过程中,也还存在着一系列的问题有待于解决,由于铁路一般是线性分布,由一个城市连接多个城市,这就会使途中的地质和地貌有很大的变化。因此,在铁路的勘察过程中,应该尽量减少一些不利因素对于工程的影响,为路线更好的开发奠定基础。

2铁路勘察的目的

铁路工程的建设前期最重要的工作就是勘察,铁路勘察的主要目的就是熟悉铁路所在区域的相关情况,尤其是地质情况,并对实际情况进行掌握,只有这样,才能使铁路的建设人员充分了解相关情况,并预测可能出现的事故等,使这一区域的地质可以得到最大限度的开发,避开开发的不利因素。按照地质条件的不同,可以实现铁路因地制宜的开发项目,在实现物尽其用的同时,还能保障对所在区域铁路施工的有效管理[1]。对于铁路的勘察,主要有以下几点作用:第一,为帮助工程找到最佳的施工地点,可以在规划的环节进行勘察,这就是选点的关键,铁路是跨区域的施工工程,只有将各地区最适合施工的地点选好,才能保障后期的工程顺利完成;第二,为建设工作更好的实施,需要勘察的过程中做好相应的规划工作,在保障勘察资料具有一定的真实性和科学性的同时,要进行工程的可行性研究。

3铁路勘察的现状

当前的铁路行业虽然发展迅速,但在施工过程中,尤其是在勘察的过程中还有许多的问题有待于解决,具体包括以下三个部分:第一,工作人员在工作中的专业性较差,这主要是由于很大一部分的工程师对于其他的一些专业缺少了解,与此同时,设计人员和施工人员的勘察知识不多,就导致对于勘察的知识和技术不够专业,很多情况下,由于一些工作人员对于铁路的勘察专业知识不足,但却对勘察的工作提出了一些想法,也有设计人员对铁路的勘察工作进行随意安排的现象,这些情况在很大程度上阻碍了勘察结果的科学性,更有甚者,完全不尊重施工地点的情况,不做勘察就直接进行施工,这在很大程度上致使事故发生;第二,在勘察的过程中资金没有进行合理的安排,这是由于勘察人员的技术不足以及实际勘察具有很大的难度,致使勘察的成本超过实际的勘察预算,也会影响整个铁路施工的建设进度;第三,勘察的周期没有进行合理的安排,铁路的勘察工作是非常复杂的,需要一定的周期[2]。但是,在很多的铁路工程中,经常是在工程项目进行报送时就需要提交相应的地质报告,或者是可研报告刚刚提交施工单位就要求提交相应的地质报告,这就在很大程度上导致铁路的勘察周期缩短,勘察的结果也受到很大的影响。

4改善铁路勘察的措施

在铁路的勘察过程中,往往会由于很多外界因素影响到铁路的勘察效果,本文根据这些问题给出相应的措施,具体分为以下几个方面:第一,应该重视铁路的勘察对于环境的影响[3]。这是由于铁路是连接多个城市的重要运输线路,每一个城市的环境也不尽相同。因此,在进行勘察的过程中,尤其要注意的是对于环境的影响,这种影响主要包括两个方面:一是铁路的勘察工作会对铁路的周边环境产生相应的影响,主要是由于一段铁路的施工,可能会对这段铁路原有的线路有一定的影响,二是铁路的勘察会对铁路的建设地的地质产生一定的影响,铁路在勘察的过程中,就是对于原有的地质环境进行改变的过程,一旦施工不到位,就极有可能导致施工地点的地面出现变形等现象。第二,应该划分好责任,这主要是清楚勘察工作的流程及技术管理,主要是由勘察单位负责来对问题进行解决。第三,对于施工方法要进行统筹管理,由于勘察要求不同,对应的岩土的勘察重点也不同,在勘察过程中应该尽量减少因目标不清晰造成的各种资源不能尽用的问题。第四,勘察应该加强与设计的联系,这就需要勘察人员及时与设计人员进行沟通和联系,在了解整个铁路设计的前提下,熟悉铁路设计中需要的参数,明确应该勘察的重点,对于勘察的项目进行有针对性的布置,减少工作成本的浪费。

5铁路勘察的技术发展

现今的铁路勘察技术已经逐渐的发展,本文对于勘察的几个技术进行具体的分析:第一,测绘。测绘是铁路勘察中最常用的也是最基础的办法之一,简单来说就是在测绘知识的前提下,通过对要修建的铁路位置进行相应的野外调查,对铁路将要施工的区域进行相应的勘察,在勘察的同时记录好相应的水文、地貌以及地质情况,并对这些数据加以分析和研究,通过分析的结果制定好相应的地形图,从而达到可以帮助后期的施工工作顺利进行的目的。第二,制定并完善相应的铁路勘察管理制度。由于勘察单位不同,相应的勘察侧重点和技术方法也不同,这就导致勘察的结果也不尽相同,这些因素会对铁路的设计和使用方面产生各种不同的影响。因此,各单位应该设置相应的铁路勘察管理机制,对已有管理制度的单位应该对其进行完善,致使铁路相关的勘察单位具有相似的管理制度,从而在很大程度上解决这一系列的问题。第三,使用钻探技术和坑探技术。钻探技术和坑探技术可以有效地探明将要建造的铁路的所在地的地质情况,并且是最重要的勘察手段之一,在铁路工程的勘察工作中是不可缺少的。钻探方法的使用是很广泛的,可以根据具体地质的不同来进行具体的应用。

6结语

综上所述,在铁路工程的勘察过程中,可能会遇到很多问题。例如,工作人员在工作中的专业性较差,在勘察的过程中资金没有进行合理的安排,勘察的周期没有进行合理的安排等,针对这些问题,应该采取一系列的改进措施。例如,应该重视铁路的勘察对于环境的影响,对于施工方法要进行统筹管理等。与此同时,本文根据现今的铁路勘察情况,详细叙述了几种勘察技术的发展课题。例如,测绘技术、制定并完善相应的铁路勘察管理制度、使用钻探技术和坑探技术等。

【参考文献】

【1】兰坚强.山区高速铁路工程地质勘察及存在的问题———以赣龙铁路福建段为例[J].资源信息与工程,2017(02):152-153+155.

【2】工程勘察设计资质明年起网上申报审批铁路、交通、水利等资质暂不实行[J].武汉勘察设计,2015(06):65.

铁路勘察设计论文篇2

【关键词】铁路工程;地质勘察;作用

我国新旧地质构造体系复杂多变,铁路工程在建设过程中,容易因地质问题而受到不同程度的影响。工程地质勘察工作,为工程人员提供最直接的工程地质资料,如提供地下水的活动、地质隧道围岩的分级提供了原始的数据信息。随着新一轮铁路建设高潮的实施,工程地质勘察在铁路建设中的地位越来越突出,更面临着勘察质量与进度的矛盾;本文也将就工程地质勘探在铁路建设中的作用、特殊性及如何提高其质量与效率展开探讨,以提高对地质勘探的重视,从而进一步推动其进步,更好地服务于铁路建设。

1 工程地质勘察的重要作用

地质勘察在工程建设中的作用主要包括,一是提供地质构成信息,决定基础处理方案的选择;二是提供土体的力学指标,这对对工程造价影响很大。此外,工程地质勘察工作的质量如何,对工程方案的设计与建设的展开有着关键性作用。实践表明,发生的工程事故多,不少是由于地质问题引起,这决定了工程地质勘察是铁路工程建设中不可少的一个重要环节。以下将从两方面探讨工程地质勘察工作在铁路工程建设中的作用。

1.1 工程建设与工程地质勘察工作密切相关

就铁路工程地质勘察而言,其工作主要包括四个环节,并与设计过程中的四个流程对应,即“踏勘(设计阶段的预可行性研究)、初测(可行性研究)、定测(初步设计)、补充定测(施工图设计)”。通过以上一系列的勘察工作,不断加深对建设工程的区域化及场地施工条件等相关问题的认识,从而为设计阶段提供综合的工程地质勘察资料依据。具体作用可从它的流程中了解,大致可归为四点:①规划规划环节,即初步判断所建设工程可能出现的地质问题,这可通过地质勘察工作来了解区域地质构造格局及特点;②设计环节,地质勘察工作可为设计选择合理的基础位置提供可靠的数据支持;⑨施工环节,主要是在施工过程中,施工单位要策划科学的施工及预处理方案时,需要地质人员的配合;④后续环节,为了更好地了解工程建筑与地质体存在的作用情况,就有必要要求勘察人员需要长期观测水文地质工程及各种原位测试。

1.2 水文地质勘察对工程建设质量的影响

由于地下水文地质环境是基础工程的环境,也是岩土体的一个组成部分,所以工程地质勘察中不可缺少水文地质的调查。若工程设计阶段与建设阶段过程中,处理不当,将直接影响岩土体的工程特性,进行使工程的稳定性与耐久性受到影响。但实践中,水文地质调查却在工程勘察过程得不到重视,甚至只是为了应付国家规范检查的一项任务。但水文地质的工程勘察作用,应引起铁路工程建设部门的重视,因为研究表明,自然状态下地下水的动水压力作用较弱,地面工程受其不利影响较小,日益增加的工程建设活动,使水文地质状受到的区域范围扩大,结果导致严重的工程水文地质危害。所以工程建设部门及相关人员应正确意识到水文地质勘察工作在工程建设中的重要作用。

2 如何提高工程勘察工作的质量与效率

工程地质勘探,是最客观、直接地体现工程建设区域的地质情况。从以往的工程地质勘探实践,建议从以下几点提高工程勘察工作的质量与效率。

2.1 勘探前的准备阶段

地质勘探前期,要根据铁路工程设计情况:首先,挖宝切实可行的勘探计划,主要是收集相关资料,分析并确定工程重点,确定勘探技术方案等;其中,地基方案的选择在工程建设,它对剪切破坏使地基失稳的防止、软弱地基的承载能力的提高及不均匀沉降与沉降量过大产生的防止都有着重要的作用,这也使它满足上部结构对地基的要求。所以好的地基方案,在一定程度上,它能消除地基土的振动液化沉陷、减轻膨胀土的胀缩性等的不利影响;其次,地质点不仅要突出代表性特点,数量及对勘探深度要满足重要地质界线的控制需要;再者,应根据地基复杂程度与成因类型确定勘探点布置,当土层变化复杂时,勘探点的间距应予加密,一般情况下宜小于30m;还要应综合可能的基础类型、工程特点及地质条件等信息计算勘探点的深度,而不难简单了事;此外,在工程勘探的运作布置上,应讲究投资资金的经济性,科学合理布置工程的运作方案,同时要确保施工安全进行;最后确定了工程的类型、工程勘探点及勘测技术手段,为勘测工作的展开奠定了理论信息的基础。

