线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

高层建筑火灾风险分析8篇

时间:2023-06-19 09:25:03

高层建筑火灾风险分析

高层建筑火灾风险分析篇1

关键词:火灾风险评估;安全检查表;层次分析法;模糊综合评价法

Fire Risk Evaluation of Large Public Building

An Jun-hong ,Yao Cheng-yuan,

(Postgraduate Office, Chinese People’s Institute of Armed Police Force , Langfang 065000,China)

Abstract: safety checklist and fuzzy comprehensive evaluation on the basis of AHP are used to analyze fire risk of one selected large public building. Qualitative and Semi-quantitative fire risk assessment methods are explained in detail and fire risk grade is given.

Keyword: fire risk evaluation; safety cheklist ;analytic hierarchy process;fuzzy comprehensive evaluation.

火灾风险分析是火灾安全科学的重要组成部分。通过火灾风险分析可以对引起火灾的因素进行识别,从而判断火灾发生的概率以及后果,为制定有效的防火措施提供依据。一般地,建筑火灾风险评估的方法主要分为定性、半定量和定量风险评估方法三大类。本文选择的建筑是一大型公共建筑,其基本情况为建筑总高97m,总建筑面积为228468 m2,地上共24层,地下2层。其中地下1层为超市和停车库、地下2层为停车库,1至4层为综合性商场,地上5至24层为高档办公楼。该大楼的消防设施及运行情况基本符合标准,配备的消防设备比较先进,员工的消防意识较强,也会定期对相关人员进行专业培训;但由于经营者众多,经常会在通道上堆物,影响安全疏散,管理上也比较松散,消防设备也由于管理问题,经常会出现故障。

1.定性火灾风险评估法:安全检查表法

安全检查表是指参照火灾安全规范、标准,系统地对一个可能发生的火灾环境进行科学分析,找出各种火灾危险源,依据检查表中的项目把找出的危险源以问题清单形式给出制成表,以便于安全检查和火灾安全工程管理。安全检查表分析法就是制定安全检查表,并依据此表实施安全检查和火灾危险控制,这是定性评估火灾风险所常用的一种方法。

本文采用安全检查表与风险矩阵相结合的方法对该场所进行定性火灾风险评估,其具体流程如图1.1所示。以下即为按照该流程图对该歌舞厅进行火灾风险评估的过程。

1.1危险源种类

在考虑该建筑物的实际情况的基础上,根据《消防监督检查规定》中第九条,对公众聚集场所投入使用、营业前进行消防安全检查应当检查的内容的规定,对其存在的火灾隐患按照危险源种类的不同进行识别,具体如图1.2所示。

1.2安全检查表的制定

根据危险源的定义,结合所检查的内容,分别对各类危险源进行有效辨识,制定出符合该类建筑实际情况的安全检查表,如表1.1所示。

1.3风险矩阵的绘制

风险矩阵是一种有效的风险管理工具,它由可应用于分析项目或采取的某种方法的潜在风险。根据NFPA的相关规定,火灾发生的可能性可以定性地分为频繁、可能、偶尔、很小和不太可能五个等级,将火灾发生后可能造成的后果的严重程度同样定性的分为灾难性、严重、中等和可忽略五个等级,各等级的定义如表1.2所示,它们共同构成风险矩阵,如图1.3所示。

1.4估计各措施的等级

根据建筑中消防措施的设置和实施,将其划分为报警系统、灭火系统、人员疏散、单位自身监管和消防救援五大类。通过安全检查表中对各项措施的评价与风险矩阵中各等级的定义相结合,可对各项安全措施的等级进行估计。

对于第一类危险源即可燃物,其影响的是建筑物发生火灾后火灾的危害后果严重程度。由于该被评估场所室内材料不符合室内装修材料消防技术标准,室内可燃物较多,因此一旦发生火灾蔓延迅速并可能造成严重损失,根据危害后果等级的定义,将其危害后果估计为“严重”。

对于第二类危险源,其影响的是建筑物发生火灾的可能性。根据文献中对各种系统误报的统计数据可大体确定报警系统和灭火系统的误报率和灭火成功率,再结合风险矩阵中对可能性等级的定义,可将其导致危害的可能性等级进行估计,如表1.3所示

1.5将各措施填入风险矩阵

通过建筑物内消防措施的可能性等级和火灾发生的严重程度等级,可将具体的消防措施对应填入风险矩阵中,如图1.4所示。

1.6对建筑物进行综合风险评估

由风险矩阵可知,由风险矩阵可以得知,单位自身监管、人员疏散、报警系统和灭火系统属于高风险级,消防救援属于中等风险级,高风险矩阵居多,故而,该建筑的火灾风险属于不可接受风险。由于定性的火灾风险评估方法所涉及的主观因素加多,常会导致评估结果的误差较大,会造成对建筑物火灾风险的评估失真。

2半定量风险评估法:基于层次分析法的模糊综合评价法

火灾风险评估是通过分析影响火灾发生和发展的各种因素,充分利用历史数据,在系统防灭火安全分析的基础上,对系统的火灾风险进行评价。风险评估有多种方法,本文选取层次分析法对该建筑进行火灾风险评估。该法适用于多准则、多目标的复杂问题的分析和评价,其分析过程涉及的数据量不大,但要求分析人员明确问题所包含的要素及其相互关系,把定性分析与定最分析有机地结合起来,通过系统化、数学化和模型化的思维过程,统一地优化处理。

2.1指标体系的建立

根据综合楼的具体情况分析,本文采取了三层次指标体系,目标层包括建筑环境因素、建筑防火、消防设备因素、管理因素,再针对准则层和指标层对目标层进一步地细化,可得指标体系表格如下表,表2.1

2.2构造判断矩阵,并求解各指标相对权重

根据消防工作的实际经验,对目标层、准则层和指标层各自所包含的因素,利用1-9标度法进行量化处理,而后建立各自的判断矩阵。因素之间相对重要性的取值,见表2.2

由前面的指标体系可知,该建筑分为三个层次,即A、B、C三个层次。通过对下层内各因素对上一层元素影响的相对重要程度,按照1~9标度法进行打分,标准如图2.2所示,得到判断矩阵,并逐级向前判定,直至最高层,即A层。

故而,

故λmax,=0.67/(0.17*4)+1.33/(0.33*4)+1.33/(0.33*4)+0.67/(0.17*4)=4

满足一致性检验,所得比较矩阵的结果可以接受。

同理,可以求得不同目标层、准则层和指标层各自所包含的因素的权重值,具体值见表2.1。

2.3建立指标评价尺度和系统评价等级

确立了评价指标体系以及各个评价指标的权重,还需要建立指标评价尺度和系统评价等级,编制调查表,用于对具体对象进行定量的评估。一般的指标评价尺度分为五级,见表2.3,系统评价等级分为五级,见表2.4。

