线上期刊服务咨询,发表咨询:400-808-1701 订阅咨询:400-808-1721

精准农业发展分析8篇

时间:2023-08-27 15:16:46

精准农业发展分析

精准农业发展分析篇1

关键词:精准农业;研究进展;发展方向

中图分类号:S-0文献标识号:A文章编号:1001-4942(2013)09-0118-04

我国农业资源约束日益突出,农业生态环境退化加剧,化肥占农业生产成本25%以上,但利用率仅为30%~35%,远低于发达国家的50%~60%,不仅造成了经济上的巨大损失,更带来了严重的地下水污染和生态环境破坏。国内外研究表明,精准变量施肥可使多种作物平均增产8.2%~19.8%,降低总成本约15%,化肥施用量减少约20%~40%,土壤理化性质得到改善。因此,解决上述问题的最佳途径是大范围地推广应用按需变量施肥的精准农业和测土配方施肥技术。

1 精准农业及其在我国的实践与发展

精准农业[1~5]又称精细农业,它以信息技术为基础,根据田间每一操作单元的具体条件,定位、定时、定量地调整土壤和作物的各项管理措施,最大限度地优化各项农业投入的量、质和时机,以期获得最高产量和最大经济效益,同时兼顾农业生态环境,保护土地等农业自然资源。

精准农业技术是基于信息技术、生物技术和工程装备技术等一系列科学技术成果上发展起来的一种新型农业生产技术,由全球定位系统、农田信息采集系统、农田遥感监测系统、农田地理信息系统、农业专家系统、智能化农机具系统、环境监测系统、网络化管理系统和培训系统等组成。其核心技术是“3S”(即RS、GIS、GPS)技术[6,7]及计算机自动控制技术。

遥感(RS)技术[8]的主要作用是农作物种植面积检测及产量估算、作物生长环境信息检测(包括土壤水分分布检测、水分亏缺检测、作物养分检测和病虫害检测)、灾害损失评估。地理信息系统(GIS)[9]是精细农业技术的核心。应用该系统可以将土地边界、土壤类型、地形地貌、灌溉系统、历年土壤测试结果、化肥和农药使用情况、历年产量等各种专题要素地图组合在一起,为农田管理提供数据查询和分析,绘制产量分布图,指导生产。应用全球定位系统(GPS)可以精确定位水、肥、土等作物生长环境和病、虫、草害的空间分布,辅助农业生产中的播种、灌溉、施肥、病虫害防治工作。另外,农机具上安装GPS系统还可以进行田间导航,实现变量作业。

我国在1994年就有学者进行精细农业的研究。国家“十五”科技战略重点将发展精准农业技术、提高农业生产水平作为重中之重,并首次在“863”计划中支持研究机构进行精准农业技术自主创新。目前一些地区已经将精细农业引入生产实践中,在北京、上海、黑龙江以及新疆一些地区建立起一批精细农业示范基地,并取得了可观的经济效益。

2 国内精准农业技术研究现状

从技术角度来看,完整的精细农业技术由土壤及作物信息获取、决策支持、处方生成、精准变量投入四个环节组成(图1)。信息获取技术、信息处理与分析技术、田间实施技术是精准农业不可或缺的组成部分,三者有机集成才能实现精准农业的目标。

图1 精准农业(PA/PF)技术组成

2.1 土壤及作物信息获取[10,11]

由全球卫星定位系统(GPS)获得的定位信息、遥感系统(RS)获得的遥感信息和基础、动态信息构成了农业生物环境监测数据信息。

2.1.1 土壤环境信息的获取 (1)土壤养分信息的获取:土壤养分的快速测量一直是精准农业信息采集的难题。目前主要的测量仪器一是基于光电分色等传统养分速测技术的土壤养分速测仪,其稳定性、操作性和测量精度虽然尚待改进,但对农田主要肥力因素的快速测量具有实用价值。如河南农业大学开发的YN型便携式土壤养分速测仪[12],相对误差为5%~10%,尽管每个项目测试所需时间仍在40~50 min,但较传统的实验室化学仪器分析在速度上提高了20倍。二是基于近红外(NIR)多光分析技术、极化偏振激光技术、离子选择场效应晶体管(ISFET)集成元件[13,14]的土壤营养元素快速测量仪器,相关研究己取得初步进展,有的已装置在移动作业机上支持快速信息采集。

(2)土壤水分信息的获取:土壤水分的测量是精细农业实施节水灌溉的基础。目前常用的水分测量方法有基于时域反射仪(TDR)原理的测量方法、基于中子法技术的测量方法、基于土壤水分张力的测量方法和基于电磁波原理的测量方法[15]。

(3)土壤电导率信息的获取:土壤电导率能不同程度地反映土壤中的盐分、水分、有机质含量、土壤质地结构和孔隙率等参数的大小[16,17]。有效获取土壤电导率值对于确定各种田间参数时空分布的差异具有重要意义。快速测量土壤电导率的方法有电流-电压四端法和基于电磁感应原理的测量方法。

(4)土壤pH值的获取:目前适合精细农业要求的pH值检测仪器主要有光纤pH值传感器和pH-ISFET电极[18~21]。光纤pH值传感器虽然易受环境干扰,但在精度和响应时间上基本能满足田间实时快速采集的需要。基于pH-ISFET电极的测量方法具有良好的精度和较短的响应时间,但易受温度影响,需要温度补偿,且电极的寿命较短。

(5)土壤耕作层深度和耕作阻力:圆锥指数CI(Cone Index)可以综合反映土壤机械物理性质,表征土壤耕作层深度和耕作阻力[22]。圆锥指数CI是用圆锥贯入仪(简称圆锥仪)来测定的。圆锥仪的研制工作不断发展,从手动贯入到机动贯入,从目测读数到电测记录,出现了多种多样的圆锥仪。

2.1.2 作物生长信息的获取 作物生长信息包括作物冠层生化参数(叶绿素含量、作物水分胁迫和营养缺素胁迫)、植物物理参数(如根茎原位形态、叶片面积指数)等。作物长势信息是调控作物生长、进行作物营养缺素诊断、分析和预测作物产量的重要基础和根据。主要方法有三种:一是从宏观角度利用RS遥感的多时相影像信息研究植被生长发育的节律特征[23]。二是在区域或田块的尺度上,近距离直接观测分析作物的长势信息。三是基于地物光谱特征间接测定作物养分和生化参数。

2.1.3 病虫草害信息的采集 病虫害和杂草是限制农作物产量和品质提高的重要因素,及时、准确、有效检测病虫害的发生时间、发生程度是采取治理措施的基础。目前,病虫草害信息的自动快速采集主要是基于计算机图像处理和模式识别技术,以研究植株的根、茎、冠层(叶、花、果实)等的形态特征作为诊断判读的目标。主要分析方法有光谱特征分析法、纹理特征分析法、形状特征分析法等[24~29]。

2.1.4 作物产量信息的获取 获取作物产量信息是实现作物生产过程中变量管理的重要依据。国际上已商品化的谷物联合收割机产量监视系统主要有美国CASE IH公司的AFS(advanced farming system )系统、英国AGCO公司的FieldStar系统、美国John-Deree公司的Greenstar系统、美国AgLeader公司PF(precision farming)系统及英国RDS公司的产量监测系统等[30]。这些系统具有功能较强的GIS综合功能,能自动完成产量监测和生成产量分布图。我国谷物产量测产系统的研究起步较晚,目前尚在研制中。

2.2 决策支持与处方生成

分析决策系统[31]主要包括地理信息系统(GIS)、作物生产函数或生长模型和决策系统三部分,决定变量施肥效果[14]。

地理信息系统(GIS)用于描述农田属性的空间差异和建立土壤数据、自然条件、作物苗情等空间信息数据库,进行空间属性数据的地理统计。它主要应用于离线的处方控制方式中,而在实时控制模式中没有使用的必要。

作物生产函数或生长模型是生物技术在农业实际生产中的应用。它将作物、气象和土壤等作为一个整体进行考虑,应用系统分析的原理和方法,综合农学领域内多个学科的理论和研究成果,对作物的生长发育与土壤环境的关系加以理论概括和数量分析,并建立起相应的数学模型。该模型描述了作物的生长过程及养分需求,是变量施肥决策的根本依据。

决策系统根据农业专家长期积累的经验和知识或GIS与作物生长模型的组合分析计算[11],这些存储在GIS系统中的数据信息经由作物生产管理辅助决策支持系统,最终生成具有针对性的优化了的投入决策及对策图,即进行时、空、量、质全方位的田间管理实施处方图,得到施肥的处方图(离线形式)或具体的施肥量(在线形式),并将其存入存储卡或者数据库中,供施肥作业使用。