2.2 勘探过程中的控制阶段

在勘探施工的过程中,并根据预先审核通过的相关工程地质勘察监理规定文件实施控制和管理。在在工程地质勘探的过程中,应重点重视工程的地质调绘、观测点、当地地貌、勘探点、测试点的布置以及相应资料的分析报告;以保证策划的勘探方案真正落实到位;同时,应根据工程所在区域的地形、不同的勘察阶段、成图的比例等情况综合判定地质点。若在勘探过程中出现工程本身有特殊要求的或特殊地质条件,就要选择服从特殊性,并采取相应方法,使工程建设的需求得到满足。还有,地下水埋藏状况的也要重点调查,在实行过程中,应先设置必要的调查指标体系,明确调点,尤其是地下水位的类型、变化幅度与规律及补给、排泄条件等基础情况;进而涉及基坑工程,主要是调查土层的渗透性质,需要做些抽、压水试验,以客观评价地下水对建筑材料的腐蚀性情况,同时预估地下水可能潜在的威胁,如流沙、突涌或管涌等危害,以提前制定相应的行之有效的防治措施。此外,工程地质勘察应尽可能采用遥感图像地质解释,其中应重点了解特殊岩层的自然特征及分布,以认识水文特征、地层的岩性及地质的构造等情况;或者,通过比较分析不同时期的遥感图像来解译也可以。就铁路施工工程地质勘探中,为了满足工程设计的要求,提供符合实际的地质参数,就要确定岩层的工程地质特性,具体应通过综合分析钻探、动力触探、标准贯入试验和其它试验资料以及地区经验等一系列勘察环节。

2.3 地质勘探工程的核实阶段

钻孔技术在地质勘探的应用过程中,其涉及的大部分都是一些隐蔽性工程,所以工程地质勘察监理工作,不仅要核实各项工程的量及投资,也更要重点根据相关的规定对现场施工钻机的钻探质量及相关记录,进行随时检查与随机抽查,以做到钻孔的质量的严格把关工作;此外,要注意检测实际施工中有没有比超出原设计中工程量的问题出现,以保证工程的进度、造价及质量。

铁路勘察设计论文篇3

Abstract :In this paper , based on the features of survey about geotechnical engineering , the reformation about cost management of geotechnical engineering in the railway construction projects in our country has been surveyed and analyzed by theoretical arguments and empirical analysis on the basis of absorbing and digesting the theory and methods on the cost management in the railway construction projects. What’s more , the importance of investigation cost management has been analyzed and evaluated. Most of all , the theory and methods on investigation cost management has been explored and researched.

1  引言

近年,我国国民经济的持续高速增长,推动了我国铁路建设的蓬勃发展。在大规模建设的同时,存在着部分项目建设质量不高的现象,各种各样的质量事故时常发生,其中铁路建设项目的岩土工程勘察质量低劣是导致上述质量问题的重要原因之一。对于铁路建设项目,岩土工程勘察即为对地基的勘察工作。地基勘察的目的在于以各种勘察手段和方法,调查研究和分析评价建筑场地和地基的工程地质条件,为设计和施工提供所需要的岩土工程资料。

在工程实践中,有不经过岩土工程勘察工作就盲目进行地基基础方案确定、设计计算和施工以致造成严重工程事故或资源浪费或补作勘察工作的事例屡见不鲜。更常见的是勘察不详或分析结论有误,导致地基持力层选择、基础方案确定不当,以致延误建设工期,浪费大量建设资金,甚至遗留后患,造成工程事故。事实上,对岩土工程勘察造价管理的不科学、不合理是导致部分项目勘察质量水平不高的一大基本原因。相对于铁路建设项目总投资来看,岩土工程勘察的造价所占比例的确不大,但岩土工程勘察质量关系到建设项目决策的正确性,关系到投资估算的准确性,关系到工程设计的安全性和经济性,关系到工程施工的可行性,总之它在很大程度上影响着铁路建设项目经济效益、社会效益及环境效益的顺利实现。因此,需要加强对铁路建设项目中岩土工程勘察造价管理的研究工作。

2  现行铁路建设项目中岩土工程造价管理存在的技术问题

2. 1  缺少专门的岩土工程施工定额

目前铁路建设项目中岩土工程施工定额非常粗略,尚没有一套单独完整、具体的岩土工程造价管理体系。就目前应用最广的灌注桩来讲,套用现行铁路钻孔灌注桩施工预(决) 算定额,显然太粗,不符合实际情况,施工单位要蒙受很大的损失,甚至造成亏损。这就使得工程造价管理不能得到合理的管理和控制,也降低了工程造价管理的权威性。

2. 2  无法实现根据施工对象的不同选择适宜的预算定额

土建施工是以一个具体建筑项目为主要对象,其许多造价影响因素是十分明确的,例如:钢材用量(由设计确定) ,水泥用量由配合比确定,砖石等用量费用有据可依,人员工资等也几乎是一本定数帐目;与土建工程不同,岩土工程的施工对象与整治对象是地层,研究的是地质方法,正是因为地层的隐蔽性、深藏性及岩土的不均匀性,造成工程造价的相对不确定性,如果仍然套用原有土建预算定额,势必误差较大,地层变化越大,总误差也越大,因此造成预算的不准确性,一般土建预算价远远低于岩土工程造价。

2. 3  新技术、新工艺缺少对应项子目

目前的岩土工程施工定额中,新技术、新工艺项目奇缺,具体体现在:

基础工程施工方面,缺少专项子目:预制桩沉桩新工艺振动沉桩法、射水沉桩法等;灌注桩成桩新工艺回转钻孔灌注桩、冲击钻孔灌注桩、旋挖灌注桩等。软弱地基处理工程施工方面,缺少专项子目包括:固结排水(塑料) 插板桩等。基坑及边坡加固工程施工方面,缺少专项子目:抗滑桩、锚桩、护坡(挡土) 桩、挡土墙、钢筋混凝土地下连续墙等。基础托换工程方面,缺少专项子目:树根桩、压入桩等。地下水防治工程施工方面,缺少帷幕灌浆等子目。

3  现行铁路建设项目中岩土工程造价管理存在的体制问题

3. 1  工程合同管理中的索赔制度

目前,由于铁路工程项目大部分为政府投资项目,为了适应社会主义市场经济体制的需要,加强政府投资项目的管理,保护合同双方的合法权益,政府对其投资项目实施严格的工程合同管理,对承包商提出的索赔采取了严厉的管制,使得承包商提出的索赔要求很难取得成功,工程造价不能完全反映施工实际。

3. 2  现行铁路工程造价管理只重视工程造价的审核,忽视工程造价的控制

现行的铁路工程造价管理是一种事后核算型式的造价管理方式,只注重对已发生的铁路建设工程成本进行审核,把造价管理的重点放在造价发生之后,而不是造价发生之前,忽视了对工程造价发生前的预测和控制。这种事后审核的方式只能审核造价的真实性,而不能审核造价的合理性。在这种造价管理方式的影响下,目前大多数的铁路建设工程结算方式,都是采取按实际发生费用结算的方式。实行按实结算方式时,铁路施工企业就无需承担工程造价超标的市场风险,因此也不会主动为节约造价出谋划策。

3. 3  片面强调计价依据的市场化,忽视计价依据控制工程造价的作用

由于受计划经济体制的影响,我国的铁路工程造价管理工作历来重视实施阶段的造价确定,不重视造价的有效控制。在这种管理方式的影响下,一方面,铁路建设项目前期所需计价依据的缺乏,成为导致铁路工程建设项目投资”三超”现象的一个重要原因;另一方面,由于将铁路工程造价管理仅限于实施阶段,造成了认识上的错觉,似乎一谈起计价依据的改革就笼统地归结到所谓的企业自主定价和市场形成价格,而不从铁路工程造价全过程管理的思路出发考虑计价依据的改革。因为只注重实施阶段计价依据的改革,片面强调计价依据的市场化,从而忽视了计价依据在铁路建设项目前期阶段对工程造价的控制作用。

3. 4  铁路工程造价管理缺乏行业统一性

目前铁路工程造价咨询单位缺乏专门的、一致性的中介组织名称,铁路工程造价咨询业务也缺乏统一的、规范的造价咨询专业合同。铁路工程造价咨询的收费标准也不统一。更为严重的是,各铁路工程造价咨询单位缺乏经常的、系统的行业沟通,它们除了在业务竞争时打过照面,基本上没有其他往来,虽然是同行,但几乎不存在沟通,更谈不上相互学习、交流工作经验,从根本上难以系统性地共同推动本行业发展。

3. 5  铁路工程造价管理队伍素质不够高

当前铁路工程造价管理队伍无论政治素质还是业务素质,都还跟不上改革、发展的要求。存在大量无证人员从事铁路工程造价咨询服务。有些铁路工程造价咨询单位接洽造价咨询业务后,甚至由原有会计人员、审计人员等其他专业经济、技术人员进行造价咨询服务,而其中相当一部分人员既无概预算员证又无上岗证,从而使得工程造价的准确性屡屡发生偏差。此外,有些造价人员多处任职,有些中介组织持证上岗意识薄弱,迟迟未申报相应资质,严重扰乱了铁路造价咨询市场竞争失序。

4  加强铁路建设项目中岩土工程造价的管理

4. 1  实行定额量、市场价,逐步与国际惯例接轨

按图纸计算工作量,套用相应的定额的实体消耗量,业主提供经核准的整个工程的工作量清单,发给应邀的承包单位,施工单位根据市场行情、工程的具体特点、施工工艺方法、操作规程、国家的质量规范、招标文件的要求,依据自身的技术装备、人员素质、资金实力、管理水平、生产效率和消耗水平及施工方案等优势报价。

4. 2  尽快规范勘察市场

我国目前铁路建设规模虽大,但岩土工程勘察单位众多,相比来看勘察市场仍是供过于求,导致勘察市场竞争激烈,甚至到了无序竞争的状态,勘察招标投标中压价、让利现象比比皆是。过低的勘察价格迫使部分勘察单位削减勘察工作量以求赢利,其结果是使勘察质量大打折扣。因此,规范勘察市场迫在眉睫,需要加强对勘察造价的科学管理。