2.4建立指标评价尺度和系统评价等级

火灾风险调查表就是根据相关法规、标准及规范,结合工作实践经验,对每个指标给出得分并绘制而成的表。由于各地区的具体情况不同,不能有一个通用的调查表,以耐火等级和建筑高度两个指标的得分要求为例(见表2.5),说明编制方法和应用。

权重%(Wi)为表2.1中该指标的累积权重值。根据被评估建筑的实际情况,该指标符合评分要求中哪一项,该项对应的评分与权重的乘积,即为该指标的最终得分(P)。将全部指标的得分(P)相加得到系统的安全得分,再用表2.4查找系统安全评价等级,即可得出该综合楼建筑的安全等级。

高层建筑火灾风险分析篇2

1确定火灾场景

火灾场景确定过程中最重要的是确定场景发生的概率密度函数p(e)。p(e)与起火原因及建筑用途有密切联系,可通过起火建筑用途和火灾场景起火原因估计。一般而言,建筑用途决定建筑发生火灾的总体趋势。对于同一类建筑,不同起火原因对p(e)的影响更显著。为方便和火灾统计数据联系,依据中国消防年鉴对起火原因的划分,场景e的起火原因包括放火、电气、违章操作、用火不慎、吸烟、玩火、自燃、雷击、不明、其他。建筑用途明确后,首先确定该场景的起火原因。根据(3)式,火灾场景的集合U应当包含所有可能起火原因。在实际操作中,可以进行简化,U应当包含所有主要起火原因。确定起火原因后,需确定火灾场景的总数n,即确定相同起火原因的火灾场景的数目。虽然火灾事故数量与建筑面积有一定关系,但在单个建筑火灾风险评估中,事故数量与建筑面积之间的关系可以忽略。在本文所述方法中,每种起火原因的火灾场景发生次数考虑为1次。这样火灾场景总数目n与可能主要起火原因数目保持一致。火灾场景的其他要素,如发生火灾的位置与环境、消防设施状况等,也应当明确,作为后续评估模型的输入。每个火灾场景的其他要素应尽量按最不利原则确定。如设定火灾发生在最容易造成人员伤亡或财产损失的位置。消防设施在控制火灾危害中发挥了重要作用,也应考虑火灾发生在消防设施相对最薄弱的环节。

2火灾场景发生概率

火灾场景发生的概率通过表1所示的五个等级描述。在一些半定量评估方法中,火灾场景发生概率与评估对象特点之间联系较弱。在评估中选取的火灾发生概率一般较高,如果所有评估对象类似的火灾场景都使用相同的概率,就会弱化评估对象之间的差异。例如,消防安全管理水平较高单位的火灾事故发生概率会相对较小。为了体现评估对象之间的差异,引入火灾场景ie的火灾原始发生概率()ip′e和火灾事故控制因子。()ip′e可根据火灾事故统计数据估计得到。主要参考与评估建筑用途相同的某一类建筑火灾发生起数的整体情况和该类建筑中各种起火原因引发火灾的相对比例。()ip′e考虑了较多的不利因素,赋值较为保守。对于消防安全水平较高的评估对象,事故控制因子iε能根据实际状况,在一定程度上消除这种不合适的“保守”。iε可以表示为:X1i:消防安全责任人对消防工作的重视程度;X2i:与场景ie相关消防安全管理人工作水平;X3i:与场景ie相关的消防安全制度落实情况,如用火管理制度、动火审批制度、易燃易爆危险品管理制度、用电和电气线路维护检修制度、防火检查巡查制度等的落实情况等;X4i:与场景ie相关工作人员的消防安全意识与受培训情况;X5i:与场景ie相关特殊设施、设备的状况,如是否设有电气火灾监控系统,防雷设施是否完好等。可以根据评估对象的特点,适当调整上述五个因素,使该因子更加适用。

3火灾危害程度

α为人员脆弱性因子;β为建筑脆弱性因子;keS为不同阶段的火灾危害控制能力。下文分别阐释上述项的意义与确定过程。人员脆弱性因子α描述了建筑中人员抵抗火灾危害的能力。人的行为是风险评估必须考虑的因素,然而部分评估方法对人员的因素考虑较少。由于本文主要研究一种开放的火灾风险评估方法体系,没有结合具体某一类型建筑,因此影响α的因素只列出了表3所示的四种因素。对于某一特定用途的建筑,影响α的因素需进行调整。若评估对象上述因素描述内容的主体是确定的,也可采用多属性评价法。即通过设置一定的标准,如表3所示的参考分级标准,将评估对象的现状转化为分值,并确定ρ,K,A,C对α的权重,通过加权求和得到α的值。

建筑脆弱性因子β描述建筑本身抵御火灾危害的能力。部分评估方法忽视了该因素的作用。β的值受表4所示因素影响。可以表示为:fβ的实现方法与fα相同,α,β∈。在半定量评估方法中,α与β对某一评估对象而言,意义不明显,主要在于区别同一类型不同评估对象的差别。例如,若不使用建筑脆弱性因子β,一栋5层的多层酒店和一栋25层的超高层酒店的其他评估内容都达到同样标准时,评估结果会相同,这显然和火灾风险现状不相符。在半定量火灾风险评估方法中,确定火灾危害程度是一个难点。部分半定量分析模型确定火灾后果的过程较为简单,例如在对影响火灾后果的因素进行赋值后,通过加和得到火灾危害程度等级。虽然不同因素(措施)的重要性能通过一定权重描述,但不同措施在时间上的关系却被忽略了。本文借鉴事件树火灾风险分析法中将火灾发展阶段和火灾危险控制措施相结合,确定火灾危害程度的思想。在真实火灾中,火灾危险控制措施之间并不是严格按时间阶段动作的。在同一火灾阶段的各种措施是同时起作用的,一种措施会在多个阶段中出现,且不同措施之间的重要性也是有所区别的。此外,由于数据库的不完备,危害控制措施正常启动的概率较难得到。所以在参考事件树分析法的同时,还要进行调整,使其更适合半定量评估的需要。

参考对火灾发展阶段的划分,将火灾发展划分为5个阶段,并给出五个阶段中火灾危害的主要控制措施,如表5。可通过模糊综合评价法判断每个阶段中火灾危害控制措施对该阶段火灾危害的控制能力因子keS。专家在对评估对象进行检查评估后,根据评估对象现状,结合自身经验,给出每一阶段各种控制措施对火灾危害控制能力的判断。专家的判断作为模糊综合评价法的输入。为了方便后续处理,采用模糊综合评价中的等级参数评价法将评价结果百分化,即[0,100]keS∈。得到α,β和ekS后即可建立s(e)的求法。首先定义火灾危害程度s的等级。参照2007年国务院颁布的《生产安全事故报告和调查处理条例》对火灾等级标准的划分,以及其他风险评估方法对后果的分级,本文采用的火灾危害程度等级划分标准如表6所示。通过统计数据确定s(e)是困难的,因为现有火灾统计资料一般只包含“火灾发展阶段3(包含阶段3)”之后的案例,很难获得清晰的火灾控制措施与火灾后果之间的关系。基于这种情况,本文提出如下算法来实现s(e)。