2.3 变量投入技术

由配套农业设施设备(ICS农机装备和VRT变量投入设备)组成调控实施系统,经全球卫星定位系统GPS定位,在田间管理处方图的指导下实施精细控制,田间实施的关键技术是现代工程装备技术,是“硬件”,其核心技术是“机电一体化”。田间实施技术应用于农作物播种、施肥、化学农药喷洒、精准灌溉和联合收割机计产收获等各个环节中。

3 国内精准农业发展对策

3.1 宣传普及,提升对精准农业的认识

精准农业技术本身能带来可观的经济效益和社会生态效益,同时对提高农民收入、减少农民劳动强度、改善环境质量等有非常重要的作用。

精准农业技术的推广应用涉及精准农业技术本身的发展、农业机械化水平、农业技术培训、农民承担生产风险的能力等,其中农业技术培训是推广应用过程中的关键。由于农民获得信息的渠道有限,只有通过农业技术培训,农民才能认识到精准农业技术的优点并在技术培训过程中掌握这项技术,精准农业技术才能在生产实践中大范围地推广应用。

3.2 完善精准农业的配套技术

通过测土配方和相应的变量施肥技术,改变农民传统施肥观念,根据土地的肥力现状按需变量配合施用肥料,提高肥料利用率,减少面源污染,增产增收。

做好精准农业资料收集和信息标准化工作,应用3S技术建立农作物品种、栽培技术、病虫害防治等技术信息网络以及农业科研成果、新材料等科研信息网络,实现农业资源的社会化、产业化。

3.3 选准适合国情的精准农业项目

我国大部分地区尤其是较落后地区的农村承包地普遍处于碎片化状态,难以支撑起发展精准农业的要求,必须通过土地流转达到规模经营的效果。

另一方面,随着农村市场化和产业结构的调整,在垦区农场(如黑龙江大型农场、新疆建设兵团)和大面积作物生产平原区建立“精确施肥”技术示范工程,或联合一些高效益企业(烟草企业、中药材企业等)带动“精确施肥”的发展是结合中国国情发展精确施肥的有效途径。

4 结束语

精准农业的发展在我国尚处于起步阶段,面临诸多问题与困难。而且我国土地相对分散,技术落后,环保意识不强,在相当长的时期内仍然是小农经济占主导成分。因此建立一个集资源化、信息化、知识化、生态化于一体的全方位生态系统,走具有中国特色的精准农业发展之路,是我国农业发展的必然。

《国家中长期科学和技术发展规划纲要(2006~2020年)》中明确把农业精准作业与信息化作为农业领域科技发展的优先主题,精准农业对提高我国农业现代科技水平具有重要作用,具有广阔的发展前景。

参 考 文 献:

[1] 汪懋华.“精细农业”发展与工程技术创新[J].农业工程学报,1999, 15(1): 1-8.

[2] 汪懋华.发展精细农业的思考[J].农机科技推广,2002,2:4-6.

[3] 汪懋华.“精细农业”的实践与农业科技创新[J].中国软科学,1999,4:21-25.

[4] 赵春江,薛绪掌,王 秀,等.精准农业技术体系的研究进展与展望[J].农业工程学报,2003,19(4): 7-12.

[5] 刘 微,赵同科,方 正,等. 精准农业研究进展[J].安徽农业科学, 2005,33(3):506-507.

[6] 母金梅,申志永. 3S 技术在我国农业领域的应用[J].农业工程,2011,1(2):68-70.

[7] 索全义,白光哲,孙 智.精准农业下的土壤养分管理——3S技术在施肥中的应用[J].内蒙古农业科技,2001,土肥专辑:22-24.

[8] 蒙继华,吴炳方,李强子,等. 农田农情参数遥感监测进展及应用展望[J]. 遥感信息,2010,3:35-43.

[9] 潘瑜春,赵春江. 地理信息技术在精准农业中的应用[J]. 农业工程学报,2003,19(4):1- 61.

[10]王凤花,张淑娟. 精细农业田间信息采集关键技术的研究进展[J]. 农业机械学报,2008,39(5):112-121.

[11]罗锡文,臧 英,周志艳. 精细农业中农情信息采集技术的研究进展[J]. 农业工程学报,2006,22(1):167-173.

[12]胡建东,段铁城.便携式土壤养分速测仪技术研究[J].现代科学仪器, 2002,4:27-30.

[13]Hummel J W, Sudduth K A, Hollinger S E. Soil moisture and organic matter prediction of surface and subsurface soils using an NIR sensor[J]. Computers and Electronics in Agriculture, 2001,32(2):149-165.

[14]Birrell S J, Hummel J W. Real-time multi ISFET/FIA soil analysis system with automatic sample extraction[J].Computers and Electronics in Agriculture, 2001,32(1):45-67.

[15]张小超,王一鸣,方宪法,等.精准农业的信息获取技术[J].农业机械学报, 2002,33(6):125-128.

[16]李子忠,龚元石.农田土壤水分和电导率空间变异性及确定其采样数的方法[J].中国农业大学学报, 2000,5(5):59-66.

[17]Sudduth K, Drummond S, Kitchen N. Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture[J]. Computers and Electronics in Agriculture, 2001,32(3):239-264.

[18]张 靖,李先立.光纤pH计的设计[J].环境科学与技术,1999,1:46-49.

[19]荆 淼,李 伟,庄峙厦,等.光纤化学pH传感技术的现状和进展[J].传感技术学报,2002,3:263-267.

[20]贡 献.离子敏场效应晶体管pH电极[J].分析仪器,1995,4:44-47.

[21]杨百勤,杜宝中,李向阳,等.全固态复合pH传感器的研制与应用[J].西北农林科技大学学报,2006,34(10):181-183,188.

[22]张利民,罗锡文.差分GPS定位技术在土壤耕作阻力测量中的应用[J].农业工程学报, 1999,15(4):35-39.

[23]杨敏华,刘良云,刘团结,等.小麦冠层理化参量的高光谱遥感反演试验研究[J].测绘学报, 2002, 31(4):316-321.

[24]纪寿文,王荣本,陈佳娟,等.应用计算机图像处理技术识别玉米苗田间杂草的研究[J].农业工程学报, 2001,17(2):154-156.

[25]王月青,毛文华,王一鸣.麦田杂草的实时识别系统研究[J].农机化研究,2004,11:63-68.

[26]马 骏,王建华.一种基于数学形态学的植物病虫识别方法[J].深圳大学学报(理工版), 2004,21(1):72-75.

[27]陈佳娟,纪寿文,李 娟.采用计算机视觉进行棉花虫害程度的自动测定[J].农业工程学报, 2001,17(2):157-160.

[28]田有文,李成华.基于统计模式识别的植物病害彩色图像分割方法[J].吉林大学学报, 2004,34(2):291-293.

[29]田有文,张长水,李成华.基于支持向量机和色度矩的植物病害识别研究[J].农业机械学报, 2004,35(3):95-98.

精准农业发展分析篇2

关键词 精准农业;推广;关键技术应用;中国

中图分类号 F320 文献标识码 A 文章编号 1007-5739(2017)07-0274-01

我国是农业大国,农业发展对于促进我国经济和社会的发展具有至关重要的作用。近年来,我国农业得到了快速的发展,但是我国的人口数量众多,且依然面临着环境恶化和资源紧缺的问题,只有促进农业的现代化发展才能满足社会发展的需求。在这种背景下,为了实现我国现代化农业的发展,就一定要大力发展精准农业。本文就精准农业的发展现状进行阐述。

随着我国科学技术的不断发展,精准农业成为了人们研究的热门课题。精准农业是一种在信息基础以及地学空间的基础上发展起来的信息化和集约化的农业技术,主要是将生物技术、信息技术和工程技术等高新技术和土壤学、生态学以及农学等有效融合在一起,充分利用现代化的科学技术指导农业生产,以促进农业发展。

1 精准农业概述

精准农业是指在农作物的生产过程中充分利用现代高新技术对其进行精耕细作,以现代农业的生产形式取代传统农业的生产形式,更加注重对农业生产的管理。精准农业通过建立生态学、地学以及农学等模型,采用地理信息系统、全球定位系统以及遥感技术等对农业生产过程中各项活动进行精准的定位,并进行精细管理,以实现农业生产的集约化和信息化。通过这项技术,可以对农作物的产量和投入进行细致分析,在实际生产过程中,对农作物的生长、土壤以及机械设备等进行实时监测,使各种农业资源得到优化配置,发挥农业资源的优势,以获得最大的产量,减少资源浪费,从而不断提高农作物的质量,提高农业生产的效益,促进我国农业进一步发展[1-3]。