4. 3  强化参与工程建设各方的岩土工程造价管理意识

作为勘探单位,应对自己的勘探工作认真负责,有关参数建议值的提出,不能仅凭经验;在保证工程项目安全、可靠的前提下,尚须考虑工程项目的经济性。

作为设计单位,在设计过程中,特别是基础设计过程中,应重视勘探报告中的内客,必要时可征求勘探单位的意见,更不能盲目服从业主的意志,设计的方案要在施工中具有可行性。

作为业主,应高度重视工程地质勘探工作的重要性;特别是对基础方案的选择更应重视勘探报告建议和有关参数的取值,不能仅从工程造价的角度忽视勘探报告的内客。将自己的意志强加给设计单位,否则,虽然设计可行,但施工没有可操作性,给施工带来极大的困难,甚至工程造价反而提高,同时,对于技术力量较簿弱的业主单位,有必要委托勘察设计阶段的监理单位对设计的全过程进行质量控制。

4. 4  设立岩土工程造价管理分协会

该分会主要由从事岩土工程研究、设计、施工的专家组成,负责制定岩土工程造价管理的法规和制度,制定统一的岩土工程施工基础定额。要充分考虑施工环境—地质情况、施工深度、施工方法及工艺等因素,不能笼统地按“打桩工程”套用。如大直径灌注桩孔,一定要考虑到地层卵石、漂石、滚石直径的大小;嵌岩深度、岩石可钻性、岩层有无溶洞或暗河;施工动力来源、孔径、孔深、钻头类型、护壁形式及排污等工艺情况。地层分类可借鉴工程勘察取费标准中的分类方法进行分类。

4. 5  加强勘察造价资料的积累与应用

根据发达国家的实践经验,要及时、准确地确定岩土工程勘察造价,就要加强勘察造价资料的积累与应用。应由政府部门牵头,协调有关造价管理机构做好勘察造价资料的收集、整理、分析研究并及时公布工作,以保证勘察造价估算依据的典型性、准确性、及时性,维持勘察市场造价水平的相对稳定。

[参考文献]

[1 ]  刘卫东. 岩土工程造价管理有关问题的思考[J ] . 西部探矿工程,2001 , (1) :33 - 35.

铁路勘察设计论文篇4

关键词:铁路桥梁;工程地质勘察;水文地质勘察

中图分类号:P2文献标识码: A

引言

工程地质勘察是工程地质学的一个分支,它通过研究勘察工程地质的内容,采取地质调绘、物探、勘探、综合试验、测试等勘察技术方法,并遵循相关的勘察程序,从而为拟建工程提供相关的地质资料。

1、工程地质勘察的任务

一项工程开始之前,需要对它的包括地基选择,周边地质情况调查,以及后续安全性防护等在内的一系列地质问题作出全面的解释,提供详尽的资料,以此为基础,为建筑施工的规划、设计提供地质依据。

首先,通过遥感、卫片,区域地质调查等,掌握全工区的地质情况(包括地质发展史,地质构造形成过程,地面地质资料等),分析有利因素和不利因素,选出最优的建筑场地,做出建筑规划。好的工区的选择能够在充分利用当地有利地质因素,减少施工难度的同时,节省人力、物力,缩短施工时间、从而最大限度地降低建筑成本,提高经济效益。因此,地质选线对铁路线路选择起着尤为重要的作用,这也是地质勘察最根本最基础的任务之一。

其次,进行工程场地的详细勘察,线路选定之后,结合桥梁所在地区地形地貌、孔跨形式等,通过大面积地质调绘、物探、钻探、综合试验、测试相结合的地质综合勘察技术,对桥址区做详细的地质勘察工作,详细查清桥址区工程地质及水文地质条件,作出定性的评价和定量的分析,提出解决不良地质影响的工程措施意见及建议,保证施工的安全性与有效性。

最后,提出工程建设对地质条件及环境改变的预测。由于建筑物的兴建,势必在一定程度上对拟建设场地及周边地质环境造成一定的影响,比如桥梁建设易引发岸坡坍塌、河道堵塞、造成地表流水、地下水的污染等。为了保护环境,保证工程施工的安全性和经济的良好效益,实现工程建设的良性循环,就需要做详尽的预估,并制定相应的防范应对措施。

2、地质勘察作业的意义

通过调查研究既有铁路桥梁设施的使用状态,总结桥梁勘察设计经验教训,可显现地质勘察作业的现实意义。

2.1、铁路桥梁建设问题

总结铁路桥梁建设的主要问题,集中表现:①前期工作不足,某个铁路桥梁项目正式动工前,工程单位缺乏必要的准备工作,尤其是地质勘测不全面,误导了后续施工方案的制定;②地质病害普遍,由于铁路桥梁所处地方条件的特殊性,增加了铁路桥梁的建设难度。③如果工作落后,对于己经建成的铁路桥梁,部门缺少足够的维护措施,阻碍了其正常有序的工作。

2.2、地质勘察作用

铁路桥梁能为人们提供更多的方便,就目前的情况来看,我国铁路桥梁工程建设还处于相对落后阶段,铁路桥梁项目改建依旧达不到预定的成效。为了改变传统铁路桥梁项目建设的现状,新时期铁路部门倡导把地质勘察工程融入铁路桥梁建设中,这一方案起到了多方面的工程作用。例如,经过详细的地质勘察环节,可以提前发现铁路桥梁所处区域的地质特点,掌握地质病害发生的规律,项目施工前做好充分的抗病害准备。

3、地质勘察手段

地质勘察手段直接影响着勘察的质量和进度,为了能够确保工程的准确度以及数据的完整性,选择合理的勘察手段是非常重要的。通常的情况下使用的勘察手段有地质调绘、物探、钻探、综合试验、测试,可以以它们中一项或几项为主的进行勘察,也可以将它们相结合进行地质综合勘察。

(1)地质调绘

地质调绘是地质工作中最直观、重要而有效的工作方法,也是后续勘察工作的基础。通过不同阶段对地质现象的调查与再认识,可逐步加深了对桥梁工程场地地质条件的认识,并更明确了后续的物探及钻探工作,使得其目的性及针对性更强,勘探布置更合理有效。

(2)物理勘探

对于物理勘探一般情况下是会将其用在初测及定测阶段,这样做的目的是为了能够更好的掌握和了解桥位区地层的地质状况,精确确定水下障碍物以及地下管线等的位置。用于水中的物理勘探方法主要有3种,即包括地层地震方法与单道或多道方法,而对于陆地上的一般的情况下都是会使用地震CT与高密度电法。特大型桥梁勘察工作中,一定要做好孔内波速测试,其中剪切波的作用就是既要对施工场地地震效应综合分析,又要精确得到地震动参数;而压缩波则主要是用于判别岩石完整性以及划分风化岩界线。

(3)钻探

钻探是地质勘察中最常用、直接、可靠而有效的手段。可以直接获取岩芯,从而直观反应地层岩性、厚度、完整性、破碎程度、含水层及稳定水位等地质、水文参数,并通过各种原位测试及钻取岩土体试样进行室内实验获得水及岩土体的侵蚀性及物理力学指标等。从而为桥梁设计提供地质直接依据。

(4)综合测试、试验

依靠钻探平台及从中获取的岩土体样品、水样,可进行孔内测试和孔外试验。孔内测试包括标准贯入、动力触探等常规原位测试,还包括必要时需要做的文地质测试(抽提水、压水),其它七种参数(自然γ、井温、自然电位、电阻率、井径、声波纵、横波速度和扩散法水文测井)的综合测井,最大限度地获取更多的地质信息。对于软工地区会经常选用静力触探、旁压试验、十字板试验与荷载试验等手段。

4、工程地质勘察中的问题

工程地质勘察是工程建设中的首要阶段,因此需要我们高效工程地质勘察工作。但是工程勘察过程中存在很多问题,这些问题对我们工程地质勘察的结果有不同程度的影响。下面是我们对这些问题的分析。

1)工作中技术问题。地质的构造是复杂的,其中存在的某些不明物体的位置、分布等不易确定。并且,岩石的构造会因为环境的变化而发生变化,比如会风化等因素而无法得到最原始的结果。但是,目前我国的技术不够成熟和先进,无法准确地得到准确的取样和原位测试,不利于勘察工作的进行。在工程地质勘察工作中,工程的质量是最为重要的。但是许多施工人员的素质不够,对于勘查工作中的专业知识不够了解,不能准确地把握地质勘察的重点,并且有的工作人员态度不认真,在工作中出现勘察方法、理论错误使用,以及计算错误等问题导致结果的不准确。在这过程中,技术不成熟,手段不当等问题造成地质结果的不准确。

2) 工作人员的问题。工程地质勘察工作需要定期进行,并且上交结果报告。但是,在许多工作过程中,许多工作人员不能按时定期勘察,并且得出结果报告,耽误工作进度。如果这个工作不能定期顺利进行,致使施工方大量投入资源,并且会影响后续工作的进行,耽误工程的进度,这就造成了一定的经济损失。同时,这些报告结果和图纸的错误极多,某些报告不是专业的地质工程师撰写,没有专业的负责人来对这些报告把关。报告的不准确导致我们对勘察结果把握不准确,就导致我们的错误判断,那么勘察结果就失去了意义。勘察单位的选择对于勘察工作有着重要的影响,但是,某些单位不重视这个工作,无法正确对待工作的进行。建设单位随意选择勘察单位以及勘察单位的工作态度的不认真。在选择勘察工作时,没有调查清楚勘察单位的背景和工作史,无法保证勘察工作的质量。这些问题导致工作不严谨,最后直接影响工作结果。

3) 人才问题。工程地质勘察需要高素质人才,需要注重对于人才的培养。现在的人才流失和对人才的阻隔问题较为严重。工作人员在遇到问题时,互相推卸、逃避责任,并且不能认真对待工作。地质勘察需要综合性人才,需要能够结合实际,联系自身专业知识解决复杂的地质问题,并且具有强大的责任心和事业心。这类人才,能够结合自己的专业知识和能力,高效地解决地质勘察工作中的问题。

5、工程地质勘察在铁路桥梁领域的应用

铁路工程地质勘察类似于普通工程地质勘察的程序,一般踏勘、初测、定测、补充定测四个阶段,分别对应预可行性研究、可行性研究、初步设计及施工图四个设计阶段。随着每一步勘察的进行,对施工地段的地质情况的掌握也不断趋于深入化。

对于铁路工程来说,选择线路很重要。当主线中有越岭区时,应做好多垭口、多坡度的方案比选;当有河谷区存在时,应尽量避开高边坡和泥石流沟,防止对线路产生破坏。此外,由于铁路线路长,对于沿途的不良地质区段应尽量避开,包括滑坡地段,危岩落石区,岩溶地段,采空区,水库地区,高烈度地震区,软工区和膨胀工地区。

近几年,我国高铁迅速发展,不同于常规铁路的地质勘察,高铁有它自己的技术特点。由于高速铁路需要保证列车高速运行,自然,铁路的稳定性也要高于普通铁路,因此对施工提出了更高的要求。尤其在铁路主线选择上,更应该牢固坚守上述提出的避让不良地质区的原则。此外,在人与自然和谐的呼声日益高涨的今天,贯彻可持续发展观也被提上日程。在铁路工程地质勘察中,应杜绝破坏生态的行径,做好铁路工程对环境破坏程度的评估工作。

铁路桥梁工程因为地形复杂,因此对于工程的地质勘察必须要严格的按照国家的相关规范、标准进行,从各个方面着手,才可以保证相关工作的全面落实,达到预期的勘察效果,从而促进铁路桥梁工程建设的顺利完成。

参考文献

[1] 范建.关于工程地质勘察的探讨[J].科技与企业,2013,(18).