在火灾后果与火灾发展阶段之间建立主要对应关系,即火灾发展1-5阶段分别与火灾后果Ⅰ-Ⅴ等级相对应。以第3阶段为例,这种对应关系可理解为:“当火灾发展到第3阶段,出现Ⅲ等级火灾后果的概率最大”。如前所述,在真实火灾中,火灾发展阶段之间的划分并不是非常清晰的,同一种危害控制措施可能在多个火灾阶段都发挥作用,造成通过火灾危害控制措施的能力,评价火灾可能发展到某一阶段时,不仅要考虑该阶段的危害控制措施,还要考虑其他阶段措施的情况。当然,本阶段的措施会起到主导作用。正态分布在风险评估中的应用非常广泛,火灾风险评估中很多物理量都可以使用正态分布表示。本文假设在火灾发展某一阶段的火灾危害控制措施与其他阶段火灾危害控制措施在重要性上服从正态分布的规律。

确定火灾风险

确定火灾风险前,需要构建后果量化函数。本文采用风险矩阵实现g(s)。风险矩阵通过将可预测的最严重火灾危害与相应的火灾发生频率结合起来,实现火灾风险的定性估计。风险矩阵由于意义清晰,操作简单,在多种风险评估方法中都得到了广泛的使用。建立风险矩阵之前,要确定火灾场景发生频率的分级(表1),火灾危害程度分级(表6)和作为评估结果的风险等级。参考对风险等级的划分,制定表7所示的风险分级标准。参考风险矩阵建立方法,制定如表8所示的风险矩阵。根据该风险矩阵可得到火灾场景e下建筑的火灾风险等级。建筑每个火灾场景的风险iRisk就能说明该建筑的风险状况。根据建筑火灾风险Risk的定义即需要将各火灾场景的风险相加。由于风险等级无法直接相加,因此需对各风险等级赋予一定的分值,再以相加的分值来反映建筑的整体火灾风险。

如何确定分值需从Risk的应用目的进行分析。Risk的应用对象一般是管理决策机构,比如奥组委需要知道每个比赛场馆的风险值,消防部门需明确辖区内各单位建筑的风险大小。Risk的分值虽没有明确的物理意义,但分值大小须能反映各级火灾风险对社会公众的影响程度,且具有一定区分度。可通过下式将各火灾风险等级转换为建筑火灾风险分值形式。

实例分析

下面以某医院建筑为例说明该体系的使用。该建筑地上24层,地下3层,建筑高度92m,建筑面积82000m2,2006年投入使用。地上1-5层为门诊,6-24层为住院部,地下主要用作车库和设备用房,部分区域用作药库。该建筑15层部分医疗实验室内无火灾自动报警系统;23层会议室内无自动喷水灭火系统和火灾自动报警系统;个别部位的探测器存在故障;部分区域缺少灭火器;部分楼梯间防火门损坏,不能自动关闭;其他区域消防设备都按现行国家规范设置,且日常维护较好,能正常工作。

该医院消防安全管理水平较好。消防安全责任人对消防安全工作十分重视,各级消防安全管理人都参加了消防局开展的消防培训课程,并培训合格。医院缺少安全用电相关制度,其他消防安全管理制度较为齐全,且已严格落实。医院每年对员工进行消防安全培训,开展灭火、疏散演练。各岗位的消防安全职责都已明确,现场评估中各岗位基本履行本岗位的安全职责。此外,医院为无烟医院,吸烟引起火灾的几率较小。参考2004至2009年医院类建筑火灾原因统计表9所示,进而可知2004-2009年平均起火原因占总火灾起数的比率,如表10。和其他类建筑相比,医院类建筑每年发生的火灾总起数相对较少。在引起火灾的原因中,电气和用火不慎所占比例最高,其次是用火不慎和吸烟,放火、玩火、自燃和雷击引起火灾所占比例之和为6.28%。

高层建筑火灾风险分析篇3

关键词:城市;消防;风险;评估;分析

随着海南国际旅游岛建设上升为国家战略,海南进入一个新的重要发展机遇期,作为海南省的省会城市,海口市也进入了一个全新的快速发展建设期。随着城市发展的进一步深化,海口市城市人口密度将越来越大,建筑物越来越密集,道路交通和能源设施布局也越来越复杂,加上经济建设的高速发展,海口市将积聚越来越多的危险源,甚至是重大危险源,根据对2000年至2009年的海口市火灾统计[1],海口市的火灾呈现出多发性、破坏性和复杂性的特点和趋向。进行城市消防风险评估对科学有效地进行城市消防规划、部署和制定消防法规,对于城市建设和社会经济的协调发展具有保证和促进作用。

一、城市消防风险评估

(一)消防风险定义

本文引用了2004年联合国环境减灾署关于风险的定义[2],将城市消防风险定义为火灾与城市脆弱性之间相互作用而导致公民人身、财产、公共安全等受到侵害以及经济活动中断、环境破坏等有害结果或预料损失发生的可能性。以城市为基本评价单元的城市消防综合风险评估涵盖火灾危险性、脆弱性以及防控火灾能力的三个内容。

(二)城市消防风险分析

1、城市火灾危险性分析

据我国历史上发生的火灾统计,可以看出,诱发城市火灾的各类因素,诸如城市用电、燃气管网、易燃易爆化学物品单位等的诱发性越强,则城市火灾危险性越大,火灾风险水平越高。

2、城市脆弱性分析

气象因子与火灾发生和发展背景有着密不可分的相互关系,其中相对湿度、降水量和风速等是最直接相关的因素。随着城市化进程不断加快,城市经济、人口、现代化建筑、社会财富等集中的城市特点更加突显,一旦发生火灾,尤其是重特大火灾事故,不仅容易造成重大人员伤亡和经济损失,而且容易产生严重的社会影响和政治影响。城市的脆弱性增强,风险水平增高。

3、城市防控火灾能力分析

一般而言,消防经费投入得越多,火灾防控措施越得当,城市防控火灾能力越强,消防风险水平越低。本文认为城市防控火灾能力应从消防站建设、消防供水、消防通讯、消防车通道、消防装备、消防力量、医疗救护、消防经费投入、消防教育培训以及城市消防远程监控等方面加以衡量。