2 精准农业发展现状

2.1 我国精准农业推广现状

现阶段,我国精准农业的发展已经取得了一定的成效,农业生产发生了巨大的改变。科技含量大大提升,很多高新技术都尝试着逐渐应用到农业生产中,但是我国农业的总体科技水平还有待提高;魍撑┮翟谥鸾ハ蛳执化农业转变,但仍处于初始阶段;由之前粗放经营的管理方式向精准农业的方向发展,但也仍处于初级阶段。在农业发展过程中,很多常规技术以及高新技术在不断推广,传统的粗放经营模式也已经得到了一定的改变。但是从整体上来说,我国农业总值的增长主要依靠投入生产要素,而科学技术的贡献率还比较低。国外发达国家科学技术在农业生产总值增长中的贡献率达到80%以上,但是我国只有35%左右,每年的农业科技成果推广率不到30%,处于一个比较低的水平。总体来看,精准农业的推广率比较低。

2.2 我国精准农业关键技术应用现状

精准农业的发展需要依赖很多高新技术,因而高新技术应用得越普遍,说明我国精准农业的发展情况越好[4-7]。精准农业发展过程中经常使用的技术主要包括地理信息系统、遥感技术以及全球定位系统。

2.2.1 地理信息系统。地理信息系统是一门将统计学、环境科学、信息学、管理学以及计算机科学等学科融合在一起的新兴学科,其通过使用各种先进的手段和技术来对特定的地区地理空间数据进行采集,并对地理信息进行分析和处理。地理信息系统在我国精准农业发展中的应用已经非常成熟,在实际运用过程中,针对特定地区的地理信息建立农田土地管理模型,然后对地区的自然条件、气候、土壤元素、农作物苗情以及病虫害的发生等进行准确的评估和分析,并针对这些因素的发展趋势制定精准的调控措施,为精准农业的管理提供可靠的数据依据。在实际使用过程中,还可以将其与农业管理辅助决策系统配合使用。

2.2.2 遥感技术。遥感技术是一种获取各种实地信息来源的技术,在精准农业技术体系中具有至关重要的作用,主要核心技术包括影像技术、农田多光谱图像信息分析系统等。遥感技术的一个重要优势就是其成本比较低,比航空摄影的成本减少1/2以上。在精准农业发展中,可以充分利用遥感技术获取田间时空变化信息,在规模化的农作物生产过程中,可以预测农作物的产量,同时预警宏观农情,以农作物和土壤为研究对象,可以建立农作物的条件模型和长势模型。遥感技术的应用也非常广泛,为农业精细管理提供重要的参考[8]。

2.2.3 全球定位系统。全球定位系统是精准农业空间管理的重要设施,其具有采集定位信息以及进行农田测量的作用。目前,在小区式农作物产量的定位计算、农田变量信息的采集中均得到了广泛的应用,将其应用到精准农业管理中,还可以实现机械自动化播种、灌溉和喷药,实现农业机械化变量作业定位。不仅如此,其在环境监测和土地测量等方面也具有良好的作用,是一项发展前景广阔的技术[9-10]。

3 结语

精准农业是农业发展的必然趋势,与传统农业的生产方式相比,精准农业借助于各种高新技术和现代化的管理手段对农业生产实施精细化管理,从而不断提高农业生产的产量和质量。

4 参考文献

[1] 朱勇.浅论我国发展精准农业的途径和策略[J].农业网络信息,2015,12(9):10-13.

[2] 刘焱选,白慧东,蒋桂英.中国精准农业的研究现状和发展方向[J].中国农学通报,2014,23(7):577-582.

[3] 何志文,吴峰,张会娟,等.我国精准农业概况及发展对策[J].中国农机化学报,2015,16(6):23-26.

[4] 金继远,白由路.精准农业研究的回顾与展望[J].农业网络信息,2004(增刊1):3-11.

[5] 陈防,刘冬碧,万开元,等.精准农业与农田精准养分管理现状及展望[J].湖北农业科学,2006(4):515-518.

[6] 何东健,何勇,李明赞,等.精准农业中信息相关科学问题研究进展[J].中国科学基金,2011(1):10-16.

[7] 张仰洪,杨星卫,陆贤,等.精准农业管理决策支持系统的设计与实现[J].遥感技术与应用,2003,18(1):10-13.

[8] 韩永峰,李学营,鄢新民,等.精准农业的技术体系及其在我国的发展现状[J].河北农业科学, 2010, 14(3):146-149.

精准农业发展分析篇3

关键词:农业机械;自动化;现状;发展

随着科技的发展,农业生产中利用农机技术能够极大地提升农业生产水平,促进农业人口农转非的进度,提升农业生产的效率,加快国家农业建设,促进我国的农业生产尽快进入精细化管理阶段。但是因为我国的国情影响,农业生产方式受到传统农业生产方式的惯性影响较大,我国的农业生产和发达国家之间还具有很大的差距,农机自动化利用水平不高。因此,要想提升我国的农业生产水平,改善国家的农业生产现状就应当首先分析我国的农业农机自动化技术的应用现状,然后寻找适合中国国情发展的农机自动化技术推广途径,促进我国的农业生产进入现代化阶段。

1发展现状

1.1农机制造水平低

因为我国的经济等各项发展起步晚,受到了历史因素的影响,农业机械自动化技术的研究还不成熟,很多精良的机械设备只能通过进口的方式实现,或者是通过仿制生产简单的农业机械。这对我国农业机械自动化技术的研究具有不利影响,对农业生产的现代化发展也是一种阻碍。因为我国的农业机械设备科技含量低,很多时候通过仿制等方式满足农业生产需求,这类机械设备的故障率高,自动化程度低,操作困难,因此很多时候限制了农业机械化的推广工作,造成了国内农业机械自动化发展缓慢。

1.2精准化技术发展慢

根据目前国际发展的形势分析,未来农业生产必定是精准化的农业生产模式,这也是科技发展的一种不可逆趋势。但是很多高科技技术掌握在发达国家手中,比如结合GPS、GIS技术形成了新的农业科技,带动了发达国家的农业机械精细化作业,实现了农业生产的精准化发展,这些技术也得到了发达国家的重视。但是,我国对农业精准化作业的认识程度不高,很多时候人们的思想意识不认同精准化农业发展的意义,不仅科技发展落后,思想意识同样不高,因此我国的精准农业发展非常缓慢,已经明显落后于世界水平。提升科技研发能力,促进国内的农业机械自动化技术的发展成为未来农业生产的重要途径,也是实现现代化农业生产的主要方式。

1.3地域差异明显

从国土面积上分析,我国属于世界第三大国,我国的自然资源丰富,国土辽阔,国境内具有多种地形。因为我国的地形复杂,因此我国的农业发展根据地理环境的不同表现出很多差异。同时因为地理环境不同使得国内的经济发展不平衡,有些地区的经济发展水平高,有些地区仍处于贫困状态。特别是偏远地区的经济发展缓慢,农民的思想落后,农业生产中使用机械作业的比例低。再加上我国很多地区的农业生产不适合使用大型机械设备,因此农机技术和农机使用的推广受阻。但是从农机设备的设计和研究过程中分析,要想针对不同的地形设计合适的农机设备这显然并不可能,不符合经济利益原则,因此这也造成了我国很多农业生产地区的农机技术推广受阻。

2发展趋势

2.1精准农业

科技带动着社会生产力的提升,科技也成为国家综合实力的一种重要标志,是国家经济的主要推动力。通过科技能够降低人工劳作的比例,提升人工劳动效率,对于农业生产来说同样如此,通过科技的研发能够设计出更高效农机设备,对农业生产效率的提升具有重要意义。在发达国家中,农业生产已经进入了精准农业的阶段。精准农业指的就是通过高科技技术和农业生产实际相结合,形成更加高效的农业生产模式。通过科技的研发带动农业生产效率提升,改善国家的农业生产结构,促进国家的经济更快发展。因此,要想发展国家的综合实力,就应当注重农业生产力提升,注重使用高科技的力量优化农业生产力,提升国家的农业发展效率,促进国家的农业进步,实现农业的可持续发展。