[2] 孟凡勇.浅谈工程地质勘察钻探中的取样问题.科技创新导报,2011.

[3]范运林等.某特大桥工程地质勘察报告[R].武汉:中铁第四勘察设计院,2010

[4]付红梅.铁路桥梁地区的工程地质勘察[J].科技与企业,2014,06:215.

铁路勘察设计论文篇5

本系统以GoogleEarth为三维地理信息数据来源,在GoogleEarth实现铁路工程地质勘察,通过Access数据库管理勘察成果并将勘察成果输入AutoCAD成图。因此要通过数据库管理技术建立统一的数据接口,实现GoogleEarth与AutoCAD的相互通信。GoogleEarth和AutoCAD分别是Google公司和Autodesk公司开发的软件产品,要实现二者集成,需通过其提供的二次开发接口,在C号环境下编程实现。具体步骤如下:(1)在C号环境下,利用GoogleEarthCOMAPI和AutoCADAPI分别获取GoogleEarth和AutoCAD的窗口句柄;(2)利用WIN32API将获取的窗口可视化地管理起来[5];(3)建立统一的线路和地质数据库,实现二者之间的数据共享。集成GoogleEarth窗口和AutoCAD窗口后的系统如图2所示。窗口有上下切分模式、左右切分模式、单GoogleEarth模式和单Auto-CAD模式。

2铁路定线与方案展示

作为一个铁路工程地质勘察系统,铁路定线功能是不可或缺的,这就要求在GoogleEarth三维地理信息平台上,能够进行铁路定线以及方案展示,以便能为铁路沿线的地质勘察提供参考和依据。基于GoogleEarth进行铁路选线,目前国内已经有较成熟的系统。本实验室刘江涛等[5]研发的“基于GoogleEarth的铁路三维空间选线系统”[5]提供了交互式定线、平面设计、纵面设计、桥梁、隧道、站场设计等众多功能(图3)并且取得了较大的实际应用价值,因此本系统对其中铁路定线模块予以直接引用。

3遥感解译与空间分析

3.1遥感解译GoogleEarth可以提供多分辨率卫星影像、地形数据,不同地质、地物在遥感图像上的光谱及纹理特征是不同的,因此可以实现从宏观-局部多尺度的遥感地质信息解译,其解译要素可分为地貌单元、地质构造、不良地质、水文地质、特殊岩土等,包括断层、地质界线、不良地质体、岩溶区、产状、观测点、钻探、试坑、水文点、水准点、照相点、区域地质图、工程地质平面图、环境保护区划图等[6-7]。KML是Keyhole标记语言(KeyholeMarkupLanguage)的缩写,是一种采用XML语法与格式的语言,用于描述和保存地理信息[8],如Placemark、Path、Polygon和GroundOverlay,可以被GoogleEarth识别并显示。因此,可建立地质信息与KML元素的对应关系,如表1所示,实现解译成果在GoogleEarth上的可视化表达。不同类型的地质信息通过不同的颜色、比例、符号、粗细和描述信息进行区分。解译成果通过Access数据库管理,并实时显示在GoogleEarth三维地理信息平台上,如图4所示。3.2空间分析系统利用GoogleEarth三维地理信息平台,完成点线面测量、线路调查、产状测量、坡向测量、视倾角、真厚度计算等空间分析功能,能够快速获取区域性的地层断层产状、岩层厚度、边坡坡率及与线路空间位置关系,减少现场地质调查工作量,降低人力物力成本。以产状测量功能为例,产状测量是地质研究中的基础工作,在地质各领域应用广泛。随着遥感技术的发展,地学工作者要求能够快速、准确、批量的获取岩层产状,而地质罗盘、坡度仪等传统工具又存在工作量大、精度低,受限于野外条件等缺陷。而利用GoogleEarth遥感影像和地形数据,可以从宏观尺度上进行地表浅层岩层的判别,并确定岩层分界线。实现从GoogleEarth提取岩层分界点数据需要用到GoogleEarthCOMAPI接口技术。通过调用函数GetPointOnTerrainFromScreenCoords([in]doublescreen_x,[in]doublescreen_y,[out,retval]IPointOnTerrainGE**pPoint)即可返回选取点pPoint的经纬坐标和高程值。得到的岩层分界点数据为大地坐标,需转换为平面坐标,因此需要用式(1)进行高斯投影坐标正算[9]:获取岩层分界点的平面坐标后,可通过最小二乘法进行平面拟合,拟合出岩层面,如图5所示。最后根据拟合出的岩层面方程和产状计算公式,计算出走向、倾向、倾角等产状信息。

4铁路工程地质勘察成果展示与查询

铁路工程地质勘查数据最终通过Access数据库统一管理,为让设计人员、评审专家和决策者能全面了解勘察成果,系统基于GoogleEarth建立了三维综合展示平台,实现了遥感影像、地理信息、地质资料、线路方案、勘察资料等空间信息的集成,综合展示信息如图6所示。勘察成果综合展示平台实现了二维、三维混合以及多数据源的融合。整个线路的三维地形、影像、地形图、平面设计成果、线位、桥梁、隧道、车站、地质等各专业信息通过数据库统一管理,最终集成到同一个KML文件,将KML文件导入到GoogleEarth,便可实现勘察成果的综合展示。系统根据XML语法与格式以及KML文件的特点,为KML文件中点、线、面、图片等添加<description>标签,<description>标签具体描述各项成果的详细信息。这样,通过点击该图标,即可查询其详细信息。如需查询线路交点的设计信息,在GoogleEarth窗口点击线路交点图标,会出现一个属性对话框,对话框显示线路交点的曲线半径、缓和曲线长、交点坐标、转角等设计信息;如需查询勘察点的坐标信息,只要单击勘察,就会自动弹出勘察点信息窗口。为进一步增强综合展示信息的全局效果,可根据铁路线位设置三维游览路径,路径可根据线位自动计算,也可人工绘制。沿路径游览时,可设计相关参数,如游览速度、视点高度、视角和停留时间等,如图7所示,从而实现方案的全方位展示。在铁路工程地质勘察中,经常会遇到设计多个方案的情况,本系统提供了同时展示多个方案的功能,供勘察设计人员比选,提高方案比选质量和效率。基于GoogleEarth的铁路工程地质勘察信息展示平台,弥补了传统方法在立体综合展示能力上的不足,有助于对地形地貌、地质条件等的总体把握,特别是对于山区铁路,有更大的应用价值。

5应用与结论

铁路勘察设计论文篇6

关键词:铁路工程 勘测设计

中图分类号:F540.3 文献标识码:A 文章编号:

虽然目前铁路勘测技术有很大的发展,但从满足铁路工程建设要求来看,还有不少差距。当前铁路勘测水平还不高,成果质量问题还不少,还未能完全满足大量铁路工程建设项目对勘测设计质量的需求,特别是重大工程、复杂工程在施工阶段出现一些重大安全质量事故,给国家造成重大损失。铁路工程勘测是设计铁路工程中一项关系全局的总体性工作,科学的勘测与设计是建设经济合理、方案科学、高质量现代化铁路的前提与基础。

1 铁路工程勘测设计

1.1勘测设计阶段是测量工作最集中的时期,有草测、初测和定测等不同阶段的工作。草测时要进行视距导线和小比例尺的地形测绘。初测在初步设计阶段以前进行,包括插大旗、导线测量、高程测量和地形测量。定测在施工设计前进行,包括交点放线、中线测设(直线和曲线测设)、纵断面测量和横断面测量等。勘测设计阶段的测量任务由设计部门负责。

1.2施工阶段的首项工作是进行交桩和复测。路基施工前要进行路基边桩的放样。在施工过程中要随时进行中线和高程方面的检测。对于大型桥隧工程,施工前需作施工控制网。施工阶段的测量主要由承担工程的工程局负责。

1.3验收阶段的测量任务是进行贯通全线的竣工测量,辅助验收部门检查施工质量,提交施工成果图纸资料等。

1.4运营阶段经常需要进行线路的维修和改扩建,也需要一系列的测量,包括既有线路的详细测量和施工放样等,与新建铁路设计施工阶段测量任务一样,只是其集中程度不同。

2铁路工程勘察测绘设计的现状

2.1各单位都在追求最大经济效益,对质量的观念淡薄,勘察工作能省就省,不原投入较多的资金,造成勘察工作不深不细,勘察工作不到位,勘察质量水平不高, 勘测资料不全、精度不够的情况时有发生,其原因是多方面的主要是人力短缺、勘测周期不足、技术管理不力,现场方案优化不到位;受地方征地迁改、环保协议签订的制约,致使道路弃渣、排水等工程难以落实,响应的工程设计深细度难以满足工程的需要;地址勘探资料不详或误判。不仅直接影响铁路设计的深细度,也会给铁路施工安全带来隐患,同时造成投资控制的困难。

2.2设计前期的科研投入(资金、时间)存在滞后现象、启动过晚,不能给设计提供可靠的技术支撑,使设计与工程需要脱节。再加上各大设计院人力物力不足,处于超负荷状态,有的技术人员原来项目未完,又接受新的任务,有些单位上百公里的线路勘察只有2个地质人员,钻探力量不足,设备老化,且多采用分包形式,队伍水平参差不齐。

2.3目前,铁路工程测量存在的突出问题是铁路勘察中综合利用卫星定位数据、数字摄影测量数据、数字地面测量数据,更好地为铁道工程可视化设计服务还作得不够,特别是对各种数据的精度配合的研究不够深入,技术的标准化程度不够;铁路行业测量规范过于偏重经验,对理论研究重视不够,不适应高速铁路、客运、货运专线建设和铁路跨越式发展的需要;测量信息化没有完全形成规模和生产力。

2.4航空摄影仍然影响成图周期,特别是南方地区,测图周期较长,从航空摄影,外业控测到内业成图几个大流程仍分割进行,从而使测图周期难有实质性突破;新技术、新产品的推广应用力度还不够,往往由于费用原因,难以推广应用.