高层建筑火灾风险分析篇4

关键词:建筑施工现场;起火原因;火灾危险性;消防安全管理

随着我国经济的发展,各地新建、扩建、改建、装修的工业与民用建筑的数量和规模都在不断的扩大,在满足人们物质文化生活需求的同时,由于建筑行业具有临时性强,作业条件变动大,现场环境复杂等高危行业的特点,容易引发各类事故,造成人员伤亡和财产损失。近期,建筑施工现场火灾爆炸事故时有发生。央视配楼火灾、上海静安路教师公寓火灾等都引起了很大的社会影响。本文对近年来全国建筑施工现场起火原因进行了分析,根据分析结果和工作实践中发现的建筑施工现场火灾危险性,提出了建筑施工现场消防安全管理的一些措施和对建筑施工企业进行消防安全管理的一些措施。开展对建筑施工现场起火原因分析,一方面有助于从源头上了解建筑施工现场起火的原因,在日常消防安全管理中有针对性的开展工作,避免发生火灾;另一方面对火灾过后有针对性的开展火灾原因调查工作有一定的指导意义。

1建筑施工现场火灾危险性分析

(1)建筑物密集且耐火等级低。由于施工现场局限性强,人员多,现场内的办公室、员工休息室、职工宿舍、仓库等建筑相互毗邻或者成“一”字形排列,并且这些建筑大都为临时性,而且都是三、四级耐火等级简易结构的建筑物;还有一些职工宿舍与重要仓库和危险品库房相毗连,甚至临时建筑物相互间隔只是用三合板等材料简易隔开;也有的职工宿舍只有一个安全出口,一旦失火,势必造成严重后果[6]。

(2)易燃、可燃材料多,火灾蔓延速度快。由于施工工艺的要求,工地上往往需要使用、存放大量的易燃易爆及有毒材料、如木材、刨花、油漆,乙炔瓶等。特别是近年来新型建筑装修装饰材料的不断应用,使得施工现场的火灾荷载增加。加之一些建筑工地雇佣外来民工,吃住在工地,生活用品中很多都是易燃可燃材料。因此,一旦发生火灾,势必造成猛烈燃烧,迅速蔓延。

(3)明火作业多。建筑施工中普遍采用电、气焊割、电炉、喷灯等明火设备,极易引燃工地上存放的易燃材料。更有甚者,部分施工现场存在违章使用明火的现象。例如,进行电焊、气焊的工作人员无证上岗,操作时不采取必要的安全措施,甚至在火灾危险场地没有事先办理动用明火审批手续,特别是一些改扩建以及建筑内部装饰装修工程,没有严格的消防安全管理,甚至边营业边施工。

(4)用电设备多,用电负荷大。建筑施工中常用的机械设备如塔式起重机、井架、龙门架、搅拌机,电焊机等种类多、用电量大,且随着便携式电动工具的普遍使用和临时照明的需要,若安全用电措施不当,线路超负荷,容易造成导线绝缘层过热或短路形成电火花。引燃周围可燃物。

(5)施工现场消防设施不足。施工现场,建筑物处于已经开始建设但仍未竣工的阶段,消防设施不完善。一旦发生火灾,建筑设计中的消防设施往往不能发挥作用。特别是对高层建筑,其发生火灾后,一般主要依靠建筑内的消防设施进行火灾扑救,而施工中的高层建筑,其消防设施尚不完善,因此其火灾扑救就更为困难。

(6)施工现场消防安全管理不到位。虽然大部分施工工地消防安全管理制度健全,但也只是挂在墙上,没有真正落到实处。

(7)施工人员安全素质较低,消防安全意识差。部分施工企业负责人的消防安全意识淡薄,消防安全素质较差,不知道自身的消防安全职责。在进行施工现场检查时,大部分施工负责人认为一切都是建设企业的事,根本与自己无关,消防部门不应该管,主观上舍不得投入资金,购置必备的消防器材。同时施工人员多为临时性职工,文化素质较低。据统计建筑企业中从业人员约3500万人,其中大约有2500万人是来自农村的劳动力,专业人才占职工的比例只有5%左右,大量的没有经过全面职业培训和严格安全教育的劳动力涌向建筑业成为施工人员。他们消防安全意识淡薄,不了解基本的消防知识,消防安全管理工作落实困难。

2建筑施工现场消防安全管理措施

(1)合理规划施工现场的消防安全布局,最大限度地减少火灾隐患。一要针对施工现场平面布置的实际,合理划分各作业区,特别是明火作业区、易燃、可燃材料堆场、危险物品库房等区域,设立明显的标志,将火灾危险性大的区域布置在施工现场常年主导风向的下,风侧或侧风向[7,8]。

(2)加强对明火的管理,保证明火与可燃、易燃物堆场和仓库的防火间距,防止飞火。对残余火种应及时熄灭。

(3)加强对电焊、气焊操作管理。电、气焊作为特殊工种,操作人员必须持证上岗,在操作时应将工作点周围的可燃物清理干净,并配备灭火器材派专人看守,作业完后,应认真检查现场,防止阴燃着火。

(4)加强电气设备管理。建筑工地电气设备虽多为临时性的,也必须由电工进行安装和修理,经专业人员检查合格后方可通电使用。严禁将电线敷设在可燃物上,检查中发现可能引起火花、短路、发热和绝缘损坏等情况,必须立即修理。

(5)加强对生石灰和易燃物品的管理。生石灰是一种易被忽视的点火源,当生石灰遇水发热时形成的高温足以引燃附近的可燃物,因此生石灰附近不可堆放可燃物。

(6)施工现场应严禁吸烟,吸烟应在吸烟室或安全地点。

(7)施工现场留出必要的防火间距加强现场道路的管理,保证发生火灾时消防车辆通行。

(8)临时工棚应单独设置,并配备消防工具和器材有条件的应设蓄水池。

3对建筑施工企业的消防安全管理措施

高层建筑火灾风险分析篇5

【关键词】高层住宅;火灾;风险分析;事故树

引言

近年来随着经济的发展,高层住宅建筑在生活中越来越常见,但由于其层数较多、结构复杂、人员集中,一旦发生火灾,往往造成较大的人员伤亡与财产损失,因此,高层住宅建筑的火灾预防工作尤其重要。应认真研究高层住宅建筑的火灾特点及发展规律,以满足高层住宅消防安全的需要。本文通过对住宅建筑的火灾事故统计,分析其原因,运用安全系统工程理论对高层住宅建筑火灾事故进行分析,最后提出高层住宅建筑的防火对策措施。