精准农业发展分析篇4

关键词:计算机;精准农业;发展;趋势

中图分类号:TP3 文献标识码:A 文章编号:1007-9599 (2012) 09-0000-01

近年来,精准农业已成为一些发达国家将高新尖技术应用于农业生产领域的标志。计算机在农业生产上已被广泛使用,目前计算机在农业上的应用主要集中在农业数据和图象处理、农业系统模拟、农业专家系统,农业计算机网络、农业决策支持等方面。

一、引言

21世纪是人类经济和科学技术日新月异和更加迅猛发展的世纪,工业的全球扩散、市场经济的全球推进、科学技术的全球合作、信息化的全球影响势不可挡。但同时环境问题的全球化、生态危机的普遍化、自然资源争夺的白热化,人地矛盾的尖锐化,亦将更为突出。为了协调人口、资源、环境与发展的关系,化解危机,把握住人类未来发展的正确方向,实施可持续发展战略,成为21世纪人类发展的必然选择。

农业产业信息化建设是解决“三农”问题和建设新农村的重要手段和方式作为主要的农业生产率力,但也出现了大量的农业机械化信息网络及相关技术,机械化,农业信息化水平是能够上升,尽管如此,农业机械化生产中的应用软件相对较少,设计,应用软件开发,可以有效地提高了农业机械化技术应用水平和效果,提高农业生产的效益,增加农民收入,同时,促进了农村经济的发展,在同一时间可以有效地提高了农业信息化水平的机械化,

计算机生产管理系统的不断完善,使其最终成为专家系统。迄今世界上许多发达国家将计算机应用于作物的生产管理系统,特别是在精准农业的应用。精准农业技术是一种把客观、科学的精确引进农业生产的方式。其最基本的组成部分是全球定位卫星,这种定位技术用于农业生产主要是针对农业生产因土壤结构、肥力状况、作物生产情况等因素的差异。而对种子、化肥、除草剂和杀虫剂施用提出的不同要求(近年来美国、德国等国家已建立了大型的农业资源数据库、优化模拟模型、客观决策系统,已应用遥感技术对农作物进行病虫害预报、诊断和作物的估产)。

二、计算机在农业机械的应用

(一)农业资源信息管理。农业资源信息量大。建立各类数据库系统是过去十多年我国农业应用研究的主要内容。迄今已开发成功并投入运行的有:农业生产经济资料数据库、农业科技情报信息库、国家农作物种质资源数据库、畜禽种质资源数据库、海洋捕捞渔船数据库和淡水鱼类种质资源数据库等。

(二)农业规划与决策分析。无论在种植业还是养殖业生产管理业务中,计算机应用面不断拓宽。小麦、水稻、棉花、大豆和油菜等优化栽培技术推广了近千万亩。主要作物病虫害预报系统、饲料配方技术已成功地投入应用。以施肥咨询、栽培调控、良种选育、虫害预报以及农业气象灾害防御为目标的专家系统研究,也取得了一批有实用前景的成果,并进入试验推广阶段。由于数据库、模型和专家系统这样一些单项技术有了一定的基础,农业决策支持系统的研究正在着手进行。

(三)近红外光谱分析技术。现代近红外光谱分析是20世纪中叶从农业领域发展起来的一项高新技术。随着计算机数据处理技术及化学计量学理论和方法的不断进步,使得近红外光谱(NIR)分析技术的准确性迅速提高,近红外光谱分析仪器应用日益普及,其非接触、自动与快速多组分测定的优点不断为人们所认识。根据我国现代农业领域“十二五”规划的科学发展观,农业生产将从资源消耗型和粗放管理型向节约型和优化精确控制型转化,土壤、作物、粮食和食品等养分与产品质量分析管理占据重要的地位。近红外分析技术将成为现代农业领域不同对象成分分析的重要技术手段之一。目前在现代农业领域农业生产、产品贸易和流通过程中,快速品质检测手段日益丰富,许多地区产品收购部门质量检测方法由人工感官手摸、鼻嗅、嘴咬、眼看等方式判定已转变为自动快速检测,不但可以检测产品各种内部品质参数,而且极大的改善了质量检测的客观误差,近红外分析技术在我国的市场已初步形成,应用前景乐观。

(四)农业科研。我国的计算机农业应用从这里起步。经过农业战线科研人员的不懈努力,计算机已普遍进入农业科学实验室,使用手摇计算机的时代基本结束。计算机已发展成为农学研究基础技术,相应的专业人材队伍已逾千人,分布在全国农业各条战线。同样在灌溉机械上安有自动灌溉的红外温度计,根据计算读取的有关数据处理,最终通过计算机发出灌溉指令。

三、存在问题

农业的产品,已建成的数据库系统,首先都应先促使个人对将做出买卖决策的市场环境进行分析,这种方式很适合于作为分析问题的第一步骤。而对包括买方决策在内的交易发生的整个市场环境缺乏足够的重视。因此,总体看来,我国农业计算机应用水平亟待提高。应当认真总结经验,减少盲目性,切实研究如何使计算机这一日新月异的技术在农业现代化过程中,发挥应用的积极作用。

四、结束语

为缓解高投入、高产出的集约农业所引起的环境问题与降低生产成本,纷纷借助于信息技术的发展,开展精确农业的研究及实践。精准农业作为一种以信息为基础的农业微观管理系统控制下的农业生产,通过GPS和计算机控制技术准确计算出某一地块实际所需投入,可以减少不必要的投入与资源浪费,提高投入产出转换效率,避免由于过量施用化学产品而带来的污染风险,因此它是一种属于超前性的高新技术农业,是世界农业现代化发展的新趋势。为了迎接世界性农业科技革命的挑战,把信息技术,生物技术与生态工程建设有机结合起来,培育农业高新技术产业和产业集团,它将成为未来农业的一个发展趋势。在现阶段,应结合我国国情,把为实现优质、低耗的可持续发展的农业作为农业科技的发展方向,努力促进农业走技术集约的道路。近年来在部署生态农业和农村生态建设与可持续发展的试点中,把质量问题、效益问题、农民增收和环境保护问题始终作为近期农业研究的重点,加以实验和总结,所取得的成功经验和模式,已受到党中央和国务院的高度重视。

参考文献:

[1]何雄奎.农业机械化[M].化学工业出版社,2006,4

[2]宗锦耀.中国农业机械化重点推广技术[平装] [M].中国农业大学出版社,2008,12

精准农业发展分析篇5

关键词:3S技术;精准农业;应用展望

中图分类号:S-3 文献标识码: A DOI:10.11974/nyyjs.20170229022

我国是一个农业大国,拥有近8亿的农民,用占世界7%的耕地面积养活了世界22%的人口, 国际上近年来把精准农业作为农科学研究的热点领域,是农业生产与高新技术相结合的新型农业发展模式。它的特点是“精确”,它充分体现的是因地制宜,科学管理的思想观念,其核心技术是“3S”技术与计算机控制系统。

1 精准农业

1.1 精准农业(precision Agriculture)的核心思想

精准农业(precision Agriculture,简称PA)是农业实现低耗、高效、优质的重要途径,是由信息技术支持的根据空间变异,定位、定时、定量地实施一整套现代化农事操作技术与管理的系统[1], 实时获取地块中每个小区内的土壤信息、农作物信息,诊断作物的长势和产量在空间上形成的差异是PA的内涵思想,并对每一个小区做出分析,决策,随后进行灌溉、施肥以及喷药,从而使水、肥以及杀虫剂的利用率被最大限度地利用,增加产量,减少环境污染,进而高效地利用各类农业资源,取得非常可观的经济效益和环境效益。

1.2 精准农业的技术核心

实现PA,它的核心是除了建立一个完善的地理信息系统(GIS),还有全球定位系统(GPS)、遥感(RS)、传感器以及检测系统等。前3项组成了 “3S”技术,若要对农作物抽样调查,获取作物生长的各种影响因素数据,那就离不开3S技术,同时可以实时采集时间、空间变化信息,绘制电子地图,并对其进行加工处理,还可对精准农业的效果、效益进行评估(图1)。

1.3 S技术在精准农业中的综合应用

1.3.1 GIS技术的应用

地理信息系统(GIS,Geographical Information System)作为农田空间数据库采集、分析、处理和显示地理空间信息的计算机软件平台。其在精准农业中的应用主要包括以下几个方面:

GIS能作为农田空间数据库的管理系统。它即管理农业空间数据库,也能实现对土壤性状、自然条件、农作物长势状况及产量等数据远程查询,也能参与分析,最终显示与输出分析的结果; GIS能绘制农作物产量分布图。在新型联合收割机上安装GPS,每隔几分钟,GPS就记录下它的位置, 而产量计量系统能自动称出农作物的重量,此时计量仪器能测出农作物流入Υ娌值乃俣群筒獬鲆丫流出的总量,所以一旦结果显示,就记录在农田空间数据库中; GIS可以分析农业专题图。GIS有空间叠置功能,能将不同类型农业专题数据叠置在一起,形成新的数据集,从而能分析出土壤中各种限制因子与作物的相互影响。

1.3.2 GPS技术的应用

GPS在精准农业中非常重要,它可以精准定位,精准施肥,精准灌溉,精准喷药以及精准耕作,GPS根据地区不同,土壤类型差别以及土壤中各种养分的盈亏状况,作物的差异和作物的需求状况,将微量元素与有机肥科学配方,做到精准施肥;同时,GPS利用土地参数采样器,采集植物的生态环境等参数,通过GPS中心控制基站,然后让专家系统进行植物分析,可以做到精准调控节水灌溉系统;GPS也能监测病虫草害,它能连接高质量的视频摄像系统,可以收集原始数据,分析图像,实时监测田间作物,从而能得出受灾范围与位置,还可跟踪虫害的迁飞路线、种群数量和受灾程度,病虫害发展方向及流行趋势,随后可选择装有差分GPS的飞机引导飞行员在特定的路线与高度进行喷洒;精确种子与播种工程有机结合,能让播种机均匀播种,深浅一致,这样可以使田间作物获得充足的营养,收获机械不但可以颗粒归仓,而且还能根据一定的标准准确分级,所以GPS能减少肥料和农药的消耗、精确灌溉、精准播种,而且还有助于提高作物产量。

1.3.3 RS在精准农业中的应用

遥感(RS)是不接触物体,对目标或自然现象远距离探测和感知的一种新型技术。RS不仅全面、准确、实时地提供作物生态环境,而且还可以提供作物生长的各种信息。所以RS是获取田间数据的重要来源,因此RS在作物产量预测,农情宏观预报等方面提供重要依据。

2 结语

目前,关于3S技术的运用仍然是精准农业发展的核心,精准农业是一种综合性很强的复杂系统,用GIS将土壤和作物数据进行存储、整理、分析,利用RS可以全面、准确及时的获取多光谱、大范围的田间遥感数据,利用GPS技术,配合RS和GIS,能够对农作物产量分布,土壤成分进行监测,做到合理施肥、精准灌溉、精准喷洒农药和精细耕作,从而实现了农业低耗、高效和优质,精准农业在3S技术支持下具有精准定位、技术性强,定量化的特点,其中,GPS与GIS的结合提供了精准位置;提供了定量的田间作业与管理的技术手段,RS与GIS的结合能提供建立农田基础数据库所需的多种数据源,因此可以优势互补 , 从而促进精准农业的发展。

参考文献

[1]刘金铜.精准农业概论[M].气象出版社,2002.

[2]何勇.精细农业[M].杭州:浙江大学出版社,2000.

[3]唐俊华.对地观测技术与精细农业[M].北京:科学出版社,2001.

精准农业发展分析篇6

——信息技术改造传统农业

利用先进的信息采集系统将一片土地的土壤类型、肥力等土壤信息,降雨、日照等气象信息,以及农业生产动态等信息收集起来,利用信息分析系统将这些信息进行综合分析处理,决定耕作的种类、方式,在生产过程中使用具有变量施肥、喷药功能的农用机械根据不同地块的情况进行精耕细作,从而有效提高产出、节约投入、减少环境污染———在位于北京市海淀区的国家农业信息化工程技术研究中心,中心精准农业工程技术部主任孟志军为记者描绘了这样一幅与传统农业截然不同的图景,这就是精准农业。

随着信息时代的来临,信息技术的飞速发展改变了人类的生活,这一技术在农业上的应用改变了几千年来传统农业的生产方式,翻开了农业发展的崭新一页。基于“3s”技术即遥感技术(rs)、地理信息系统(gis)、全球定位系统(gps)在农业中的应用,20世纪90年代中期以来,精准农业在美国、日本等发达国家中的实验研究与实践有了快速的发展,被誉为“信息时代作物生产管理技术思想的革命”。

承担这一项目的是一支年轻的队伍,平均年龄33岁,70%具有博士学位,多是有着农学与计算机专业背景的复合型人才,短短的五年时间,项目的研发已经有了实质性进展,他们开发出了收集信息的农田地理信息系统、分析信息的变量农业处方图系统、能进行全自动化操作的变量施肥机、变量喷药机等,目前他们正在打造一个更大的具有综合分析功能的平台系统。

——打造“数字农业”技术体系

事实上,精准农业也好、专家系统也好,还有设施农业、虚拟农业等等,这些基于现代信息技术的农业技术系统,都有一个共同的名字———“数字农业”。

“数字农业”是利用信息技术全面促进农业、农村可持续发展,建设现代化农业重要的科学支撑技术。“数字农业”的内容主要包括农业要素、农业过程及农业管理的数字信息化。

“数字农业”是农业信息化的核心,也是农业信息化的具体表现形式。

“数字农业”正在使人们对科学利用农业资源潜力的认识和作物生产管理观念产生深刻的变革,促进农业科技界突破传统的以单学科研究为主的工作方式,通过多学科的融合和协调,将多种科技成果组装集成,直接为农业生产的持续发展服务。

——以国产化与社会化为目标

“数字农业”是一个具有挑战性的国家目标。几乎所有现存的技术基础,目前都还不足以支撑这样一个战略目标的实现。“数字农业”在国内的发展,一方面是将其作为开展农业高新技术研究的重要方向,另一方面是通过“数字农业”技术体系的研究,从中分解出一系列适用新技术,进行国产化和社会化推广。

作为“数字农业”的核心之一,精准农业的发展正面临着令人振奋的前景。从精准农业示范基地的实施情况看,这一技术可以广泛应用于小麦、玉米等大田作物,对品质要求高的经济作物如烟叶、茶叶等效果也非常明显,可以有效提高产出率,节约肥料使用率,提高产品质量。

然而同所有引进的技术一样,精准农业面临成本过高以及如何本土化的问题,目前基地使用的全球定位系统和联合收割机等设备都由国外进口,价格高达100多万元人民币,只有实现国产化,其成本才能大幅降低,所以,今后精准农业要在关键技术上进行自主知识产权的研发和储备,建立完全的国产化的精准农业信息采集、分析以及应用体系。

孟志军介绍说,目前中心正在与黑龙江农垦总局、上海郊区的现代农业园区合作进行国产化试验,以目前研发的情况看,精准农业技术的国产化在3、5年之内就可以达到。这意味着被普遍质疑的实施精准农业成本过高的问题会得以解决,进行社会化生产成为可能。

精准农业发展分析篇7

1.1精准农业的定义精准农业的生产要素由不可控因素和可控因素组成。不可控因素又称为“先天”因素,包括气象(气温、降雨等)、土壤(母质,坡度等)等;可控因素又称为“后天”因素,包括品种、肥料、农药、水分等。精准农业生产的目的在于科学认识不可控因素(土壤、气象),合理调配可控因素(肥、水、种、药),优化作物生长条件,使经济效益和生态效益达到最优。简单来说,精准农业是指基于环境的时空变异性分析,在正确的时间和地点以正确的方式投入正确的生产资料数量,最终获得最佳的效益。

1.2精准农业问题的分类精准农业的研究对象可用2种方式分类。一类是从静态角度按生产要素分,可分为土壤、作物和气象3种要素或者分为生物(作物)和环境(土壤、气象)2种要素;另一类是从动态角度按生产环节分,可分为播种、施肥、灌溉、喷药和收获。从土壤方面来看,要解决的主要问题包括土壤类型分类、地力分级、管理分区划分、养分插值等。从作物方面来看,要解决的主要问题如表1所示,其中,重点要解决的问题包括品种选择、精准施肥、病虫害预测和产量预测等。从气象方面来看,要解决的问题主要包括气温预测和降雨量预测。与土壤因素相比,气象因素的空间变异性很小,且更不容易控制,因此,在精准农业中对气象方面的研究相对较少。

1.3重要的精准农业决策需求

1.3.1管理分区。管理分区就是由相似的地貌或土壤状况所导致的相似的作物生产潜力、养分利用效率和环境效应的子区域。科学、合理的管理分区可以指导用户以管理分区为单元,进行土壤和作物农学参数采样,并根据不同单元间的空间变异性,实施变量投入、精准管理决策,这样既能提高土壤养分利用效率、管理精度和农产品产量、品质,又能节省资源,获得较好的经济效益,达到保护农业资源和环境质量的目的。研究表明,管理分区可以作为网格采样的一种替换手段在变量施肥中应用。土壤分类和地力评价与管理分区密切相关,可被认为是一种广义的管理分区。