2.5高分辨率卫星图像尚未应用,高分辨率卫星图像的应用对提高工程质量调查质量是有效的,但由于费用昂贵,目前还难以推广应用;遥感判释应用的专业不够普遍,目前,铁路遥感技术除用于测图外,主要用于地质专业的判释应用,其他专业很少应用;遥感技术用于施工阶段和运营阶段有待加强,一般认为遥感技术用于新线勘测前期效果较好,忽视了在勘测后期,施工阶段和运营阶段的应用;遥感图像判释效果有待提高,图像分析方法也仍以静态和定性分析为主,影响了遥感图像判释效果的进一步提高。

2.6原位测试(触探)技术存在的主要问题是测试深度小,一般最大深度仅30~50m,未能满足高速铁路百米的勘探深度要求;深孔触探探杆弯曲、倾斜等问题尚未能引起普遍重视。物探技术在解决铁路工程问题方面,无论在定性的可靠性,还是定量精度方面,还远不能满足需要;许多技术方法的应用尚处于探索和试验的过程中;物探技术与遥感技术、钻探技术的结合还不够密切。

2.7技术工人减员严重,新生力量补充不够;由于正式职工少,大多以民工补充,技术培训又未跟上,技术水平还不高,钻探效率低,成本消耗大;钻探设备不足,且多已老化,满足不了勘探工作的需要;钻探技术管理较粗放,有时钻探工作不按技术要求施工,有的工程该钻的未进行钻探;有的还存在弄虚作假、偷工减料、伪造原始数据、原始资料可靠度差等问题。

3 铁路工程勘测设计的保障措施

3.1加强政府宏观调控,积极指导、组织并协调。政府部门要坚持从工程勘察设计行业改革发展的大局出发,密切配合,有效协调,积极创新监管方式,建立健全监督检查制度,综合运用法律、行政、经济等多种手段,加强质量安全和市场监管,严厉打击各种违法违规行为,加大市场清出力度。要高度重视勘测设计在提高工程建设质量和效益,建设资源节约型、环境友好型社会的基础性作用,充分发挥政府职能,积极在加快行业立法,深化行业改革,推动企业发展,培育维护统一开放、竞争有序的勘测设计市场等方面加强指导和协调。

3.2有效落实企业实施责任。工程勘测设计单位应结合各自优势及特点,明确发展目标,深化内部改革,积极探索适应市场需要的内部管理机制,建立适应自身特点的企业管理制度和经营模式,注重加强技术创新和技术进步,积极开发更多的专利、专有技术,以技术求市场,推动行业的技术进步。加强人才队伍建设,培养创新型、专业型以及复合型人才,提升人才队伍的整体能力,为企业自身发展和行业的可持续发展奠定人才基础。要适应行业国际化发展的需要,积极配合推进行业“走出去”参与国际化竞争。

3.3发挥行业协会作用。行业协会要密切联系企 业,了解企业需求,进 一步加强与政府部门的沟通联 系,全面 体现工程勘察设计行业代表的作用,反映行业诉求,搭建政府与工程勘察设计单位互动交流的平台,充分发挥桥梁纽带作用。要充分利用行业协会在专业人才、市场经验等方面的优势,积极拓展职能,创新工作方法,改进工作方式,深入调查研究,推进纲要 的贯彻落实 。

3.4综合勘探方法的应用。工程地质勘察中应大力推广综合勘探方法,利用不同的勘察方法相互验证,提高地质勘察质量。综合勘探方法的推广应用就是不断采用新技术、新方法,最大限度的为铁路工程设计提供可靠、适用的基础地质资料。近年来,高速铁路勘察中因地制宜地采用多种原位测试方法进行现场测试,并与钻探、试验结果相互验证,取得了较好效果,得到广泛的推广应用。如在武广客运专线勘察中,广泛使用了地震方法测试隧道进出口围岩地震波速,较为准确地进行了围岩分级;还应用了可控源大地音频电磁(CSAMT)法,解决深埋隧道的地质问题,查明岩溶洞穴、断层富水带突水涌泥段的位置,效果非常好。

参考文献:

铁路勘察设计论文篇7

关键词 西安地铁;黄土地区;地裂缝;饱和软黄土;洞穴;文物古迹;重要建(构)筑物; 勘察

Abstract: Xi'an is located in the loess region, and many cultural relics, the complex urban environment, there are many problems will be faced when the subway speed up. How to use the comprehensive investigation; identify the engineering geological and hydrogeological conditions along the MTR. It has great significance for guiding the subway construction, avoid the security risks and to ensure the quality of construction.Keywords: Xi'an subway; loess areas; ground fissures; saturated soft loess; cave; heritage; important building (structure) building; survey

中图分类号:U231+.1 文献标识码:A文章编号:

1 西安地铁概况

按照国务院批准的《西安市城市快速轨道交通建设规划》,西安市总共建设6条地铁线路,总长251.8公里。共设16座换乘站,150座车站,10座车辆段,4座停车场,2处控制中心。轨道交通线网形成“棋盘+放射式”网状结构布局,线网中一、二、三号线为骨干线,既满足了城市东西向、南北向主轴线上的客运交通需求,又向外拓展了城市发展空间;四、五、六号线是轨道交通网的辅助线,主要满足城市功能组团之间的交通需求,对线网进行加密完善。

1.1一号线(后卫寨―纺织城):

该线路位置为西安市东西向主客流走廊。线路起迄点后卫寨、纺织城是西安市对外交通枢纽。该线路穿越西安城区的东西,通过市区最繁华的地区和人口最稠密的地区,线路连接主城东西轴向上城西客运站、西安城运站、康复路批发市场、长乐路客运站、半坡客运站等大型客流集散点和长途客运枢纽。一号线向西延伸至咸阳森林公园,为西咸一体化创造有利条件;向东延伸至临潼旅游渡假区,可大大促进西安市旅游事业的发展及沿线土地开发利用,进一步加强西安作为国际级旅游城市的地位。该线为轨道交通线网中的骨干线。

1.2二号线(铁路北客站―韦曲):

该线路位置为西安市南北向主客流走廊,线路将郑州至西安高速铁路西安北客站、张家堡广场、城市中心北大街及钟楼、南郊省体育场、小寨商业文化中心、西安国际展览中心、长安区等大型客流集散点串联起来,沿途分布有张家堡客运站、城北客运站、明德门客运站等长途客运枢纽。二号线与一号线构成轨道交通线网中的十字骨架,是线网中的骨干线。

1.3三号线(新筑―侧坡村):

该线路为东北、西南走向。线路沿城市主要客流走廊东二环敷设,毗邻西安灞新区、兴庆公园,经部级历史文物景点大雁塔、陕西省历史博物馆、小寨商业文化中心、西安高新技术产业开发区、长安科技产业园等客流及人口密集区,促进城市发展空间向东北、西南方向拓展。三号线与一、二号线共同构成规划线网中的骨干线。

1.4四号线(草滩农场―韦曲航天科技产业园):

线路连接草滩现代农业开发区、张家堡广场、曲江旅游度假区、韦曲航天科技产业园,途经既有西安火车站、明城墙内五路口及大差市、历史文物景点大雁塔等客流密集区。四号线对于城市南北向客流转换起到了辅助和补充作用,为规划线网中的辅助线。

1.5五号线(纺织城火车站――六村堡(纪阳)):

线路东端的纺织城火车站为既有西康铁路客运站,是西安铁路枢纽的辅助客站。西端主线连接六村堡工业园区、支线连接纪阳组团,途经曲江旅游度假区、西安国际展览中心及三桥交通枢纽等大的客流集散点,将辅助一号线分流城区内东西向客流,为规划线网中的辅助线。

1.6六号线(纺织城―长安科技产业园):

线路连接东郊纺织城、明城墙内东西大街及钟楼、南郊大学城、西安高新技术产业开发区及长安科技产业园等工商业聚集区和人口密集区。可辅助一号线对主城区客流起到较大的分流作用,缓解主城核心区的交通压力,同时可带动东郊纺织城社会经济发展及产业结构调整、南郊大学城土地综合开发利用,拓展城市发展空间,为规划线网中的辅助线。

2 西安地铁线路沿线环境概述

2.1 工程地质条件

2.1.1地形地貌

西安市位于关中盆地中部,北傍渭河,南倚秦岭,地势上呈东南高而西北低。地铁建设区内地貌主要为:南部为黄土台塬,中部为湖积、洪积台地、北部及西部为渭河阶地、东侧为河灞河阶地。

西安规划6条地铁线路总长251km,其中跨越渭河阶地线路总长55.7km,占总线路的22%,跨越河阶地32.8km,占总线路13%,跨越湖积、洪积台地154km,占总线路的62%,跨越黄土台塬8.5km,占总线路3%。

参见线路跨越地貌单元比重图。

自上而下主要地层为全新世黄土、晚更新世黄土、中更新世黄土。

(2)湖积、洪积台地

三~六级台地为湖积台地,自上而下主要为全新世黄土、晚更新世黄土、湖积粉质粘土及砂层。

一~二级台地为洪积台地,自上而下地层主要为全新世黄土、晚更新世黄土、洪积粉质粘土及砂层。

(3)渭河及其支流阶地

渭河及其支流一级阶地地层自上而下主要为洪积成因次生黄土及粉质粘土、砂层。

渭河及其支流二级、三级阶地地层自上而下主要为:上覆风积黄土、残积古土壤,底部为洪积粉质粘土、砂层。

2.1.3特殊岩土及不良地质

(1)湿陷性黄土

地铁建设场地内,广泛分布有湿陷性黄土,尤其是在黄土台塬、高级台地及阶地地貌单元内,湿陷性黄土对附属工程及湿陷性土层较厚地区的主体结构均有影响。

(2)饱和软黄土

地铁线路建设场地内,尤其是以兴庆湖周边地区为代表,地下水位附近分布有厚度2~5m的饱和软黄土层,该层对地铁建设期地表沉降及对周边建筑沉降有较大影响。

(3)地裂缝

西安城区自北向南分布已经查明14条地裂缝,总体走向NE70°~80°,近似平行排列。地铁建设必然要考虑地裂缝对其建设及运营的影响。

(4)古墓、空洞

西安为古都,城区内广泛分布有古墓、洞穴等地下空洞。地铁建设期间设计施工要对其采取必要工程措施。

2.2 水文地质条件

2.2.1地表水

西安周边地表水体对地铁建设影响较大的,主要有渭河、河、灞河、沣河、兴庆湖、南湖等,地表水与地下水有一定的水力联系,并对其周边地基土有一定的影响。进而对地铁建设有一定的影响。