1.高层住宅建筑的火灾特点

高层住宅建筑层数多,容纳住户数量大,人员相对密集,生活用品较多,火灾载荷大,因而高层住宅建筑比低层建筑火灾风险大且损失更严重,其火灾特点主要有如下几点。(1)火势蔓延途径多、速度快。高层住宅建筑的内部常设有管道井、电梯井、楼梯间等竖向管道井。由于功能的需要,这些井道通常贯穿了若干甚至整个楼层,如果在设计阶段没有设置防火隔层设施或者防火隔层设施不够完善,发生火灾时,易形成“烟囱”效应,极易形成立体火灾,助长烟火从而为火势蔓延提供途径。(2)火灾荷载大,起火因素多。高层住宅类建筑内部可燃物品非常多,如壁纸、吊顶、电视墙等可燃装饰材料;沙发、床、化纤地毯、衣柜等家具用品。另外生活用电器设备较多,电气线路较复杂,火灾危险性较大,容易发生火灾事故。据统计,一般住宅楼的火灾荷载密度可达35kg/m2~60kg/m2,一旦发生火灾,极易在较短的时间内形成大面积火灾[1]。(3)安全疏散难度大,疏散方式单一。高层住宅都在10层以上,层数较多,垂直疏散的距离大,需要较长的时间才能使人员疏散到安全地点。高层住宅发生火灾时居民主要靠楼梯间进行疏散,如果楼梯间阻烟火能力差,烟气会很快弥漫在楼梯间,严重阻碍居民的疏散。而居民为了出行方便、通风等原因将常闭式防火门处于常开状态,又增大了烟气进入防烟疏散楼梯间内的可能性。(4)扑救困难。受消防设备扑救高度条件的限制,高层住宅火灾扑救主要依靠建筑自身的消防给水设施,常因受到消防设施的条件限制,扑救工作很难有效展开。比如,室内的消防水量难以满足扑救大面积的火灾的用水量需要。另外,很多高层住宅的火灾不能得到有效控制都是因为建筑楼内消防设施存在问题,比如2014年10月,位于天津红桥区的一栋高层住宅的17楼居民家中发生火灾,火势很快蔓延,原本楼道内有两处消防设备,可水带和灭火器都没配备齐全,甚至消火栓内连水都没有,消防员只好接起200多米长的水带,从1楼把水引上18楼灭火,这就使得消防工作不能顺利展开,因而火势不能得到有效控制。还有的高层建筑没有设置消防楼梯,消防人员很难第一时间赶到火场,错过了灭火的最佳时期。

2.高层住宅建筑火灾原因统计分析

2013年,全国共统计火灾38.8万起,其中居民住宅共发生火灾11.7万起,造成1215人死亡,起数占总数的30.1%,亡人占总数的57.5%[2]。全年住宅发生55起较大火灾,占较大火灾总数的47.0%。住宅火灾主要原因是生活用火不慎、吸烟不慎、玩火,详见图1。其中生活用火不慎主要有炊事用火、取暖用火、燃放烟花爆竹;电气主要有电气设备超负荷、电气线路接头接触不良、电气线路短路;照明灯具设置使用不当等原因。

3.高层住宅建筑火灾风险FTA分析

(1)构建高层住宅建筑火灾事故树从高层建筑物火灾的发生机理与调查研究的事故资料来看,火灾没有得到有效控制和疏散失败是高层住宅建筑火灾造成较大损失的主要影响因素,而火灾没有有效控制与逃生失败又是由多方面因素造成的结果。根据火灾发生机理与高层住宅火灾事故资料,绘制高层住宅建筑火灾事故树,见图2,事故树符号及意义见表1。(2)计算最小径集由构建的事故树可知,造成高层住宅建筑火灾事故的基本事件有28个。引起顶上事件发生的基本事件的最低限度的集合叫最小割集,不引起顶上事件发生的最低限度的基本事件的集合叫最小径集[3]。通过计算,本事故树共有1296组最小割集,8组最小径集,因为最小割集数量较多,因此只列出最小径集,见表2。(3)结构重要度分析结构重要度分析是从事故树结构上入手分析各基本事件的重要程度。根据上面得到最小径集进行结构重要度排序,得到结果如下:由上述结果所知,居民生活用可燃物、临时存放的可燃物品、未及时报警、消防通道堵塞、未及时发现火情、疏散通道放置杂物、火灾应急照明故障、防火门状态常开、探测报警系统故障、消火栓故障、灭火器失效、居民不会操作等是造成高层住宅建筑火灾的主要原因。

4.高层住宅建筑防火建议措施

(1)做好消防宣传,普及消防科学知识,教育居民注意家庭火灾隐患,加强对家中可燃物品、火源及电源的管理。(2)消防通道一定要保持通畅,不乱堆杂物,防火门使用后应及时关闭。(3)物业应加强对消防设备的维护保养,确保火灾探测报警设备、消火栓、灭火器等设备完整有效。(4)合理设置疏散通道并设置符合国家规定的消防安全疏散标志和应急照明设施,以帮助被困人员及时逃生。(5)物业公司应注重从业人员的业务素质的培养,提高其消防安全管理水平。

5.结论

(1)随着高层住宅越建越多,火灾事故与日俱增,居民消防意识淡薄及日常管理的不到位,是火灾事故多发的主要原因。(2)事故树作为安全系统工程的重要研究方法,应用于高层住宅火灾事故分析上,能够直观地描述高层住宅火灾事故的因果关系,找出影响高层住宅火灾事故的基本事件,为预防高层住宅火灾事故提供理论依据。(3)高层住宅火灾扑救应立足于建筑室内消防设施,应加强消防设施的维护保养,为居民创造安全的居住环境。

参考文献:

[1]张禹.高层住宅防火安全存在的误区及预防措施[J].低温建筑技术,2014,(3):137-138.

[2]公安部消防局.中国消防年鉴2014[M].昆明:云南人民出版社,2014:289-291.

高层建筑火灾风险分析篇6

【关键词】 事件树法公众聚集场所火灾财产损失定量评估

1 前言

火灾风险评估,包括定性评估和定量评估,具体包括火灾时人员的有效避难评估、火灾时的财产损失评估及消防措施的可靠性和有效性评价等;其中前两项评估是火灾风险评估的核心内容[1]。开展建筑火灾财产损失定量评估,有助于实现消防投入、安全生产经营、降低火灾损失的协调统一,为火灾保险提供依据,为建筑性能化设计奠定基础,达到提高火灾安全投入效益、火灾防治更加有效、安全管理水平更高的目标。

火灾风险定量评估,是以系统发生事件的概率为基础,依据大量数据和数学模型,计算火灾风险大小,并以之衡量系统火灾安全程度。火灾风险定量评估方法,通常包括建筑火灾安全工程法(L曲线法)、消防评估CrispⅡ模型、火灾风险评估方法FIRECAM、火灾风险评估方法CESARE-Risk模型、事件树法、事故树评估方法及模糊数学评估法等[2]。

火灾可能导致的财产损失评估,包括直接财产损失评估和间接财产损失评估。本文主要针对建筑火灾造成的直接财产损失,运用概率论相关知识,根据建筑火灾不同发展阶段的成长概率,采用事件树评估法和蒙特卡洛模拟分析法等,评估指标包括统计建筑物内的火灾荷载、预估建筑火灾时烧损面积、建筑物使用年限内的可能烧毁面积和财产损失、火灾引起建筑物坍塌等。