1.3.2品种选择。品种选择是精量播种的前提和基础。与品种选择密切相关的3个概念是品种布局、品种搭配和良种良法配套。品种布局是指依据当地的土壤因素和气象因素,确定适宜的推广品种。品种搭配是指在同一地区,有主次地搭配种植具有不同特点的品种,合理的品种搭配有助于降低风险。良种良法配套是指依据不同的品种特性采取不同的栽培措施,做到因种栽培,具体包括根据品种耐密性确定种植密度、根据品种喜肥特性进行施肥、根据生育期确定播种期、根据抗病性确定栽培管理办法等。在品种确定以后,还有2个问题需要解决,即在时间上需要确定适宜的播期,在空间上需要确定合理的种植密度。

1.3.3精准施肥。精准施肥是精准农业技术中的核心内容,其基本思想是通过GPS在农田地块上划分网格,在网格内采样、测土、化验,依据土测值利用定量施肥模型获取网格内的施肥量,最后通过变量施肥机进行精准施肥。实践证明,精准施肥可以节约肥料、增加粮食产量、均衡土壤养分、减少环境污染。

1.3.4病虫害预测。病虫害预测是玉米精准生产决策中的重要环节。准确的病虫害预测可以使生产者及时地采取相应措施,从而减少产量损失。病虫害预测的内容主要包括发生期、发生量、分布区、危害程度和损失的预测。其中,发生期和发生量的预测、预报更具实际意义。影响病虫害发生的因素主要有:病原物和虫源(病原物的数量、飞散和传播;害虫越冬、繁殖数量以及发育速度、迁飞)、寄主和食料(受害作物品种、生长状况、发育期)以及环境条件(气象、土壤、天敌)。由于影响病虫害发生的相关因素众多,而环境条件中的气象因素(温度、湿度、降雨量等)又是影响病虫害发生最主要的因素,因此,现有的预测基本都采取了简化方法,即以气象因素来预测病虫害的发生。

1.3.5产量预测及影响因素分析。产量是精准农业的出发点和落脚点,准确的产量预测可以为管理区划分、品种选择和精准施肥等提供依据。产量的影响因素分析有助于找到影响产量的限制因子,从而有针对性地采取措施减少或消除这种限制因子,达到提高产量的目的。

2精准农业的特点

2.1时空性作物生长与时间和空间密切相关,随时间的改变和空间位置的不同而呈现出不同的属性和状态,这就是农业生产的时空性。3S技术(GPS、GIS和RS)是处理时空信息的有力工具,在精准农业中具有广泛的应用。3S技术的相互作用,形成了“一个大脑,两只眼睛”的框架[5]。其中,GIS是核心,相当于“一个大脑”,用于空间信息的分析和处理;GPS和RS相当于“两只眼睛”,向GIS提供区域信息以及空间定位。基于农业生产的时空性特点,王生生等开发了数字农业时空信息管理平台,该平台可以对多源、异构的农业时空数据和推理分析方法进行集中、统一的规范化管理[6]。张伟建立了集成3S技术的数字农业空间信息管理平台,在上海市数字农业示范区进行应用,取得了良好的效果[7]。时空推理和空间数据挖掘与3S技术紧密相关,是近年来的研究热点。王娟等探讨了GIS与空间数据挖掘集成在农业中的应用[8]。充分利用空间数据挖掘和时空推理的理论成果,集成3S技术应用于精准农业中是未来的研究方向。

2.2不确定性农业生产复杂多变,农业生产对象的运动具有随机性,人们对农业生产对象的认知具有模糊性和灰色性(不完全性),这就是农业生产的不确定性。MAT-THEWL等介绍了精准农业中不确定性的来源,并给出了不同类别不确定性的处理方法[9]。随机性和模糊性的共同点是:都是针对不确定现象,都是用[0,1]来度量不确定性。不同点是:随机性是由于条件不充分导致对象的不确定性,是对“因果律”的突破;模糊性是由于外延模糊而引起对象的不确定性,是对“排中律”的突破。概率统计、模糊数学和灰色系统理论是处理不确定信息的3个基本工具,分别用于处理信息的随机性、模糊性和灰色性。①模糊数学着重研究“认知不确定”问题,其研究对象具有“内涵明确、外延不明确的特点”。对于这类问题,模糊数学主要是凭经验借助于隶属函数进行处理。②概率统计研究的是“随机不确定”现象,着重于考察“随机不确定”现象的历史统计规律。其出发点是大样本,并要求对象服从某种典型分布。③灰色系统着重研究“小样本”、“贫信息”不确定性问题,研究对象通常都是“部分信息已知、部分信息未知”的,具有“外延明确、内涵不明确”的特点[10]。

3精准农业决策需求与智能技术的结合

基于精准农业决策需求和精准农业特点,需要确定相应的智能求解技术。精准农业与智能决策的结合主要有3个步骤。第一,从精准农业的角度确定决策需求,并根据每种需求的性质对需求进行分类;第二,从计算机的角度确定智能计算方法,并根据每种方法的功能对方法进行分类;第三,根据分类结果取交集,即可得到精准农业与智能决策的结合。精准农业决策需求与智能计算方法的结合点或交集主要包括:关联、分类、聚类、评判和预测等。关联是指对数据间的相关性进行分析,如相关分析、主成分分析、层次分析等;分类是指从一系列给定类别信息的数据出发,为下一个未知类别的数据归类;聚类是指从一系列未知类别信息的数据出发,分析其可以聚成几类,以及哪些数据属于同一类;评判是指按照给定的条件对事物的优劣、好坏进行评比、判别;预测问题可以归为2种:一种是因果预测,即基于因果关系数据由过去的因预测将来的果;另一种是时间序列预测,即基于时间序列数据由过去的果预测将来的果。可以得到精准农业决策需求所对应的智能求解方案。精准农业决策需求与智能计算方法的结合属于多对多的关系,即一种决策需求可用多种智能方法求解,而一种智能方法也可用于求解多种决策需求。如管理分区的划分可采用神经网络、模糊聚类等多种方法求解,而神经网络方法可用于管理区划分、病虫害预测等。需要说明的是,尽管一种决策需求可采用多种方法求解,但具体采用何种方法,要综合考虑现有数据属性、数据量、算法的效率和算法的准确度等,然后再从中选择一种相对较好的方法。事实上,精准农业与智能决策结合的重要任务之一就是要根据现有数据的情况,对多种可能的方法进行测试和比较,并从中选择最适合当前数据的方法。一般情况下,通过标准数据集对相关智能决策技术进行测试和比较,通过应用数据集进行精准农业应用。

4精准农业问题的求解

从计算机的角度看,精准农业的智能求解主要有3种情况。第一,将传统的、已经实现的智能决策技术应用于精准农业;第二,对原有的智能决策技术进行改进,使其效率更高,更适合于某个精准农业需求;第三,如果前2种方式都行不通或者可能有更好的方法,则可以提出一种新的智能决策技术进行相关问题的求解。

4.1精准农业问题的求解层次数据、知识、决策是精准农业问题求解的3个层次,三者间的关系如图2所示。有一部分简单数据、经验知识和已知决策可直接为用户所用,而大多数情况下,数据都要经过数据挖掘形成知识,再经过知识工程方法形成决策,并最终为用户所使用。上述过程通过软件来实现,就形成了智能决策支持系统;为了实现软件开发的标准化、规范化,需要软件工程方法的指导。

4.2主要智能决策技术及其在精准农业中的应用

4.2.1神经网络。人工神经网络是一个大规模自组织、自适应的非线性动力系统,能较好地模拟人的思维,具有大规模并行协同处理能力及较强的容错、联想和学习能力,能依据一定的学习算法自动地从训练事例中学习,并根据外界环境的变化调整自己的行为。神经网络经常和遗传算法、模糊计算配合使用,三者合在一起又称为软计算方法[11]。软计算通过对不确定、不精确及不完全真值的容错以取得低代价的解决方案和鲁棒性,它模拟自然界中智能系统的生化过程(人的感知、脑结构、进化和免疫等)来有效处理不确定性信息。软计算方法的以上特征,适应于农业生产的不确定性。神经网络的功能主要有分类、聚类、预测等,可用于土壤分类、管理区划分、病虫害预测和产量预测等。单个神经网络具有不稳定性,为了进一步提高神经网络的预测精度和泛化能力,可引入神经网络集成技术。神经网络集成是由Hansen与Salamon在1990年提出的,旨在通过训练多个神经网络并将其进行组合来提高神经网络系统的泛化能力[12]。