2.2.2地下水

西安地区地下水对地铁影响较大的是潜水。在不同的地貌单元内,地下水位和含水层渗透系数也是不同的。

地铁结构影响范围内,主要含水层以黄土为主时,渗透系数一般为1~10m/d;主要含水层为粘性土和砂土时,渗透系数一般为20~50m/d。受地形地貌条件控制,潜水位埋深随地貌单元不同而异,但总体与地势相符,即呈南高北低之势,地下潜水径流方向为NNW。

2.3 环境地质条件

2.3.1文物古迹

西安为十三朝古都,有 年历史,城区中有大量的文物古迹,地铁线路沿线包括西安明城墙、钟楼、大雁塔、唐大明宫遗址、汉城遗址等等

2.3.2 重要建(构)筑物

西安地铁主要在主城区,城区内地铁沿线有较多的大型建筑物、高架桥、地下商场、地下隧道、火车轨道及其他重要建(构)筑物,其地下结构复杂,地基土层受其影响性质不均,对地铁建设有一定影响。

3 勘察重点、难点及其勘察方法

3.1 湿陷性黄土

湿陷性黄土是受水浸湿,土结构迅速破坏,并产生显著附加下沉的黄土。按其湿陷类型分为自重湿陷性黄土和非自重湿陷性黄土。根据不同湿陷量计算值并结合湿陷类型,可将湿陷性黄土划分为四个湿陷等级。

湿陷性黄土地区根据建筑类别不同、湿陷类型不同、湿陷等级不同,将采取不同的地基处理或地基方案。故地铁勘察应针对地铁不同的建筑结构及地基土层条件,采取不同的勘察手段和方法。大致归纳如下:

3.2饱和软黄土

西安市地区由于地下水位上升,使晚更新世黄土含水量达到饱和,尤其是在水位附近的饱和黄土,呈软塑~流塑状态,承载力低,压缩性高,地区定名为饱和软黄土。该层土尤其是在兴庆湖周边地区、火车站附近、沙坡附近、小寨及八里村地区,性质为最差。在外荷载和降水条件下均可能引起较大地面沉降。勘察期间尤其应重点查明其分布范围及性质。

针对饱和软黄土的特点,勘察期间可采取如下几种勘探方法:

(1)静力触探试验

在饱和软黄土地区,通过静力触探试验锥尖阻力曲线,直观反映出土的状态,(根据中南电力设计院经验公式Ps=1.283qc-0.049及华东电力设计院和上海城建局设计院回归方程Ps=1.227qc-0.06。)当锥尖阻力值小于0.7MPa时,可初步判定为饱和软黄土。

(2)三重管取样

现场钻探取样时,由于饱和软黄土呈软塑,甚至流塑状态,常规静压取土并不能取得I级原状土样,当采用三重管取样设备时,原状土可在最小扰动条件下进入内管,并直接封样送达试验室,保证了软土的原状性,试验成果更为准确,IL、e、a等饱和软黄土的直接参数更为准确。

(3)十字板剪切试验、孔内剪切试验

西安地铁勘察需要采用探井方法进行勘探,探井一般挖至饱和软黄土深度后,难度极大,便可终孔。这时井下可采用十字板剪切试验,对饱和软黄土的抗剪强度进行测试。

(4)扁铲侧胀试验

由于土层限制及仪器抗压强度限制,扁铲侧胀试验适合在粘性土中进行,当在饱和软黄土中试验时,取得的实测值更为真实准确,试验成果分析得出的k0、水平基床系数均可较好反映饱和软黄土性质。

3.3地裂缝

西安城区自北向南分布已经查明14条地裂缝,总体走向NE70°~80°,近似平行排列。地铁线路必然与其交汇,无论是设计施工阶段,还是后期地铁运营阶段,地裂缝对地铁均有不同程度的影响。查明地裂缝出露位置、产状、活动规律及发展趋势是勘察的重点工作。根据已完成的四条线勘察工作,地裂缝勘察宜分为一下几个阶段进行勘察。

第一阶段:已收集已有资料为准,初步确定地裂缝走向、与线路交汇情况、目前地裂缝发展状况;

第二阶段:进行现场勘探,可采用现场调查、钻探、静探、探槽等勘探方式,详细查明地裂缝出露位置;现场调查工作不局限于地裂缝出露调查,可涵盖周边走访、地下水观测、地势地貌特征调查等方法。进一步确定地裂缝产状及发展规律。

第三阶段:对进行的勘察成果进行分析处理,尤其是在微地貌地区,地层变化可能对地裂缝查明有干扰,更加进行详细分析。在微地貌可能影响判定地裂缝有无地段,可适当采取浅层地震等物探手段进行补勘。

第四阶段:对地裂缝发展趋势进行预测。可通过收集观测资料为主要手段。必要时,亦可进行长期观测,为地铁今后运营期间,避免地裂缝对地铁影响起到超前预报工作。

3.4人工填土

西安为十三朝古都,人类活动历史悠久,尤其是近现代,随着城市发展,人工建构筑物逐渐从地上涉及到地下,人工填土成为地基土层重要组成部分。

查明人工填土的抗剪强度参数指标/填土分布范围及深度/填土的密实度/填土成分分析/为重要内容。勘察过程中,应对具备采取原装土试样的素填土,采取试样进行室内土工试验,并辅以现场标准贯入试验,静力触探试验,有条件时可采取原位剪切试验。对结构松散,成份杂乱的填土,应进行动力触探试验,并对填土成份进行分析定性。填土地段勘察时,应加强周边走访调查,了解填土成因及时间,分析其固结状态,并对可能引起填土发生稳定破坏的因素进行调查。

3.5地下空洞、墓穴

西安为古都,历经时代变迁,战乱洗礼,地下存在着大量的地窖/古墓、洞穴、人防等人工建构筑物。地铁线路沿线必将与地下建构筑物存在相互影响。

勘察期间宜采取如下方法及手段对其进行勘察:

(1)向相关单位收集已有各种地下建构筑物资料,初步掌握地下建构筑物分布特征;

(2)走访勘察区域相关的单位及居民,了解可能存在地下空洞的位置

(3)当勘探过程中揭示有空洞或疑似存在空洞时,应及时与勘察总体单位/咨询单位/业主单位进行沟通,适时采取钻探/静探/地质雷达等勘探方法进行调查及补充查明工作。

(4)勘探过程中,应对揭示的地下建构筑物进行空洞特征/填充成分详细描述。客观反映空洞条件。

3.6文物古迹

西安市保存大量的文物古迹,地铁建设与文物古迹的影响不可避免。为此,勘察工作应为保护文物的设计工作提供第一手翔实/准确/全面的地质资料。

文物古迹地段勘察分为两个部分:文物周边勘察/文物专项勘察

针对文物周边勘察,主要采取钻探/静探等常规勘察方法,勘察深度不宜小于2倍地铁建筑结构影响深度。且应达到底板深度以下20米。主要对其地基土层展布/性质进行分析评价。

针对文物专项勘察,宜采取工程地质调查/测绘/地基钻探/基础及地基探槽/标准贯入试验/波速测试/室内进行的地基土室内试验/必要时可进行振动测试/动参数测试。

勘察期间应对文物古迹及其周边地下水进行长期观测。

3.7重要建构筑物

地铁主要在城区内进行建设,地铁沿线必然有各种重大重要的建筑物。对这些重要建筑物的勘查也是地铁勘察的重要内容。

重要建筑勘查主要采取走访调查为主,对其建筑结构特征,基础形式/地基处理方法,可能存在的远期规划进行调查,辅以沿线周边地质勘探,对其周边地基条件进行勘察,分析已有建筑物对周边地质条件有无影响。

对于周边存在的施工场地,应进行重点调查,对该地段的原始地貌/地形特征/水文地质特征进行调查,并对该施工场地对现状地质条件的影响进行分析评价。

3.8勘察需要考虑的其它因素

西安地铁勘察过程中,除应重点查明以上地质问题以外还应针对不同的施工阶段/施工方法进行专项设计,并且由于地铁建设非一次性完成,可能存在远期规划及建设,勘察时均应对此予以考虑

(1)施工降水

对于地铁明挖法/暗挖法施工时,当基底埋深在水位以下时,必须进行降水施工,为此勘察期间应对场地含水层条件/水文地质条件进行勘察,除应进行必要的水文地质试验以外,工程地质勘察过程中,亦应予以考虑。例如:勘探孔深度应达到预计降水井设计深度,对降水井深度范围内的含水层特征,尤其是砂土层特征进行勘察。查明勘探孔深度内地下水位埋深,根据勘探孔地下水位的埋深初步了解地下水流向。

(2)换乘站

地铁线路规划必然存在换乘站,但由于线网规划及建设需求,换乘站可能分阶段进行,此时,勘察工作应提前做好换乘站节点和结构交接处勘察工作。对于远期规划部分,在初期勘察期间应予以一次完成。对于结构交接处 后期勘察工作,应重点查明已完成部分周边地基土条件有无受到已有建筑影响发生变化,并对结构施工前后,地基土条件进行对比勘察分析评价。

(3)特殊结构

地铁项目包括各种特殊设施及结构,勘察应对地铁所需的通风/温度/强弱电/辐射性等一系列特殊要求进行必要的物探/测试工作。提供相应的设计参数。

(4) 围护结构

地铁建筑为以地下结构为主,基坑及隧道围护结构决定地铁建设的成败。 围护结构设计中,对基坑边坡土、隧道围岩的抗剪强度参数要求较高。针对不同的工况、试验方法和成本,采取不同的室内抗剪强度参数的测定。如:明挖、暗挖工法施工段,水位以上土体围岩建议主要采用固结快剪试验,水位以下建议以CU试验成果为主;对于盾构法施工隧道,水位以上围岩采用快剪试验,水位以下采用UU试验。考虑施工降水条件边坡土体强度发生变化,可适当进行CD试验。于此同时,还应进行k0试验/基床系数试验/无侧限抗压强度试验等,为设计提供充分的设计参数。

4 结论与探讨

(1)本文在总结西安地铁勘察工作的基础上,通过对西安地铁规划地区的复杂地质条件的分析,结合不同的地质条件特点和周边环境的特殊要求,在充分满足设计所需的各种岩土参数的前提下,针对不同的勘察重点提出不同的勘察方法和手段。

(2)静力触探试验在西安黄土地区有较成熟的勘察经验,不仅对认识岩土性质仍有极大的帮助,而且对查明有无空洞、查明地裂缝标志层均有直观的体现,建议西安地铁勘察加大应用静力触探测试方法。

(3)三重管取样在保证现场取土质量及提高室内土工试验准确起到极大的作用,但三重管取得原状样进行室内试验的经验不够丰富,在室内试验中仍存在一些不足和误差,在分析及运用试验成果时,应进一步分析后期试验可能造成的误差及错误,并进行相应的总结完善三重管取样进行室内试验的工作。

参考文献

[1] 李忠明等.西安地铁穿越地裂缝地段地裂缝与地下水的关系研究.2009.