2 事件树评估法

2.1 评估程序

本文用事件树评估方法,分析计算火灾发生后蔓延到各个不同阶段的概率。根据所计算的概率,预估建筑火灾时烧损面积、建筑物使用年限内的可能烧毁面积和财产损失。

表1系统构成因素及符号表

表2火灾各阶段防灭火设施设备的有效实施概率取值

表3建筑物火灾发生频率取值表

表4火灾各阶段成长概率和烧毁面积计算结果表

根据火灾阶段1~4的特征,确定各阶段各系统及构成要素。分析系统及各要素的因果关系,确定成功与失败两种状态及其可能的概率。从火灾阶段1开始,按照系统要素的排列次序,分阶段从左向右逐步编制与分析事件树。根据各节点确定的成功与失败概率值,进行定量分析与计算,得出火灾各阶段的成长概率。根据火灾各阶段的成长概率和相关数据,进行火灾财产损失评估。其基本程序如图1所示。

2.2 火灾成长概率

(1)火灾阶段划分。根据火灾发展过程中的不同危险程度和消防设施灭火的不同效果,将火灾从起火至蔓延至整个防火分区划分为4个阶段[2~3]。每个阶段的火灾特点及主要防灭火措施的有效性如下:

阶段1,火灾初期发展阶段,是从起火至建筑物内人员使用灭火器或自动喷水设施启动扑灭火灾的阶段。

阶段2,火灾继续发展阶段,火灾在阶段1没有得到有效扑灭或控制,是从使用灭火器或自动喷水设施扑救失败至使用消火栓系统灭火的阶段。

阶段3,火灾充分发展阶段,火灾在阶段2没有得到控制继续发展,是从使用消火栓系统扑救失败至借助消防队力量控制火灾的阶段。

阶段4,火灾进一步发展阶段,火灾在阶段3没有得到有效控制蔓延,是从消防队力量控制火灾至起火点火灾蔓延到整个防火分区的阶段。

(2) 相关符号及含义。火灾发生发展过程中,每个火灾阶段中,事件树及每个分支,涉及的子系统或因素及符号较多,系统构成因素及符号表如表1。

(3)阶段1的火灾成长概率及临界时间。在使用火灾探测报警系统、灭火器或自动水喷淋三种防灭火措施的条件下,对火灾超出阶段1可能的发展情况,事件树分析图如图2:

根据以上事件树分析,发生如下两种情况,火灾超出阶段1发展到阶段2:

a火灾自动报警成功自动水喷淋灭火失败灭火器灭火失败阶段2

b火灾自动报警失败灭火器灭火失败阶段2

火灾超出阶段1的火灾成长概率计算,PFph1 = pa1(1-pa2)(1-pa3)+(1-pa1)(1-pa3)。

用Q表示热释放速率,单位为kW;t表示起火后的时间,单位为s;t0 为开始有效燃烧的时间,单位为s;为火灾增长系数,单位为Kw/s2,根据商贸城内可燃物品种类,易燃物较多,火灾传播速度较快,参照美国消防协会标准NFPA,取值0.04689[2~3]。火灾初期的热释放速率计算为。

在火源的热释放速率没有超过950kW时,火灾可以被灭火器扑灭;火源热释放速率从0开始达到950kW所经历的时间,即是火灾可以被灭火器扑灭的临界时间。阶段1的临界时间,即为灭火器扑灭火灾的临界时间TFph1,此时TFph1=t。TFph1的计算[2~3]为TFph1=。

(4)阶段2的火灾成长概率及临界时间。阶段2火灾继续发展,室内温度升高,产生高温有毒烟气,室内排烟设备启动,使用室内消火栓灭火。使用排烟设备和室内消火栓防灭火条件下,阶段2可能的发展情况,事件树分析图如图3。

根据以上事件树,发生以下两种情况,火灾超出阶段2发展到阶段3:

a排烟设备启动成功室内消火栓灭火失败阶段3

b排烟设备启动失败阶段3

火灾超出阶段2的火灾成长概率,PFph2= PFph1(1-pb1pb2)。

阶段2火灾发展中产生高温有毒的烟气,当烟气层的高度下降到对人有危害的高度(通常为1.5m)、或烟气层的热辐射能量大于0.25W/cm2,就会影响室内消火栓灭火或对人体造成灼伤,即为阶段2的临界时间,用TFph2表示,单位为s。TFph2可以用经验公式,也可以用区域模拟软件计算得出[2~3]。

(5)阶段3的火灾成长概率及临界时间。阶段3火灾继续发展,火势发展很快,仅依靠室内防灭火措施自救很难扑灭或控制火灾,需借助消防队力量控制火灾。在借助消防队力量灭火的条件下,阶段3可能的发展情况,事件树分析图如图4。

根据以上事件树,火灾发展超出阶段2,当消防队力量及时有效扑救灭火,火灾在阶段3被扑灭。当消防队力量及时有效扑救灭火失败阶段4,火灾超出阶段3的火灾成长概率,则PFph3= PFph2(1-pf3)。

阶段3的临界时间,应是火灾从开始发展到轰燃阶段经历的时间。一般认为当着火点烟气层的温度达到300℃或地板处的辐射通量大于20Kw/㎡时,就会发生轰燃。

根据起火点不同的装修材料和空间结构确定烟气层温度,阶段3的临界时间用TFph3表示,时间为s;Th烟气层温度,单位是℃;Q表示热释放速率,单位为kW;hk为室内墙壁的有效传导系数,单位为kW/m2K;AT为室内表面积,单位m2;A为开口面积,单位m2;H为房间高度,单位m2;T∞为环境温度,单位是℃;T0 室内温度,单位是℃;kpc为热惯性,单位为kW2s/m4K2;t火灾燃烧时间,单位为s。计算如下[2~3]:

TFph3=t

高层建筑火灾风险分析篇7

摘 要:随着我国建筑的高度不断增加,高层的建筑设计方法理念以及它的施工工艺与普通高层住宅和中、低层住宅都会有很大的变化,尤其是高层建筑,需要考虑的因素会较多。例如,电梯数量、消防设施、通风排烟设备和人员安全疏散设施,这些相比都会更加的复杂。与此同时,建筑引起火灾有多种因素,使得扑救难度加大,所以,高层建筑应立足于自防自救,采取可靠的防火措施,以来达到预防火灾的目的。

关键词:高层建筑;消防弱电系统;安全

为了使高层建筑消防安全全面提高,本文作者将从消防弱电系统的施工和高层建筑弱电系统设计的各个环节进行了全面的分析,让消防弱电系统使用起来更加便利。

1、高层建筑的火灾危险性

相对服务功能较刘全的高层建筑,豪华的内部装修,较高的建筑标准,较大的投资,所以,相比之下涉及到的安全问题也会比较多,但是消防安全是所有安全问题中最重要的,一旦发生火灾,产生的危害就非常大,后果非常严重。高层建筑的火灾危险性有以下几方面特点:

1.1火险隐患多

高层建筑主体建筑高,层数多,功能复杂,大多数高层在主体建筑底层建有裙楼,作为商场、餐饮、娱乐等商业功能使用,主体建筑多数作为住宅、办公、宾馆等使用,此外,在建筑内部用电设备多,可燃物集中,火灾荷载密度大。

1.2人员疏散困难

高层建筑着火时,要使人员迅速疏散到地面或避难空间十分困难。由于层数多,垂直疏散距离长,疏散时间也要长许多。往往烟气的流动速度要比人员疏散的速度快上100多倍,而且,人的疏散方向与烟气蔓延方向相反,进一步增加了人员疏散的艰难和危险性。

1.3装备要求高,扑救难度大

高层建筑与普通建筑相比,火灾扑救难度相对较大。因此,高层建筑很难通过消防车实施人员营救,一般立足于自救,即主要依靠建筑内部自身的消防设施来保障。

2高层建筑消防设计的执行标准

按规定,我国的建筑高度为100米及以下的建筑物的消防系统设计按国标GB500 16-2014《建筑设计防火规范》执行。地下工业或民用建筑按《人民防空工程设计防火规范》执行。国标是属于强制性技术规定,是约束业主、设计单位、施工单位和验收单位的共同标尺。

高层建筑尚无相应国标,属于相应的适用设计与验收规范暂缺阶段。在实际工作中只能参照有关国标及国际标准,按照当地消防主管部门意见,本着安全第一的精神,尽量仔细周详地完成设计工作。

同时,按国标GB50116-2013《火灾自动报警系统设计规范》要求,建筑物作为火灾自动报警系统的保护对象,共分三级,即特级、一级、二级。凡建筑高度超过100米的建筑为高层建筑,属于特级保护对象。其火灾报警与联动控制系统的设计要求高于一般建筑,其技术方案必要时需经专家论证。

3消防弱电系统的设计分析

3.1火灾自动报警系统

3.1.1火灾探测器布置标准较高:一般高层建筑感烟探测器保护面积为60平方米,保护半径为5.8米。但如果是更高层建筑则提高标准,此项目平层探测器的布置一般以接近正方形布置,较为经济,感烟探测器保护面积为40-50平方米。

3.1.2报警探测器安装场所:某项目中超过5平方米以上的房间均设探测器,即使卫生间也不例外。电气竖井不论大小,因其火灾发生可能性大,作用重要而逐层进行了设置。手报的设置半径为步行距离30米,一般设于楼梯间及出口等逃生通道附近,以便人员在逃离火场方便报警。

3.2避难层的消防安排

避难层的设置是高层建筑的特殊应急措施。它用于火灾避险时人员暂留,以弥补高层给消防设备带来的灭火能力不足(国内尤甚)。一般每隔50米高度设一个避难层,100-200米高度设两个避难层。在避难层中一般不设日常办公或生活场所,即其建筑空间仅用于救灾应急。但为了解决高层实际问题,也为了满足消防自身的需要,通常在保证人员躲避火灾需要的前提下,设置部分设备机房,如防烟正压风机、排烟风机、空调机组、新风机组等,并且要求避难层的正压进风系统独立设置,送风量不小于每小时30立方米。避难层的排烟风机和正压风机在火灾时用同时工作区段,排烟口和进风口不应贴邻布置。避难层除了主要作为机房和人员避难外,在其它方面也可以做详细要求:

3.2.1避难层的烟感器布置条件也是保护半径不大于5.8米(如设置温感探测器,保护面积不大于20平方米)。

3.2.2手动报警按钮也是设于出入口近旁,每个防火分区至少设置一个手报,每个手报的负责范围半径不大于30米,一般距地 1.4米左右墙上安装。

3.2.3为了保证紧急情况下的通讯畅通,避难层应每隔20米设置一个消防专用电话分机或电话插孔。

3.3挡烟垂壁的设置

高层消防从严把握的一个体现是消防措施齐全,手段多样,互为补充。根据火灾的一般规律,初始阶段产生大量烟雾,烟雾先向上升到天花板,然后沿天花板M向蔓延。针对这一规律,在地下各层及裙房各层(这些地方一般易燃物品多)设置挡烟垂壁,当火灾发生时,挡烟垂壁下垂(一般1.5米),使产生的烟雾在短时间内限制在预先设定的区域,争取人员逃离、救火的宝贵时间、延缓火灾危害扩张的速度。显然,在高层建筑中设挡烟垂壁,并与消防控制室的联动控制柜相连是十分必要的。

3.4电动防火卷帘门的设置

电动防火卷帘门主要起隔离作用,其设置位置一般在地下汽车库、裙房商业区及自动扶梯周围,按建筑的防火分区界限安排。一般的电动防火卷帘门内外侧各设一对烟感器、温感器,除了控制箱(一个)可设在内侧或外侧外,内外侧还应各设一个手动启停按钮,距地1.4米左右明装,而位于自动扶梯周围的电动防火卷帘门,其烟感器、温感器只设在外侧(本层工作区一侧)。

无论哪种电动防火卷帘门,在高层建筑中整个消防系统的一个组成部分,其动作不是独立的。因此,电动防火卷帘门两侧从属于卷帘门控制箱的烟感器、温感器,均应与火灾报警系统的探测器回路相接并在一个系统内工作。

3.5正压送风系统

火灾时人员不能进入电梯内,因为火灾发生后电梯迫降一层未成而失电,便可能停留于火场中,梯中人员会为烟气窒息。此时人员的逃生通道应是楼梯问。因此,保持楼梯问的正压使烟火不得入内就十分重要了。正压风机一般处于屋顶,与各层的电动风口联动。火灾初起时打开风口,启动正压送风机,使楼梯间、电梯厅处于正压状态。

例如某项目中共有8个楼梯,每个楼梯前室和楼梯间都设置了正压送风,能够满足人员逃生的需用。

综上所述,随着现代社会科技的不断发展,高层建筑的高度特点是带来消防弱电系统设计特点的根本原因。就显示方向来看,机动消防车辆的消防能力不可能跟上高层建筑的发展,因此,高层建筑的消防设计应立足于建筑内部的消防系统建设,在智能化的旗帜下,我们应该努力完善火灾探测、报警、扑救等自动功能,将火险消灭在萌芽状态。另外,消防系统是一个由建筑、设备及电气等专业构成的整体,专业间的密切配合及统筹安排十分重要。所以,总体来讲,这些应是保证高层建筑安全的基本思路。

参考文献:

[1]《建筑弱电工程设计施工手册(精装)》

高层建筑火灾风险分析篇8

1.高层建筑的火灾危险性分析

从以往火灾案例中,我们可以看到高层建筑一旦发生火灾,往往造成严重的伤亡事故和经济损失,如1974年巴西胜保罗25层的“焦玛”大楼火灾,烧死227人,烧伤300人;1980年美国27层的米高梅饭店火灾,烧死84人,烧伤679人;1985年我国天鹅宾馆火灾造成10人死亡。可见高层建筑的火灾危险性是极大的。