4.2.2贝叶斯网。贝叶斯网方法是20世纪80年展起来的,最早由JudeaPearl于1986年提出,当时主要用于处理人工智能中的不确定性信息。随后它逐步成为了处理不确定性信息的主流技术,并且在工业控制、医疗诊断等领域的许多智能系统中得到了应用。贝叶斯网络作为图形模型的一种,具有图形模型的大多数性质,图形模型是概率理论和图论的结合。他们提供了一种自然的工具来处理贯穿于应用数学和工程中的2个问题———不确定性和复杂性。一个复杂系统是由多个简单部分构成的。概率理论提供了各个部分联合起来的粘合剂,保证系统作为整体是一致的,并提供模型到数据的接口;图论则提供了一个可以诉求于知觉的界面,人们可以通过它将高度互动化的变量集和数据结构模型化。贝叶斯网具有双向推理能力,既可以用于预测也可以用于诊断。贝叶斯网还具有分类功能。有代表性的分类器包括朴素贝叶斯分类器和TAN分类器,两者都是贝叶斯网的特例[13]。由于贝叶斯网的建造需要大量数据,而农业数据获取相对困难,因此,贝叶斯网在精准农业中的应用还不多见。在国外,F.trai将贝叶斯网应用于冬小麦产量预测,KristianKristensen等将贝叶斯网应用于大麦麦芽生产决策,均取得了很好的效果[14-15]。而在国内,几乎没有相关研究。随着3S技术的发展,获取大量农业数据已经成为可能,将贝叶斯网与遥感结合应用于精准农业是一个发展趋势[16]。另外,在数据量相对不足的情况下,可以采用一定的方法简化贝叶斯网建造的复杂性,如充分利用领域专家的先验知识,采用“噪音“或和“分离”技术等[17]。总之,贝叶斯网在精准农业中必将具有良好的发展前景。

4.2.3灰色系统理论。灰色系统理论由我国学者邓聚龙教授于1982年提出,其研究对象是“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定性系统,通过对“部分”已知信息的生成、开发实现对现实世界的确切描述和认识。由于农业系统具有复杂性,对于农业生产者来说,信息是残缺不全的,内部特征“若明若暗”。因此,农业是一个典型的灰系统,农业系统和灰色系统理论具有天然的联系。与概率论相比,在某些场合,灰色系统理论在处理农业不确定性信息方面更具有优势和独到性。这是因为:首先,在农业生产过程中,存在着大量不确定现象,要获取足够的数据,并使其具有典型的概率分布特征是相当困难的;其次,概率统计方法要求试验设计复杂,且基本假定过于严格,而实际很难办到。灰系统理论的主要功能有关联分析、聚类、预测、评判等。可用于产量影响因素分析、品种评价、病虫害预测等。

4.3精准农业智能决策系统精准农业决策需求的实现,需要智能决策系统的开发,而智能决策系统的开发依赖于大量数据的获取,三者之间的关系见图3。这是一个具有沙漏计时器形状的技术体系,在该体系中,智能决策系统处于核心地位(信息处理层),它对下要处理各种多源、异构数据(信息获取层),对上要解决各种需求。由于农业生产的复杂性,数据获取相对困难,大部分知识都是以经验的形式存在于人的头脑中,因此,早期的智能决策系统主要是知识驱动的,以农业专家系统的开发和应用为主要标志,侧重于软件的实现,这一阶段可称为智能农业阶段。随着3S技术的发展,采集和获取大量属性或空间数据成为可能,因此,后期的智能决策系统主要是数据驱动的,以3S技术的开发和应用为主要标志,侧重于软硬件的结合,这一阶段可称为精准农业阶段。当前的农业智能决策系统侧重于数据驱动和知识驱动的集成。在数据量丰富的场合主要采用采用数据驱动模型,在知识量丰富的场合主要采用知识驱动模型。智能决策系统的发展趋势主要有3个方面:一是集成性,如集成GIS的空间决策支持系统[18-20];二是分布式,如面向服务的分布式精准农业信息平台[21];三是网络化,如基于网络的作物品种选择信息系统[22].

精准农业发展分析篇8

关键词:现代农业;农业机械;自动化;技术

传统农业体系中,人工是农业生产的基础,但随着社会经济的发展,农业产品市场需求增加,人工生产模式已经无法满足现代农业的生产要求。在此背景下,农业机械化、自动化概念应运而生,转变了现代农业生产模式,在各类自动化农机设备的使用中,农业生产效率明显提升,为建设精准化现代农业生产模式提供较大可能性。

1农业机械自动化概述

农业机械自动化是基于现代互联网信息技术,将自动控制技术、计算机软件、大数据分析技术高度整合在农业机械生产研发中,使其能够在具体使用时,高效率地处理各类农业生产、管理事务。现代农业体系中,农业机械自动化趋势逐渐明朗,其在农业生产中的推广、应用价值愈发突出。在此背景下,农机设计中的自动化程度不断提高,自动化技术成为创新、完善农机功能的核心技术,可以帮助农业生产人员优化调整生产模式,智能、有效地管控农业机械设备,最大限度地改善农业生产条件[1]。随着现代农业体系的完善,农业机械自动化可以满足新时期农业高效、高质量生产的基本要求,并且对解决农村劳动力问题、转变农村传统劳作及生产模式有着不可忽视的作用。一方面,农业机械自动化能够进一步提升现代农业生产效率,节约农作物成长期间的劳作时间,同时有助于减少人力、财力成本,落实各种有利于农业生产的新兴技术。另一方面,基于农业机械自动化,农业生产模式改变,农业生产人员可借此构建信息化、自动化的农业生产管理系统,全方位地监控农产品生产链条,逐步地落实“精准农业”的理念。

2现代农业的发展现状分析

现阶段,农业机械自动化成为“现代农业建设”的基本内容,但在提升现代农业自动化程度时,仍存在较多问题,具体可体现在以下几方面。首先,农业机械设备先进性不足。机械设备的实际性能、机械自动化水平直接关系着现代农业生产创新的效果,但根据当前农村地区对农业机械的使用情况可知,多数农村区域,农民所使用的农机设备较为落后,缺乏先进性。设备功能、设备自动化程度均不符合现代农业的生产需求,制约着现代农业的生产效率、生产模式。导致现代农业在机械化、自动化发展中,农业体系中的生产观念、生产流程、区域农业发展均受到较多限制,使得农业机械自动化的推广、宣传范围难以持续扩大。对此,相关农业部门还应基于农作物生产的现状,加大对自动化农机的宣传力度、政策扶持力度,促进农业生产模式的转型与升级[2]。其次,农业生产中农机设计的科技水平低。目前,现代农业体系中,农业生产中的各类农机的自动化水平逐渐提升,但农业机械中的科技含量较低,其所包含的技术优势不明显,设备功能创新性较弱,使得我国农业机械化、自动化发展中,完善农产品生产模式的进程缓慢。所以相关研究人员还应及时借鉴国外成熟的农业机械研发技术,针对性分析农业机械化、自动化发展需求,逐步地融入各类先进技术,提高农机设备中的科技含量。最后,农业机械自动化区域发展不均衡。我国土地资源丰富,国土辽阔,农业种植区域大、分布广,但不同区域的农业经济增长速度、区域经济水平存在较大差异,继而使得农业机械自动化推广、应用受到较多影响,各个区域内农业机械自动化发展呈现出不均衡的特点。