[2] 西安地铁基床系数不同测试方法对比研究报告 2011

铁路勘察设计论文篇8

譬如,我院在宜万线、向莆线、沪昆线等山区铁路各阶段的地质综合勘察中,对沿线越岭长大隧道采用三维可视化方法及高分辨影像进行遥感解译,特别是重点对长大隧道的断裂构造、不同岩体接触界限以及不良地质体空间分布的高精度解译,通过线性构造的准确定位,指导大面积地质调绘路线的设计、观测点、物探测线与钻探孔位的布置。其解译精确度可以达到20m,解译正确率达到90%以上。

大面积地质调绘

工程地质测绘是工程地质勘探的前提和基础,工程地质测绘工作的好坏直接关系到工程地质勘探的质量和数量。地质测绘是从宏观到微观、从现象到本质,由定性到定量观察分析问题的方法。它是以观察到的地质现象为依据,以地质理论为指导,对现场观察到的各种地质现象通过去粗取精、去伪存真、由此及彼、由表及里地归纳、推理和分析研究的过程。

通常,在对区域地质和遥感判释资料进行详细分析研究并建立沿线主要地层层序和构造轮廓的基础上,开展山区铁路长大、深埋隧道的大面积地质调绘工作。主要调绘内容为:地层岩性的分布、特征、时代划分(地层划分到组、段)及其组合关系;褶皱、断裂构造的展布、规模、性质及其对工程的影响;节理裂隙的发育特征;滑坡、岩堆、危岩、落石、采空区和岩溶等不良地质和特殊岩土的分布范围和规模等。调查方法以垂直地质界线的路线穿越法为主,重要地质界限采用沿线追踪法;调点为断裂构造、软弱岩层、节理密集带、较大地表水体及地下水与构造薄弱带的关系等;调查路线部署以线路中心两侧各500m范围内为重点追索区,线路中心两侧500~1000m范围为补充调查区;根据已有资料,加强线路中心部位的验证和补充调查,以获取相对客观真实、可靠实用的地质资料。根据大面积地质调绘结果,对调绘判断不清、对工程影响较大的断裂构造、重要的不良地质地段和重要部位,再结合物探、钻探等手段进一步查明、验证。

从山区铁路长大深埋隧道设计、施工的经验和教训来看,设计、施工中出现的各种工程地质问题,除了与大面积地质调绘的精度不够外,还与在外业勘察时,没有根据各种构筑物特点,结合既有的工程地质特征,有针对性、合理地采用勘探手段、布置勘探点,查清场地区的工程地质、水文地质条件等有关。山区铁路长大深埋隧道因其工程主于地下,且长度一般达数千米、埋深超数百米甚至上千米,经常穿越数个地貌单元、地质时代、地层岩性和区域构造等,仅仅凭借大面积地质调绘难以将其工程地质条件查清,故隧道工程施工中出现的工程地质问题也较多。主要有洞口边、仰坡变形,洞身不良地质(如坍方冒顶、挤出滑移、突水突泥、岩溶、采空区、岩爆、瓦斯等)以及衬砌开裂变形等。实践证明,隧道洞身要尽量绕避滑坡、岩溶、采空区等不良地质地段,实在不能绕避时,应在取得准确的工程地质资料的基础上,采取符合实际的工程措施。

对于山区铁路长大深埋隧道,应在大面积工程地质调绘和工程地质勘察工作的基础上,建议大力推行、提倡综合勘察,充分运用综合物探和遥感技术,并布置一定数量的地质钻探、综合测井和试验等工作,以查清隧道穿越区的地层岩性、地质构造特征、不良地质、地下水发育情况等。譬如,我院勘察设计的宜万铁路工程地质条件特别复杂,被国内外专家定义为世界上最复杂的山区铁路。全线隧道长约223km,其中岩溶隧道近160km,这些隧道中长大隧道埋深大,一般埋深在500~600m,隧道洞身大部分穿越地下暗河或在岩溶的水平发育带附近通过,施工中可能遭遇大型岩溶洞穴、暗河或管道流,发生大规模透水突泥和地面塌陷等地质灾害,因此查明地下岩溶、暗河的规模和空间位置,是宜万铁路建设成败的关键。为此,我院采用了大面积地质调绘、岩溶水文地质专项调查。从区域地质调查入手,对全线所有隧道均进行1∶1万大面积地质测绘,根据岩溶水文地质单元和地下水补径排范围的需要,扩大范围调绘;并对其中8座隧道均进行了专项岩溶水文地质调查。共计完成1∶1万大面积地质调绘340km2,1∶1万岩溶水文地质调查572km2。通过调绘,查明了宜万线长大复杂岩溶隧道区的岩溶地貌特征,可溶岩岩溶发育与地层岩性、地质构造、水动力条件的制约关系,岩溶发育的空间分布规律,岩溶水的赋存规律和补径排特征及其与隧道的关系、危害程度,为各隧道的岩溶水文地质条件评价奠定了基础。

综合物探

物探是一种间接的勘探手段,它是通过地质体的物性表现来推断解译未知的地质问题。其数据采集受地形、地质、物性不均等人文和自然环境多种因素影响,因此物探成果做出的地质推断需要其他直接手段如地质调绘、钻探等代表性的验证,以了解其真实的地质内涵。物探具有轻便、快捷、成本低等优点,但也有“精度不高”的缺点,甚至有误判的可能性。常用的物探方法有地震折射波法、地震反射波法、瞬变电磁法、高密度电法、音频大地电磁(EH-4)法及高频大地电磁测深(HMT)等。

1地震折射波法

它是研究地震波在速度分界面(波在这个界面以下地层中的传播速度v2大于波在其上面地层中的传播速度v1)产生滑行波引起的振动,通过研究在地表接收到的折射波的时距关系,求得地下界面埋深等参数的一种勘探方法。其特点是最大接收道小,一般为24道;勘探深度浅,一般在100m以内;测量精度不高,一般采用皮尺测量;覆盖次数不高(因其震源浅、药量小)等。浅层地震法主要作用包括:工程地质分层(第四系覆盖层、基岩风化带、基岩面的起伏状态,特别是对第四系的分层等);探测断裂构造、岩溶构造的空间分布及其发育特征;测定岩体的动弹性参数,如杨氏模量、剪切模量、泊松比等。浅层地震勘探主要应用于隧道进出口、浅埋地段等的纵、横剖面勘探及洞身各岩土层纵波速度的求值等。

2地震反射波法

地震反射波法勘探原理是当震源激发时,地震波以球状向地下半空间传播,在其遇到岩性分界面、断层、破碎带、岩溶等地质异常体时,地震波就折返回地面被检波器接收,接收的地震数据经过室内数字处理生成地震剖面,根据该剖面上的异常特征,就可以解译为对应的地质异常体,达到查明隧道围岩洞身勘探的目的[6]。地震反射波法的特点是最大接收道为120道以上,勘探深度大(可达3000m),要求的测量精度高(为了加快勘探速度,必须采用GPS仪器),覆盖次数高(由于其道数多,对地下同一点可达到6次以上采集信息,震源深、药量大,采用组合检波———即一个点用多个检波器接收信息)等,但是它在浅层(埋深0~100m左右)基本属于盲区,仅仅对埋深较深的地层有效。深层地震反射波法适用于地形起伏大、埋藏深度较深的长大深埋隧道勘探。

3瞬变电磁法(TEM)

TEM(TransientElectromagneticMethod)法是以接地导线或不接地回线通过脉冲电流做为场源,以激励探测目的物感生二次电流,在脉冲间隙测量二次场随时间变化的响应,进而达到解决工程地质问题的一种电磁法。TEM在时间和空间上的可分性,使其具有以下特点:(1)在高阻围岩地区不会产生地形起伏影响的假异常;在低阻围岩区,由于是多道观测,早期道的地形影响也较易分辨。(2)可以采用同点组合进行观测,使与探测目标的耦合最紧,取得的异常响应强,形态简单,分层能力强。(3)线圈点位、方位或接发距要求相对不严格,测地工作简单,工效高。(4)有穿透低阻覆盖的能力,探测深度大。(5)剖面测量与测深工作同时完成,提供了更多有用信息,减少了多解性。正是由于TEM法的这些特点,其主要用于解决深埋隧道、隧址区的断裂构造、岩溶构造、地层划分等问题,其探测深度可达400~500m。

4高密度电法

高密度电法与常规电法相比是向地下供电。不同的地质体、异常体对电流的吸引不同,这种吸引大小对应地质体、异常体的电阻率大小,根据测得的视电阻率在X和Z方向变化的剖面,分析剖面上视电阻率变化特征,将其解译为对应的地质异常体,解决地质问题。

就岩溶勘探而言,通常空腔岩溶为高阻,充填岩溶为低阻,渗水破碎带为低阻。不同岩性其电阻率值也不同,以此可对岩溶和地层岩性等作较好的判断。该法可依据获得的地下介质电阻率的分布情况,了解隧道围岩的性质和分布范围,推测断层构造和岩溶构造的空间分布及其发育特征等。譬如,向莆铁路武夷山隧道长14.658km,隧道最大埋深达350m。其中F5断层通过地层为里地单元(J3L)的少斑中粒花岗岩。遥感及现场地质测绘结果表明:F5断层为一硅化破碎带,出露于DK222+532附近,与路线夹角约50°,断层产状354°∠48°,断层破碎带及影响带宽约50m,带内岩石具硅化、并可见构造角砾岩,角砾呈次圆状,节理裂隙发育,石英脉呈不规则状,大致平行断裂面充填,为逆冲断层。经物探地震折射波法、高密度电法验证,F5断层产状倾向小里程,视倾角40°,破碎带岩体的弹性波速仅2920m/s,两侧完整基岩的弹性波速4862m/s。物探实际勘测及综合分析结果如图1和图2所示。