1.1可燃物较多,火势蔓延较为迅速

在高层建筑的楼梯间、电梯间、管道井、风道、电缆井、排风道等竖向井道部位,如果防火分隔或防火处理不好,一旦发生火灾就好像一座座高耸的烟囱,成为火势迅速蔓延的途径。高级旅馆、图书馆、档案楼、科研楼、办公楼等高层建筑,一般室内装修家具等可燃物较多,一旦起火,发烟量大,燃烧猛烈,火灾容易蔓延。据测定,在火灾初起阶段,因空气对流在水平方向造成的烟气扩散速度为0.3m/s;在燃烧猛烈阶段,由于高温状态下的热对流而造成的水平方向烟气扩散速度为0.5~0.8m/s,烟气沿楼梯间或竖向管井扩散速度为3~4m/s。如一座高100m的高层建筑,在无阻挡的情况下,烟气能在半分钟内达到顶层。日本在一个医院里做过燃烧试验,证明在几分钟内就能把每层3500m2的二十三层大楼都充满烟气。

建筑物越高,风速越大。风速增大,火势的蔓延扩大速度也相应增加。据测定:距地面高度10m处风速为5m/s;30m处风速为8.7m/s;60m处风速为12.3m/s;90m处风速为15m/s。

1.2建筑高度较高,平面结构复杂,安全疏散困难

高层建筑的特点,一是层数多,垂直疏散距离长,疏散到地面需要较长的时间;二是人员集中,疏散时容易出现拥挤情况;三是发生火灾时烟气和火势向上蔓延快、且易窜入楼梯间,而火灾发生时人们大量涌向楼梯,增加了疏散难度(平时使用的普通电梯,在火灾时必须切断电源,停止使用,因此,高层建筑的安全疏散主要靠楼梯)。火灾案例分析表明,被烟薰死的(包括被烟薰倒后烧死的),占火灾死亡人数的一半以上。

1.3火灾扑救难度较大

高层建筑发生火灾时,消防队员使用的灭火救护设施往往不易达到建筑高度,因此,扑救高层建筑火灾主要立足于室内消防给水设施。由于受到各种条件的限制,扑救的难度很大。火灾现场热辐射强、烟雾浓、火势向上蔓延的速度快和途径多,消防队员难以堵截;当火势扩大,形成大面积火灾时,室内消防水量显然不足,需要利用消防车从室外进行补给,但消防水带耐压能力常常不能适应需要。此外,建筑物如果没有安装消防电梯,消防队员则需要“全副武装”的通过楼梯冲上高层,不仅体力消耗大、速度慢,还会与向下疏散的人流发生对撞而延误时间,不能及时到达着火层进行扑救,消防器材也不能随时得到补充,均将严重影响扑救。

1.4发生火灾概率较大

高层建筑内部功能一般较为复杂,用电设备繁多,存在多种着火源和大量可燃物,如管理不善,很容易发生火灾。特别是一些建筑面积较大、层数较多的高层公共建筑,情况就更为复杂,存在大量的火险隐患,一旦发生火灾,将会造成严重后果。

2.高层建筑防火安全对策

我国消防工作方针是“预防为主,防消结合”。只要我们能够充分认识高层建筑防火安全的重要性,从设计、施工、使用管理、维修等方面认真贯彻消防工作方针,坚持从严管理、防患未然、立足自救的原则,积极采取必要的有效措施,防止火灾发生和发生火灾后尽量减少损失是完全可以做到的。

2.1严把消防设计关

在进行高层建筑设计过程中,必须结合建筑的各种功能要求,认真考虑防火安全,做好防火设计。设计人员应严格按照GB50045~1995(2005年版)《高层民用建筑设计防火规范》的要求,进行防火设计。设计单位的各级负责人应对工程的防火设计负责,凡不符合设计防火规范的工程设计,不得上报审批或交付使用。

在进行高层建筑的防火设计时,应着重考虑以下几方面:①总体布局要保证畅通安全;②合理划分防火分区;③安全疏散路线要简明直接;④尽量做到建筑物内部装修、隔断、家具、陈设的不燃化或难燃化,控制可燃物的存放数量,以减少火灾的发生和降低蔓延速度;⑤构造设计要使建筑物的基本构件(墙、柱、梁、楼板、防火门等)具有足够的耐火极限,以保证火灾时结构的耐火支持能力和分区的隔火能力;⑥做好建筑物室内、外消防给水系统的设计,保证足够的消防用水量和最不利点的灭火设备所需要的水压;⑦采用先进可靠的自动报警和灭火系统并正确地处理安装位置及联动控制功能。

2.2加强施工阶段的消防监督检查

凡承揽工程的施工单位,对建筑工程的防火构造、技术措施和消防措施等,必须严格按照经消防设计审核合格的设计图纸进行施工,不得擅自更改。对防火结构的保护层、设置于吊顶或管井内防火分隔物、以及暗敷的消防电源线路等,必须认真做好施工和监督检查记录。

施工中,如因材料、设备等不满足设计要求,需要变更设计时,施工单位应与设计单位、建设单位、公安消防监督机关共同协商,采取相应的变更措施。

2.3认真履行各级消防安全责任,建立健全各项防火安全检查制度

通过对高层建筑火灾原因进行分析,80%以上的火灾是由于人的疏忽大意或操作上的不当造成的。起火因素大多是由于用火不慎,如液体、气体燃料的泄露引起爆炸;吸烟不慎,烟头未熄使可燃物阴燃起火;电气设备的短路或超负荷用电,以及照明灯具或电热设备靠近可燃物等引起火灾。除此以外,还有特殊工程人员违章操作、无证上岗或临时动用明火作业等违章行为造成的火灾。因此,每个经营者、管理者和居住者应该增强责任意识和防火意识,把预防工作作为整个管理工作的一个重要部分,使防火工作经常化、制度化、社会化。

2.4认真做好消防设施的日常维护管理和保养,确保其在火灾时能发挥应有的作用

高层建筑在使用过程中,其设备一般都有定期的维修检查制度,包括结构安全、设备更新等,对于消防设施,更应定期检查维修,因为消防设施都在发生火灾时发挥作用,平时不用易暴露问题,然而一旦需要其发挥作用时失灵,将会造成不可弥补的损失。特别是现代化的消防设施,如火灾自动报警和灭火系统、防排烟设备、防火门、防火卷帘、消防泵和消火栓、消防控制室和仪表设备等,都应该有严格的检查制度,设专人定期测试检查,凡失灵损坏的要及时维修、更换,确保完整好用,并建立档案记录每次检查情况。

推荐期刊