3现代农业中农业机械自动化的具体应用

3.1生产监测自动化

现代农业生产中,农业机械自动化在具体应用时,能够实现农业生产监测的自动化。具体来说,在农机设备自动化设计后,计算机成为自动化控制农业生产设备的核心工具,在农业生产活动中,计算机可操控农机设备的运行与管理,将其投入农业生产活动中获取相关数据,而系统可自动化分析农业生产中的各项信息,对农机设备下达指令,使其自动调节农业生产设备功能[3]。例如,在现代农业中,农产品种植、栽培场所逐渐改变,对于生长在温室内的农产品,农业机械设备的自动化技术,可以利用功能完善的感应装置,监控农业生产区域内的含水量、温度,评估现有的温湿度是否符合农作物萌芽、抽芽、生长要求。与此同时,相关人员可基于计算机技术,自动化地分析处理温室内的各项数据,智能调节农业生产中的光照、温度,为农作物提供更为适宜的生长环境。比如,在农业机械自动化发展中,GPS技术被应用在现代农业生产中。该技术可自动收集农作物生长数据,改善农作物生长条件,并在与GIS技术联合应用的过程中,准确获取农作物土壤结构内的营养元素,使农业生产人员可以依据土壤数据,精准除草、施肥、浇水灌溉,夯实农作物生产基础。不仅如此,农业机械自动化在现代农业中的应用,同样可将“生产监测自动化”渗透在农作物的整个生命周期内,从农作物萌芽、生长、成熟、收割等各个环节进行自动化监控。部分农业机械设备可及时对农作物进行采摘、初步清理、存储,及时清空农作物生长区域,为后期种植做好准备,全面地提升农业生产效率。

3.2农业灌溉自动化

灌溉是农作物生产中的重要环节,在将农业机械自动化技术应用在现代农业时,部分农机设备可实现农业生产中排水灌溉的自动化。具体来说,在全球范围内,水资源短缺问题尤为突出,而农业生产中的水资源却属于不可缺少的生产要素。在农业灌溉中应用农业机械自动化技术,不仅是为了提升农业生产灌溉效率,更是为了通过精准地控制农业灌溉时的用水量,以节约农业生产中的水资源,将“节约用水”理念渗透到农业生产活动中[4-5]。在此背景下,现代农业体系中的灌溉设备功能逐步完善,正式灌溉农作物前,相关人员可根据农田面积、农田内农作物的密集度以及农作物生长需求,自动化分析每亩农田的需水量,继而通过现代农机设备的精密控制,科学地对农田进行灌溉,落实自动化的农业生产灌溉技术。在此期间,农业灌溉所用的农业机械设备包括农机传感设备、大数据监控分析平台、计算机系统,是自动化控制技术与现代农业相互融合的载体,对节约农业生产中的水资源、灌溉成本意义重大。农业生产人员可利用农业生产灌溉的自动化,进一步改善农作物生产条件,使其健康成长,保障农作物生产质量、生产效率。

3.3农产品装检机械化

现代农业体系不仅包括农作物生产,农产品产销、包装均属于现代农业的生产管理工作。所以农业机械自动化的应用不仅局限于农作物生产,同样可以应用在农产品包装、质量检测等方面。首先,农业机械自动化会促进现代农业生产结构的创新,优化农业生产管理流程,并根据市场对农产品的实际需求,改进农产品质量检测、农产品包装模式。在传统农业生产管理中,农业机械化、自动化技术水平低,人工是农产品包装与质检的主体。而随着农业机械自动化发展,相关人员研发出“自动检测包装设备”,该设备的核心技术是自动控制技术,可以自动检测农产品外观、大小,合理地对农产品进行分类包装。其次,在农产品装检机械化中,相关人员同样可借助自动化影像技术,实时监测农产品生长中的各项指标,全面监控农作物种植区域。然后,利用计算机软件,整理农作物生产数据、成长信息,构建可视化的三维立体模型,为农业收割、采集、包装、质量检验提供详细的参考数据,使相关人员在农业生产实践中制定出更为科学的管理方案[6]。最后,在农业机械自动化发展中,现代农产品的装检机械化趋势愈发明显,并且在现代农业创新发展中,农产品包装、质量检测等流程呈现出“集约型”的管理特点。各个农业生产区域中,农业机械自动化推广效应不断扩大,集约化的农产品分拣、包装会突破传统农业生产管理困境,使非生产环节的农业机械自动化水平不断提高,促进了现代农业结构、农业机械自动化技术的相互融合,进一步增强现代农业生产人员的专业能力、综合素质,为我国农业经济的发展创造有利条件。

3.4农业管理精准化

农业机械自动化应用于现代农业时,可促进农业管理精准化。首先,农业生产人员可基于计算机技术,开发农田管理软件,该软件在与UPS接收器连接后,能够绘制农田地图,记录各个区域中的农作物产量,汇总UPS卫星数据。之后,在农业生产管理中,农业生产人员可检测农田土壤样本,测定农田中的土壤成分,并根据农作物叶子颜色、植株颜色判断农作物生长情况。与此同时,在农作物生长过程中,该软件具有获取农田航拍图像的作用,可以按照农作物健康状况的检测结果,精准地确定各个区域农作物施肥需求量、农作物种植的合理密度[7-8]。其次,UPS接收器与自动化农业生产管理软件融合后,可监测农田内拖拉机、深耕设备、收割机等农用机具的位置,便于农业生产人员精准地管理农作物施肥、打药、收割、播种工作,精准地管控各环节的操作成本,有效地改善农作物周围的生态环境。另外,现代农业体系中,农业机械自动化能够更为准确地定位农机,甚至可以自动化控制农机操作过程。比如,在使用农业机械播种、施肥、打药时,UPS接收器与计算机管理软件可精准地将种子、农药或肥料投入对应的区域,实现高效收割、高效播种、高效施肥等精准化管理目标,突出农业机械自动化在现代农业中的应用优势。

4基于农业机械自动化的现代农业发展趋势

4.1农业生产模式智能化发展

随着农业机械自动化的推广与应用,农业生产模式的智能化发展趋势会更加明显。基于互联网信息技术的各类先进技术,将成为农业生产的技术支撑,所以在农作物播种、生产管理、收割、运输、销售等环节中,农业活动的智能化水平会逐步提高。在未来农业体系中,农业机器人会被广泛应用在现代农业生产中,用以监控、预测农业生产参数,获取完整、真实且准确的农业生产数据。而农业生产人员可利用智能化管理平台,远程记录、分析农业生产数据,提前做好病虫害、排水灌溉、施肥等工作,人工下田操作会逐渐减少,农业机械设备会代替人工,有序地完成农业生产任务[9-10]。不仅如此,在现代农业中,农业机械化、自动化水平会持续提高,农机生产、研发中可利用的先进技术增多。相关人员可进一步完善农机性能,使其具有智能操控、自动控制的基本能力,农业生产人员可利用升级后的农机设备,改善农业生产条件,构建智能化、自动化的农业生产管理系统,高效率、精细化地完成农业生产管理工作,满足现代农业的发展需求,促进农业经济增长。

4.2精准化农业生产模式逐渐完善

农业机械自动化发展中,农业生产流程、生产管理等操作更为“精准”,所以在未来“精准化生产模式”会更加完善,农业生产活动会在农业科技水平的提升中不断优化。农作物生长周期内,农业生产人员对浇水、施肥、除草、病虫害防治等工作的控制更为精准,可以有效提升未来农业生产管理质量,使农作物健康成长。另外,基于“精准化生产模式”,农业机械自动化会支持市场上农产品品质、品种的创新,从而带动农业经济发展,有利于夯实我国社会经济建设基础,增强我国农业在国际市场的竞争力。

5结语

综上所述,为在现代农业发展中有效地应用农业机械自动化技术,相关人员还应积极创新农业机械设计,将更多先进、新颖的自动化技术融入农业生产中,从而为农业发展构建完善的技术体系。与此同时,相关农业部门还应顺应时展趋势,强化农业机械自动化推广、宣传力度,在坚持因地制宜原则的基础上,扩大区域范围内的农业机械自动化应用范围,建设精准化的现代农业,助力我国农业经济可持续发展。

参考文献:

[1]梁瑞仪.先进适用农机技术在农业生产中的应用策略思考[J].南方农业,2019,13(12):156-157.

[2]李艳杰.农业机械自动化技术的应用与推广策略[J].农机使用与维修,2020(3):54.

[3]刘博.基于PLC自动化技术的农业机械电气控制应用[J].南方农机,2020,51(22):50-51.

[4]张珍,赵书玲.自动控制技术在农业机械中的应用探讨[J].产业与科技论坛,2019,18(14):57-58.

[5]孟庆亮,陈亦军,范巍挺.自动控制技术在农业机械中的应用[J].农机使用与维修,2020(10):130-131.

[6]岳建林.试探机械工程自动化当中的农业智能化技术[J].农民致富之友,2020(2):99.

[7]尹辉录.农业机械技术在现代农业中的作用研究[J].经济技术协作信息,2021(5):88.

[8]李晓玲.现代农业中农业机械技术的推广作用分析[J].南方农机,2020,51(23):94-95.

[9]白跃辉.农业机械设计制造工艺与精密加工技术分析[J].时代农机,2020,47(4):91-93.

推荐期刊