5音频大地电磁(EH-4)法

EH-4系统是20世纪90年代由美国EMI公司和Geometrics公司联合推出的新一代电磁探测仪器,它能观测到离地表几米至1000m内地质断面电性变化信息。它利用宇宙中的太阳风、雷电等天然电磁场信号作为激发场源,该场源不存在近场区和过渡场区[7]。音频大地电磁法具有抗干扰能力强、横向分辨率高、高阻屏蔽作用小、勘探深度范围大等特点。EH-4探测法在山区铁路长大、深埋、复杂的岩溶等隧道勘探中,对地层岩性、地质构造、岩溶等地质现象的反应较为齐全和准确,其勘探深度能够满足要求,且在野外受地形等限制较小,可以在长大、深埋、复杂隧道的综合勘探中应用。但同时应该注意到,其对地层岩性、地质构造的划分主要依据电性,一般而言,电性差异大,且有一定厚度时,其对地层、构造的分辨率也大大提高,根据资料推断的地质规律比较符合实际。同一岩性,或电性差异较小的岩性、构造等勘探对象就存在不确定性,因此,音频大地电磁资料必须结合地质测绘、钻探和综合测井等验证资料综合分析,才能取得较好的效果。

6高频大地电磁测深(HMT)法

高频大地电磁测深的概念是相对于可控源音频大地电磁(CSAMT,观测频率为0.25~8192Hz)和大地电磁(MT,观测频率为0.001~340Hz)的频率范围而提出的。对于灰岩地区,电阻率的变化范围一般在500~3000Ωm。如果取平均电阻率为500Ωm,隧道埋深在800m左右时,根据趋肤定理,要达到800m左右的观测深度,其观测频率的下限应在200Hz左右。

而当最高观测频率达到100kHz时,其穿透深度仅在11m左右,当地表覆盖有第四系低电阻地层时,其穿透深度将进一步减小。因此,对于隧道工程的勘察,要取得完整的地电断面,对于场源为天然大地电磁场的高频大地电磁,其观测频率范围在200~100kHz,该频率范围已超出了音频的范围,所以采用该频率段观测的方法称之为高频大地电磁测深(HMT)。在宜万铁路复杂的岩溶隧道工程勘察中,共布置了高频大地电磁测线198km。勘察结果表明,对于封闭性的溶蚀空腔,高频大地电磁呈低电阻异常特征;对于深度较浅或规模较大的岩溶地质体,高频大地电磁呈封闭圈式的低阻异常;当岩溶地质体的规模与埋深相比不是足够大时,在高频大地电磁视电阻率断面上,则不能形成封闭性的低电阻异常,而是等值线出现较大分离和弯曲的异常形态。在施工开挖的部分隧道中遇到的较大型岩溶地质问题共有76处,其中75处都位于大地电磁的异常区或异常的边缘。表明其勘察结果,为宜万线隧道施工设计和施工安全预警提供了准确的资料。

为了查明宜万线8座长大、深埋、复杂岩溶隧道的地层岩性、地质构造、岩溶发育程度、深度、规模以及暗河的位置,我院在遥感和大面积地质调绘的基础上,采用瞬变电磁法、音频大地电磁法、高频大地电磁测深法,并辅以地震折射和高密度电法,大致确定了这8座隧道的地质构造形态、部分断层的位置和产状,圈定了大的岩溶异常区,为隧道的深孔布置、地质资料的修正和岩溶发育规律特征的分析、隧道工程地质和水文地质条件的分析判断提供了依据,有效地缩短了勘探工期,大幅度地降低了勘探成本。

工程地质钻探和综合试验、测试

1工程地质钻探

根据工程地质调绘、综合物探勘探结果和设计意图,对山区铁路长大、深埋、复杂隧道进行有针对性的工程地质钻探,一方面可以准确地提供设计所需的各项岩土物理力学指标,另一方面也可验证物探和工程地质调绘结果。工程地质钻探是最原始也是最直接的勘察方法,其最大的优点在于能够直接钻取岩芯,取得定性的地质资料,直观地反映岩土体的颜色、塑性状态、风化程度等基本特性,准确地划分各种地层岩性、厚度、完整性和破碎程度,断层的位置、宽度、破碎和胶结程度,断层带的组成和性质,含水层深度、厚度、初见水位和稳定水位,岩溶发育程度等;也可以通过各种岩土试验获取岩土体的物理力学指标。此外,还可以作为地震、地应力等孔内测试的平台。正因如此,才使其不可替代地延用至今。其缺点是容易受勘察场地的限制,钻孔之间的地层关系需要依靠工程地质人员根据其所掌握的地质资料进行推断(钻孔的密度直接影响勘探成本和勘察资料的准确性),且周期长、费用高。

山区铁路长大、深埋复杂隧道的综合勘察是在充分搜集、分析研究既有区域地质资料的基础上,以遥感判译为先行,以大面积地质测绘和水文地质调查为基础,结合综合物探的勘探成果,针对性地布置适量的深孔钻探为主要勘探手段,并辅以必要的孔内测试试验等的综合性的勘察试验方法,以查明重大的工程地质问题。深孔钻探的选择和确定主要是为了解决如下几个主要地质问题:物探反映的重大异常区的验证,重大隐伏暗河、采空区等的探查,区域性大构造、断层的产状、破碎(软弱)程度、富(导)水性,地应力测试、瓦斯测试、水文试验以及单孔或多孔孔内测试,重要地质界面的控制(如可溶岩与隔水层接触界面、煤系地层的位置等)等。譬如,我院在宜万线综合勘察中共计完成深孔钻探51孔,共15304.23m。

2综合试验、测试

综合试验、测试工作分为孔内和孔外两类。孔内的测试、试验项目主要有水文试验、综合测井、孔内CT、地温、地应力测试、瓦斯测试(放散初速度、瓦斯压力等)、放射性测试等;孔外的测试、试验项目主要有水、土、岩石样品的物理试验和力学试验、示踪试验、煤层及瓦斯测试等。通过上述试验、测试结果,可为隧道围岩类别的划分、岩土体物理力学指标的选取以及岩体风化程度的划分、隧道风险评估等的施工设计和施工安全预警提供准确的依据。

综合勘察、测试成果的分析利用

每一种勘察方法和测试手段都不可避免地存在一些局限性或弊端,我们在得到各种分项的勘察、测试结果后,还需要对所获取的所有成果资料进行全面、系统的专题分析研究;综合分析各项勘探成果,并通过相互验证等手段剔除异常的错误结论,对可疑结论进一步做详尽细致的工作,对确定结论则寻找最经济有效的设计方案和施工措施。综合运用各种勘察手段相互指导、相互验证、取长补短,可以有效提高长大隧道的工程地质勘察质量。譬如,改建赣龙铁路扩能工程的汀州隧道长7.738km,隧道最大埋深达600m,其中F2、F3断层附近地层为下古生界奥陶-志留系(O-S)变质粉砂岩、板岩夹页岩:灰褐、灰黄色,全风化~弱风化,薄层状。在分析研究区域地质资料和遥感判译结果的基础上,有针对性地开展现场地质调查、测绘,发现了F2断层的地表露头,随后采用物探EH-4法进一步验证了F2断层的存在,查清了其工程特性:该断层属北西向断裂,倾向北东向,产状46°∠79°,断层破碎带宽约30.0m,与隧道相交于DK148+495附近,与线路夹角为17°。同样,通过现场地质测绘和物探EH-4法也揭示了F3断层。为进一步确定F3断层的工程特性,在地表布置了1个孔深340.10m的深孔,结合对钻探和孔内水文试验、地应力、地温等综合测井的测试结果综合分析,确定了F3断层的工程特性:属北北东向区域断裂,倾向北西西向,产状289°∠60°,断层破碎带宽约168m,与隧道相交于DK148+628附近,与线路夹角为80°。汀州隧道F2、F3断层工程地质特征如图3所示。

主要成果及效益

我院采用综合勘察技术在宜万铁路、向莆铁路、京福铁路、沪昆铁路和赣龙复线等数十座已经施工和正在施工的重点隧道工程所提供的地质资料不仅得到了施工验证,而且为施工提供了预警,保证了上述复杂性、风险性较大的重点工程施工的顺利进行。综合勘察技术可以有效地控制山区复杂隧道的地层分布、构造形态、断层要素、深部岩溶的发育位置、岩体应力、有害气体等工程地质问题。明显地缩短了勘探工期,大幅度地降低了勘探成本。

从我院对向莆铁路、宜万铁路、赣龙复线等复杂隧道的工程地质问题进行的综合勘察和施工过程中的施工地质工作来看,具有明显的经济效益和社会效益。譬如,对宜万线8座长大深埋隧道的岩溶发育情况进行的专项地质工作原定在大面积地质调绘的基础上以深孔钻探为主,计划投资4.8亿元。后来采用以大地电磁测深为主的综合物探方法,结合深孔钻探验证的方式完成了专项地质工作,共投资1.45亿元,取得了预期的地质效果,节约投资近70%,产生直接经济效益3.35亿元。

而其社会效益主要体现在以下几个方面:(1)设计质量明显提高。对向莆线、宜万线等复杂长大隧道施工地质设计中,将隧道按可能发生的工程地质灾害风险程度,划分为极高、高度、中度、低度四个等级。已施工地段的施工资料证实,隧道的主要工程地质问题都发生在极高风险等级地段。由于设计中已有相应的应急预案,从而降低了施工风险。(2)较好地指导了隧道施工过程中的地质灾害预报工作。根据隧道施工地质分级设计,优化了不同地段的地质超前预报方法,取得了较好的预报效果。(3)使大量的隧道工程地质灾害由不可预计变为可以预计,从而减少了隧道不可预计的工程地质灾害。

结论

(1)综合勘察是在充分搜集、分析研究既有地质资料的基础上,以遥感判译为先行,以大面积地质调查为基础,以综合物探和适量的深孔钻探为主要勘探手段,并辅以必要的孔内测试试验等的一种综合性的勘察方法,可以有效地控制和查明山区铁路长大、复杂隧道的工程地质和水文地质问题。我院的应用实践证明该方法是可行的,可明显地缩短勘探工期,大幅度地降低勘探成本。

(2)每一种勘察方法和测试手段都不可避免地存在一些局限性或弊端,因此,工程勘察中应根据工程实际需要的勘察范围、勘察深度和勘察精度,选择一种或几种恰当的勘察手段。

(3)山区铁路长大、深埋、复杂隧道工程地质勘察要求资料精度高、围岩分类准确,因此,采用综合勘察方法是必要的、恰当的。在工程地质勘察中,所选择的各种勘察手段要结合现场实际情况合理应用,并应对勘察成果进行系统地综合分析、研究,合理解释,提高勘察资料的质量,保证结论正确,为隧道工程的设计、施工提供合理、可靠的依据。

推荐期刊